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ABSTRACT

CFD-based aircraft design optimization has matured significantly in the last few years thanks to the refinement of CFD
solvers, mesh deformation, sensitivity computation, and optimization tools. We review recent developments for each of
these components, and present open-source tools recently made available for aerodynamic shape optimization. A variety of
applications is presented, including the optimization of a supercritical airfoil starting from a circle, a web application that
optimizes airfoils within a few seconds, aircraft aerodynamic and aerostructural optimization, and aeropropulsive optimization.

1. Introduction

While CFD-based aircraft design optimization
was introduced decades ago, several challenges have
prevented its widespread use in industry: (1) CFD
solver robustness, (2) scalability with number of design
variables, (3) efficient and accurate gradient computa-
tion, (4) robust mesh deformation, (5) practical indus-
trial constraints, and (6) inclusion of aircraft design dis-
ciplines other than aerodynamics. This paper and as-
sociated keynote presentation reviews the efforts at the
University of Michigan MDO Lab to address these chal-
lenges. Challenges 1 through 5 pertain more specifically
to aerodynamic shape optimization, while Challenge 6
broadens the scope to aircraft design optimization.

2. Review of Developments

2.1. CFD Solver Robustness

Integrating CFD in a numerical optimization cy-
cle demands additional requirements on the robustness
of the CFD solver. The reason is that if the CFD solver
fails to converge during an optimization iteration, it in-
terrupts the optimization process, which must then be
restarted. In addition, the CFD solver is more likely
to fail during optimization because the optimizer does
not share the intuition of a designer, and will provide
bad design shapes to the CFD solver. Therefore, it is
crucial that the CFD solver be able to solve for designs
that might not make much sense.

To this end, we developed an approximate
Newton–Krylov approach for robustly solving the
Reynolds-averaged Navier–Stokes (RANS) equations
for a wide range of geometries [1]. We implemented this
approach in the ADflow CFD solver. 1 This solver has
been demonstrated on a number of applications [2, 3, 4],
including an airfoil shape optimization problem that
started from a circular shape and converged to a super-
critical airfoil [5].

2.2. Scaling with Number of Design Variables

Aerodynamic shape optimization requires a large
number of shape design variables to achieve the best
possible performance (about 200 variables for wing
design [6]). Only gradient-based optimization algo-
rithms can handle this number of variables efficiently.
Therefore, we use SNOPT, a gradient-based algorithm
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that implements sequential quadratic programming and
can handle nonlinear constraints [7], through the py-
OptSparse wrapper [8].

2.3. Gradient Computation

A good gradient-based algorithm is not sufficient;
it is also necessary for the gradients to be computed ac-
curately and efficiently. Adjoint methods compute gra-
dients with respect to large numbers of design variables
efficiently, but require a long development time. To ad-
dress these issues, we have developed a general recipe
for adjoint method implementation [9], which we have
applied to both ADflow and OpenFOAM [10].

Even though gradient-based optimization with
the adjoint method enables efficient aerodynamic shape
optimization, it still requires hours in a parallel com-
puter to perform the full optimization. To make aero-
dynamic shape optimization more accessible, we have
developed a web-based data-driven approach to air-
foil design that takes just a few seconds for optimiza-
tion [11]. 2

2.4. Robust Mesh Deformation

When the optimizer decides on a new set of de-
sign variables, we must perturb the original CFD mesh
to conform to the new shape. For the same reasons
mentioned in Sec. 2.1., this process must be robust.
To address this need, we developed an efficient ana-
lytic inverse-distance method for volume mesh deforma-
tion 3, which was also crucial in the airfoil optimization
starting from a circle [5].

2.5. Practical Industrial Constraints

From working closely with industry, we identified
several constraints that had to be enforced that re-
quired new formulations. Geometric constraints, such
as variable fuel volume, wing thickness, leading edge
radius, and trailing edge angle constraints are linear
and were relatively easy to implement [6]. To consider
these constraints implicitly, it is also possible to use a
data-driven approach [12].

Other constraints are highly nonlinear and require
much more development effort, such as buffet and flut-
ter. We developed a constraint formulation for buffet
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based on a separator sensor function [13] and made de-
velopments towards constraining flutter [14, 15, 16].

2.6. Multidisciplinary Design Optimization

Aerodynamics is not enough to achieve high air-
craft performance. One of the most important other
disciplines is structures, which couples with aerody-
namics to determine the wing performance. We have
developed a coupled-adjoint approach [17] to perform
the simultaneous design optimization of aerodynamic
shape including wing planform variables and structural
sizing [18, 19, 20, 21, 22]. This coupled-adjoint ap-
proach has also been generalized to an arbitrary number
and type of disciplines [23].

Other multidisciplinary design optimization
(MDO) capabilities include the simultaneous op-
timization of aerodynamic shape and propulsion
system [24], and optimization of wing, mission, and
allocation [25, 26].

3. Concluding Remarks

This paper is only an outline of the methods de-
veloped in the MDO Lab to enable CFD-based aircraft
design optimization. The cited references provide many
more details on the methods themselves and the appli-
cations.

Gradient-based optimization combined with effi-
cient gradient computation via adjoint methods have
been one of the keys that made this work possible.
Working closely with industry has been invaluable in
identifying the challenges that needed to be solved for
practical applications.

Given the contributions above and the fact that
much of the code that we developed is available under
open-source licenses, we expect that the use CFD-based
optimization will continue to increase and become more
widespread than ever.
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