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Abstract

Predicting and controlling the steady and dynamic hydroelastic performance is a crucial
challenge in marine composite lifting surface design. Excessive flow-induced vibrations
and accelerated fatigue can be severe issues if not considered in the initial design.
Most design optimizations only consider steady performance and neglect critical dy-
namic aspects of the marine environment, such as lower resonance frequencies and
different band gaps between modal frequencies in water compared to in air. This work
uses lower-order models to capture the steady and dynamic fluid-structure interaction
behavior and optimize the design of composite hydrofoils. We formulate new ob-
jectives and constraints that consider the natural frequencies, damping, and frequency
response spectra in addition to steady hydroelasticity to achieve the design intent. The
optimization method is heuristic, which is appropriate for this level of model fidelity
where holistic parameter trends are more of interest. Results for a 1/3 length-scale
hydrofoil model showed a significant improvement in the optimized performance over
the baseline. By tailoring geometric and material variables of the composite hydrofoil,
we produced an optimal design. This design meets the steady design condition require-
ments and avoids excessive vibrations and dynamic load amplifications due to lock-in,
resonance, flutter, and modal coalescence.
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1 Introduction
Lifting surfaces are widely used in the maritime sector in energy harvesters, energy
saving devices, rudders, propellers, bilge keels, fin stabilizers, hydrofoils, and more.
They are critical components that impact the overall performance and efficiency of
marine vessels and platforms. Compared to traditional metallic marine structures,
composites offer many benefits to lifting surface design, such as lower structural weight,
reduced manufacturing cost, and material anisotropy [1, 2]. Through careful design of
the fiber layups, one can tailor the load-dependent static hydroelastic response at
multiple operating conditions to improve the overall efficiency compared to rigid lifting
surfaces [3]. Interest in marine composite lifting surfaces has increased because of
advances in computational modeling, manufacturing techniques, and materials science.

The dynamic fluid-structure interaction (FSI) response of aircraft wings has been
researched thoroughly in the last several decades [4]. However, the dynamic FSI re-
sponse of marine composites is still not well understood. Because the fluid density of
seawater is about 850 times that of air, the hydrodynamic loading is significant for a
given flow speed compared to aerodynamic loading. Marine lifting surfaces are typi-
cally solid construction and have much smaller aspect ratios (AR) than aircraft lifting
surfaces to withstand such loads, which can also lead to complicated 3D geometries
and junctions. Marine composites must be designed to withstand steady and dynamic
loads. Examples of external unsteady excitations include waves, vortex shedding, cav-
itation, ventilation, and vessel motions. Cavitation erosion is particularly damaging
to composites [5]. Furthermore, high-speed vessels are subject to extreme conditions
because fluid loading increases with speed squared. Surface vessels are particularly
susceptible to extreme vessel motions coupled with cavitation and ventilation on the
lifting surfaces [6]. The International Towing Tank Conference (ITTC) 2021 Seakeeping
Committee [7] noted increased research into the design of high-speed craft, particularly
foiling and foil-assisted craft, potentially due to the recent popularity of high-profile
sailing competitions featuring foiling craft. Therefore, understanding, predicting, and
then optimizing the hydroelastic performance of composites is essential to the safety
and efficiency of the next generation of high-speed surface craft.

The dynamics of marine structures differ from aircraft structures because of the
high density of water that leads to much lower resonance frequencies because of fluid-
added mass effects [1, 8]. Multiphase flows, such as cavitation and ventilation, also
complicate fluid-added mass effects because the surrounding fluid is mostly a mixture
of water and vapor for cavitation, and water and noncondensable gas in the case of
ventilation [6, 8, 9]. The multiphase flow regime affects the spatial and temporal
distribution of the gaseous cavity on the lifting surface and thus the added mass effects.
Fluid-added mass depends on the direction of motion, resulting in different band gaps
between modal frequencies than those in air. Fluid-added mass in water can result in
modal coalescence or mode reordering due to changes in submergence, speed, or flow
regime [8, 10–13].

General dynamic phenomena categories for marine lifting surfaces include lock-in,
resonance, modal coalescence, and flutter. These are undesired because they can lead to
excessive vibrations and dynamic load amplification, which affect passenger discomfort,
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control of the lifting surface and vessel, and fatigue. The fatigue performance of marine
composites is particularly challenging to predict compared to metallic marine struc-
tures because of uncertainty due to the environmental and manufacturing factors [14].
Lock-in can occur when an external oscillation frequency is close to one of the system
natural frequencies and locks into it; examples include lock-in due to waves, vortex
shedding [15], and cavity shedding [16]. Classical resonance is an externally excited
instability similar to lock-in, but the external frequency matches the system natural
frequency. In parametric resonance, system parameters modulate at half multiples
of one of the system natural frequencies leading to exponential growth in deforma-
tions and dynamic load amplifications much higher than classical resonance [17]; a
marine example is system mass modulation on hydrofoils due to unsteady multiphase
flows [8, 18]. Coalescence occurs when two system natural frequencies converge on each
other resulting in dynamic load amplifications. Changes in submergence due to body
motions, wave oscillations, and flow regime changes can all affect modal coalescence.
The coalescence of adjacent modes can manifest as severe dynamic load amplifications
much higher than from the excitation of the separated modes [15]. Flutter, on the other
hand, is a self-excited dynamic instability generally defined as when the damping of a
system mode becomes zero or negative, leading to oscillations that grow with time.

Marine composites have different FSI owing to the low ratio of structural density
to fluid density (µ). For low µ, a new, low-frequency dynamic instability mechanism
arises at sufficiently high flow speeds because the disturbing fluid force increases with
speed squared, while solid elastic restoring forces remain constant. relative magnitudes
between the fluid and structural forces. This was first observed in hydrofoil experiments
by Besch and Liu [19], and they called it the ‘new mode’. Akcabay and Young [20] were
the first to predict it in simulation and its origin in water, which is from coupled, speed-
dependent, quasi-steady (i.e., damping and stiffness) hydrodynamic memory terms in
the equations of motion. At sufficiently high speeds, the low-frequency pole (a.k.a.
mode) emerges that can potentially undergo a primarily bending-mode flutter as speed
increases to the critical speed. The instability of the low-frequency ‘new mode’ is
dangerous by itself, but it is also dangerous for marine craft because vessel rigid-body
natural frequencies and wave excitation frequencies tend to be low as well; the elastic
and rigid-body modes can potentially interact and accelerate an instability called body-
freedom flutter (BFF).

Most prior research has optimized the steady FSI of marine composite lifting sur-
faces [3, 21–25] in fairly high-fidelity; it is important to consider steady hydrodynamic
efficiency (i.e., lift-to-drag ratio), static deflections, composite material failure modes,
cavitation inception, ventilation inception, flow separation, and effects of free-surface
and depth on the performance. Hydrodynamic efficiency is essential across the speed
envelope, but any constraints on the steady failure modes or flow regime transition
typically occur at high-angle, high-speed conditions. Designing a composite hydrofoil
to optimize the steady performance subject to the steady constraints is an essential
starting point. However, the dynamics must be considered for a complete hydroelastic
design optimization. Dynamic FSI, on the other hand, considers the fluctuating perfor-
mance, which is more easily explained through generalized fluid forces (i.e., fluid-added
mass, hydrodynamic damping, fluid de-stiffening forces), and how that is intertwined
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with the structural dynamics; dynamic FSI is important to vibrations, noise, dynamic
load amplifications, accelerated fatigue, and dynamic instabilities–examples of which
were given previously.

The goal now is to control the dynamic hydroelastic performance of a compos-
ite hydrofoil in addition to the steady performance since few works have addressed
the dynamic optimization for composite hydrofoils. Some prior related research is as
follows. Structural engineers have optimized topology to minimize vibrations due to
external excitations [26]. The review by Niu et al. [26] discussed objective functions,
such as weighted average surface displacements, dissipated power, local structural re-
sponse, and acceleration of the structure. He et al. [27] minimized hub vibrations of
marine composite propellers, where they used a non-dimensionalized sum of the force
and moment amplitudes at the hub as the objective function. They considered the
spatially varying wake behind a hull. However, they only optimized the layup and
fiber direction at a fixed advance coefficient, so they neglected shape variables and
the effects of changing propeller blade rate frequencies. Mulcahy et al. [28] performed
hydroacoustic design optimization using emitted sound power as the objective to min-
imize for composite propellers at a fixed rotation rate and only using the layup and
fiber angles as design variables. Many formulations relied on the excitation spectra
and operating conditions staying constant, which we know for a hydrofoil on a vessel
is not since the vessel is never sailing in steady, fixed conditions. Bachynski et al.
[29] considered the time-varying aspect and optimized the annual power takeoff of a
wave-energy converter by tuning resonance characteristics. However, their work de-
pended on frequency response spectra, and a designer may sometimes know only the
critical frequencies to avoid. Lastly, Jonsson et al. [30] formulated smooth flutter con-
straints for aircraft based on system eigenvalues and aggregation methods. As far as
the authors know, hydrostructural optimization considering frequency coalescence has
not been addressed in any work. This might be because the frequency coalescence of
marine composites in high-speed surface craft has only recently been recognized as a
critical instability [8, 12, 15].

This work aims to optimize the steady and dynamic performance of composite hy-
drofoils using lower-order models. Lower-order models are cheap to evaluate and give
holistic insights into design trade studies, so they are appropriate for this preliminary
work on understanding how to tailor the steady and dynamic performance of hydrofoils.
We devise multipoint objective functions and steady and dynamic constraints to cap-
ture the speed-dependent effects on the system’s dynamic response and avoid excessive
flow- and system-induced vibrations caused by cavity shedding frequencies, propulsor
blade and shaft rates, engine frequency, and rigid body resonance frequencies.

2 Problem formulation

2.1 Computational model

Dynamic Composite Foil (DCFoil) is a lower-order, composite hydrofoil model first
developed by Akcabay and Young [20]. It has been experimentally validated against
published aeroelastic and hydroelastic results [20, 31, 32]. DCFoil was also able to
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predict the emergence of the low-frequency ‘new mode’ first observed in hydrofoil ex-
periments [20, 32] that originates from shed vortices with hydrodynamic memory
effects (see Section 1). Modifications to this model include the usage of semi-empirical
equations for the cavity-induced loading on flexible composite foils, which were vali-
dated by Young et al. [33]. We model the hydrofoil as a canonical cantilevered beam,
which can represent a variety of structures such as rudders, fins, portions of a T-foil,
and propeller or turbine blades. We use potential flow theory and Euler-Bernoulli beam
theory for the structure with consideration for structural warping. We use frequency-
domain, unsteady hydrodynamic strip theory with modifications for 3D flow effects to
account for sweep (Λ) and finite span (s).

Each spanwise section has two degrees of freedom (DOF), bending (w) and twisting
(ψ), defined about the elastic axis (EA) (see Figure 2). Both our computational fluid
dynamics (CFD) and computational structural dynamics (CSD) models are considered
low-fidelity.

The theoretical fluid model ignores gravity, viscosity, and flow compressibility ef-
fects. The hydrofoil is assumed to be deeply submerged, so free-surface and wave or-
bital velocity effects on the loads are negligible. We justify neglecting gravity because
the weight of the foil compared to dynamic pressure loads at our speeds (>10 m/s)
is an order of magnitude smaller and because we later use a surrogate load for grav-
ity waves when we apply wave loading. We ignore viscosity in the model because we
limit our computations to avoid flow regimes where viscous effects like flow separation
are present. The model neglects multiphase compressibility effects because we use a
surrogate model for the loading due to small partial cavity shedding dominated by
re-entrant jet dynamics. We ignore free-surface effects because the depth-to-chord ra-
tios we investigate (about 3.7) are high enough. The free-surface effects on the lift are
relatively invariant with respect to varying depth-based Froude number [34].

2.1.1 Governing equations

Diagrams of the model are given in Figures 1 and 2. The vertical direction is the z-
axis, the spanwise direction is the y-axis, and the flow direction is the x-axis; the origin
is at the root mid-chord of the hydrofoil, where b is the semi-chord. Primes denote
the rotated axes aligned with Λ, shown in the planform view in Figure 2. The single
equivalent fiber angle (θf ) is defined relative to the y′-axis and is positive when fibers
are oriented towards the leading edge. While real composites have multiple laminae, it
is possible to use a single equivalent fiber orientation representing the load-dependent
deformation of a multi-layered composite with bend-twist coupling as was shown by
Young et al. [35]; however, a multi-layer model should eventually be used if the goal
is to capture interlaminar stresses and perform a final structural integrity analysis.
In practical applications, one can use a model to obtain the single equivalent layer
to generate a real composite layup of many plies that minimizes the differences in
load-dependent bend-twist structural parameters between the real, multi-layered, and
the equivalent single-layered structure [35]. The static hydrodynamic arm (eb) is the
dimensional distance from the EA to the center of pressure (CP), where positive is
when the CP is forward of EA. The dimensional distance (ab) is from the EA to the
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Figure 1: Diagram of composite hydrofoil beam model where z is the vertical direction.
The hydrofoil is modeled as a thin airfoil for the hydrodynamics and as a beam for the
structure

mid-chord and is positive if the mid-chord is forward of the EA. The static imbalance
arm (xαb) is from the EA to the center of gravity (CG) and is positive when the CG
is aft of the EA.
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Figure 2: Hydrofoil cross-section (left) at a given spanwise slice with arrows denoting
positive conventions and planform (right) showing the sweep variable

The governing differential equations describing the composite beam’s spanwise
bending and twisting deformations are

EIsw
iv + abEIsψ

iv +Ksψ
′′′ +msẅ −msxαbψ̈ = F ext

z (1)

abEIsw
iv −Ksw

′′′ + Ssψ
iv −GJsψ′′ + IEAs ψ̈ −msxαbẅ = M ext

y , (2)

which are two fourth-order, nonlinear partial differential equations (PDE). We use
Newton’s and Lagrange’s notations for time and space derivatives, respectively. There
are eight mixed-type boundary conditions for the PDE’s given in A: four that describe
the clamped root and four that describe the shear and moments at the free tip. The
spanwise terms EIs, GJs, Ks, and Ss are bending stiffness, torsion stiffness, bend-twist
coupling stiffness, and structural warping resistance, respectively. These parameters
can vary with spanwise location if the geometry of the cross-sections changes along the
span. Equations (1) and (2) were derived through virtual work and energy principles as

6



shown by Lottati [36]. Akcabay and Young [20] provide the constitutive relations that
relate equivalent fiber angle (θf ) to EIs, GJs, and Ks. Euler-Bernoulli beam theory
assumes plane sections remain plane (no shear effects) and deformations remain small,
which is sufficient for modeling low-order modes for hydrofoils; we additionally consider
structural warping because warping effects are more significant for low geometric AR
structures [20], where AR = s/c̄ is the ratio of the span (s) to the mean chord (c̄).
Akcabay and Young [20] have shown that for marine lifting bodies with lower aspect
ratios compared to aircraft structures, warping resistance (Ss) effects were important in
the predicted natural frequencies and stability boundaries because they scale with 1/s4.
Warping resistance resulted in higher natural frequencies and stability boundaries than
classical beam theory.

The unsteady fluid loads and any other external loads are accounted for in the
right-hand side as F ext

z and M ext
y . The sectional fluid loading is in the form{

F fluid
z

Mfluid
y

}
= − (Mf q̈ + Cf q̇ + Kfq) (3)

where the generalized coordinate vector is

q(y) =

{
w(y)
ψ(y)

}
, (4)

and the fluid inertial (Mf ), damping (Cf ), and stiffness (Kf ) matrices are

Mf = πρfb
2

[
1 ab
ab b2

(
1
8

+ a2
)] (5)

Cf =
1

2
ρfbU0


cos(Λ)

[
a02C(k) −b [2π + a0(1− 2a)C(k)]

a0eb2C(k) b
2
(1− 2a)(2πb− a02ebC(k))

]
+

sin(Λ)
∂

∂y

[
2πb 2πab2

2πab2 2πb3
(

1
8

+ a2
)]
 (6)

Kf =
1

2
ρfU

2
0 cos(Λ)


cos(Λ)

[
0 −C(k)2ba0

0 −2eb2a0C(k)

]
+

sin(Λ)b
∂

∂y

[
a02C(k) −a0b(1− 2a)C(k)

2eba0C(k) πb2 − a0eb
2(1− 2a)C(k)

]
 (7)

where U0 is the flow speed, and ρf is the fluid density.
The fluid equations are derived from Theodorsen’s unsteady airfoil potential flow

theory extended to 3D with corrections for sweep and spanwise effects [37–40]. Theodorsen
hydrodynamics assumes sections are thin, symmetric airfoils with fully attached and
fully wetted flow undergoing small amplitude harmonic motion. The vortices are as-
sumed to be shed into the wake at the three-quarter chord position. This theory is
appropriate for capturing added mass, fluid damping, and fluid de-stiffening loads for
our model since we consider cases with a very small partial cavity, where the effect
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of the cavity on the added mass, damping and fluid disturbing forces are negligible.
For flow regimes with a much larger partial cavity or a supercavity, the added mass
and damping can be modified following the relations as a function of the effective
cavitation number given by Harwood et al. [9] and Young et al. [33]. Theodorsen’s
function is C(k) = H2

1 (k)/ [H2
1 (k) + jH2

0 (k)], which is a function of the reduced fre-
quency, k = ωb/(U0 cos(Λ)). We use j =

√
−1. Theodorsen’s function is a complex,

nonlinear function consisting of Bessel functions of the third kind (a.k.a. Hankel func-
tions) that models the influence of memory effects (induced circulation) of the body’s
wake vorticity on the quasi-steady loads, which we define as damping and stiffness, in
the frequency domain. The zero-frequency limit is when oscillation frequency (ω) is
low, when the speed (U0) is high, or both. Low values for the reduced frequency k lead
to <{C(k)} → 1 and ={C(k)} → 0, which is the same as steady (a.k.a. static) hydroe-
lastic performance. For the infinite-frequency limit or high k (highly unsteady motion),
<{C(k)} → 1/2 and ={C(k)} → 0. The component <{C(k)} reduces the magnitude
of the terms containing C(k) within the fluid damping and de-stiffening loads; the
imaginary component causes phase shifts for those terms. The non-dimensional sec-
tional lift slope (a0) is calculated using Glauert’s lifting line theory (LLT) to account
for 3D effects [32]. LLT is less accurate for low AR bodies, but since our geometry
has the wall condition, the effective AR (ARe = 2s/c̄) is twice the geometric AR.
Liao et al. [41] showed that when the ARe is about 6.7, which is what we use later,
the spanwise lift distribution from 3D Reynolds-averaged Navier Stokes simulation is
nearly elliptical, so LLT is sufficiently accurate for our study.

Positive terms in the fluid equations (5)–(7) are restoring forces while negative signs
are disturbing. Deviatoric terms in all matrices are nonzero, which means that in ad-
dition to coupling due to material anisotropy, the fluid equations are coupled in the
DOF’s. Also, damping and fluid stiffness terms are proportional to U0 and U2

0 , respec-
tively, so the relative importance of these fluid effects grows with increasing speed. The
quasi-steady terms also change with oscillation frequency because of C(k). Fluid iner-
tial, damping, and stiffness forces depend on fluid density (ρf ), which is much greater
than in air. Hence, the in-water natural frequencies of the hydrofoil are much lower
than in-air natural frequencies because of greater total system mass. Furthermore, the
in-water natural frequencies decrease with speed since total system stiffness decreases
because of greater fluid de-stiffening or disturbing forces. The negative Cf,12 and Kf,12

fluid terms in Equations (6) and (7), respectively are responsible for coupled mode
flutter of the low-frequency ‘new mode’ at sufficiently high speeds. This is discussed
more in Section 4.

2.1.2 Solution method

We assume a solution of the form
q = q̃ept (8)

where the eigenvalue is p = ξ+ jΩ, and the tilde indicates complex amplitude; ξ > 0 is
instability because there is negative damping, and Ω is the system natural frequency.
The total damping loss factor (energy dissipated per cycle) is ηt = −2ξ/Ω. The
governing PDE’s are recast as state-space vectors, and the system of eight first-order,
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ordinary differential equations (ODE) along with the boundary conditions are solved
with an explicit, 4-stage Runge–Kutta (RK) method.

We solve the boundary value problem (BVP) to get the static and dynamic re-
sponse in the frequency domain. The static and dynamic response are broken up as
q(y) = qstat(y) + qdyn(y). The term qstat(y) = [wstat(y), ψstat(y) + α0]T includes the
initial angle of attack. The static case solves (Ks + Kf ) qstat = 0 for the spanwise static
deformations where we set C(k) = 1 in Kf ; matrix Ks comes from setting time deriva-
tive terms in Equations (1) and (2) to zero. The dynamic case solves the governing
equations for the complex amplitude of the fluctuating, spanwise deformations (q̃dyn)
with an external force and moment of prescribed amplitude and frequency. Sweeping
over ω and computing |q̃dyn| gives us the frequency response spectra of the hydrofoil.

We perform modal analysis using the iterative p-k method described by Beaulieu
and Noiseux [42], which can compute the first six modes of the cantilevered hydrofoil.
It employs a shooting method on the governing PDE’s and boundary conditions and
a residual minimization to converge on the eigenvalues (p). The system eigenvalues
represent the poles of an nth-order system transfer function with variable, open-loop
gain, where n is the number of modes and the variable input is U0.

2.2 Design problem

An optimal composite hydrofoil design would meet all steady lift or moment require-
ments while avoiding or delaying cavitation, separation, and ventilation. The design
should also avoid material failure modes, excessive vibrations, fatigue, dynamic load
amplification, and instability. A suboptimal hydrofoil can harm the vessel’s safety,
controllability, and efficiency.

We are concerned with a preliminary design problem where we wish to rule out the
worst design configurations in a large initial design space, hence the use of low-fidelity
tools. The qualitative sample design problem is described in Table 1; we further define
the mathematical form for these terms in Section 2.3.

In a later detail design phase, one would use a higher fidelity tool such as presented
in Garg et al. [3] and Liao et al. [21] to consider detailed effects such as cavitation,
separation, and ventilation avoidance, composite material failure mechanisms, drag
minimization through structural and shape optimization. For example, the complete
design problem may look like Table 1 but with additional constraints to avoid or
delay cavitation, separation, and ventilation and to avoid composite material failure
initialization.

2.3 Mathematical form of objectives and constraints

This portion only covers mathematical formulations of objectives and constraints from
the design problem (1) that are less intuitive; for example, the steady lift constraint
is not explained because it is a straightforward equality constraint. Additionally, we
devise functions with continuity and differentiability in mind for future work.

The dynamic FSI of a lifting surface we are concerned about are the system eigen-
values (p) and the frequency response curves. Superscript ∗ denotes non-dimensional
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Table 1: Preliminary design problem for a composite hydrofoil. Later designs would
consider high-fidelity flow and structural performance

minimize overall vibrations
with respect to geometric and material variables
subject to steady lift requirements for design points

steady and dynamic tip deflections constraint
constraints on the maximum amplitude deformations of the spanwise averaged frequency
response
avoid critical frequencies tabulated in Table 7 (wave encounter frequency, rigid body res-
onance, impeller blade and shaft rates, engine excitation, small partial cavity shedding
frequency)
avoid modal coalescence

quantity, and we non-dimensionalize using the characteristic length and frequency in
Table 2. We use gravitational acceleration (g) to non-dimensionalize variables because
although our model currently neglects gravitational effects, Froude-scaling is typically
used in naval applications [10].

Table 2: Characteristic parameters for non-dimensionalization. We only need the mean
semi-chord (b̄) and acceleration due to gravity (g) as simple known constants

Variable Units Characteristic parameter

Length m b̄

Frequency Hz ωc =
√

g
b̄

The objective function to capture overall vibrations from Table 1 should consider
deformations over the whole spatial domain and spectral loads for the various operating
conditions. We devise the merit function for each operating point as

fvib =
∑

nDOF

(∫
q̄∗dyn(ω)

ω

ω2
c

dω

)
, (9)

and it is computed using numerical integration where q̄∗dyn(ω) is the non-dimensional
dynamic deformation frequency response spectrum averaged over the span for bending
and twisting. As such, there is one q̄∗dyn(ω) curve for bending and one for twisting.
We weight by non-dimensional frequency because this promotes designs with better
fatigue characteristics since high-amplitude, high-frequency deflections lead to acceler-
ated fatigue.

Consider a hypothetical q̄∗dyn(ω) given for bending in Figure 3 resulting from dif-
ferent sources of external harmonic loads. We use a toy example that includes wave
excitation and re-entrant jet-driven partial cavity shedding to illustrate what the objec-
tive means with respect to a response spectrum. The objective function represents the
non-dimensional area under this curve weighted by the non-dimensional frequency. We
can see that trying to minimize fvib for all elastic DOF’s would favor designs that have

10



shorter, narrower peaks with lower frequency in the response, which may be undesired.
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Figure 3: Hypothetical frequency response spectrum for the bending DOF of an
unswept carbon fiber-reinforced plastic (CFRP) hydrofoil due to separate external
sources of excitation. Wave loading computed assuming simple Rayleigh distribution,
and cavitation loading computed using semi-empirical models from Young et al. [33].
This is not the actual load spectrum on our hydrofoil; the purpose is to visually explain
how heights and widths of peaks in the dynamic response can be influenced by external
excitations and should be considered in a merit function

We use two separate constraints to limit excessive steady and dynamic tip deflec-
tions because the most significant deformations are typically at the tip. There is one
constraint value for each DOF, so there are four in total that would be applied on the
flow condition with the highest loading. For steady tip deflections, we use

htip, stat,i = q∗stat, tip,i − q∗stat, crit,i ≤ 0 for i = 1, 2 (10)

where q∗stat, tip = [wstat, tip/b̄, ψstat, tip+α0]T is the non-dimensionalized static tip values.
We define q∗tip(ω) = q∗dyn, tip(ω) + q∗stat, tip as the non-dimensional total (dynamic

plus static) tip deflection vector. The term q∗crit is the user-prescribed bound that
should not be exceeded based on design requirements. To consider dynamic tip deflec-
tions, we compute the tip values in the total deformation response spectra because the
total tip deflection (mean plus fluctuating plus initial rigid angle) influences the stall
or material failure characteristics. We take the maximum value from the tip frequency
response spectra. The total (dynamic, static, and rigid) tip deformation constraint is

htip,i = q∗tip,i − q∗crit,i ≤ 0 for i = 1, 2 (11)

so q∗tip = [wtip/b̄, ψtip]T is the non-dimensionalized total tip deformation values. For
this study, we simplify matters by using q∗crit = q∗stat, crit = [0.5, 10◦]T to avoid exces-
sive deflection and tip stall (bending below 25% of mean chord and total geometric tip
angle less than 10◦). Since q∗tip,dyn is always positive since we take the magnitude, the
steady tip deflection constraint will not be active unless there are no tip vibrations,
but it could be tightened in future work to be more conservative.
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We also want to limit the maximum amplitude of spatial domain-averaged dynamic
deformations. We devised a constraint to limit the maximum amplitude deformations
in the frequency response given as

hdef,i = q̄∗dyni
− q̄∗dyncrit,i

≤ 0 for i = 1, 2 (12)

and it is computed using a max function over the frequency range. We use critical
mean dynamic deformations as q̄∗dyncrit

= [0.3, 5◦]T to avoid excessive average dynamic
bending (below 15% of mean chord) and dynamic twisting, respectively.

We use two constraints on the system’s eigenvalues to avoid modal coalescence and
lock-in or resonance with critical frequencies. These constraints are applied to the
wetted values, not in vacuo values.

The frequency coalescence constraint limits the minimum frequency band gap be-
tween adjacent modes to avoid modal coalescence. The indicator function is

I(g)
n = (0.15)2 −

(
1− ωn+1

ωn

)2

≤ 0 n = 1, 2, . . . , N − 1 (13)

where only the eigenvalues of the modes evaluated (user prescribed number N) are
used. The superscript (g) denotes the indicator function is for the band gap.

This constraint tells us that if the next highest modal frequency is within 15%
of the previous modal frequency, the constraint is violated. We use 15% to consider
both the uncertainty and variability in the low-fidelity modeled frequencies without
being overly restrictive; frequencies (both hydrofoil resonance and external) will likely
fluctuate in actual operation due to changing flow speeds, vessel motions, and engine
revolutions per minute (RPM). Ideally, all modes would be evaluated because damping
decreases for higher modes, but the algorithm and cost preclude this. The denominator
could be zero in the case of static divergence, but designs with static divergence are
removed since the static limit constraint prevents this. Therefore, this formulation is
valid provided it is used in conjunction with the rest of the optimization algorithm.

The indicator function (I(g)) in Equation (13) is aggregated for the N−1 frequency
band gaps using the Kresselmeier–Steinhauser (KS) function shown in Equation (14)
over the modes evaluated, where ρKS is the aggregation parameter where higher values
approach the actual constraint. In all formulations, our default is ρKS = 80. Squaring
the frequency term in Equation (13) bastions against mode hopping or reordering to
ensure the output is of the correct sign. It also keeps the derivative continuous, unlike
an absolute value function. Mode hopping is a numerical side effect of the iterative
solver that can occur if eigenvalues are close to each other in frequency. The benefit of
the KS function is that it acts like a soft maximum function and is therefore suitable for
gradient-based optimization [43, Sec. 5.7]. The following formulation is the finite-set
constraint formulation to avoid overflow due to large powers of e, making it appropriate
for finite-precision arithmetic [44]. The final constraint is

hg = KS
(
I(g)
n

)
= max

n
(I(g)
n ) +

1

ρKS

ln

(
N−1∑
n=1

e
ρKS

(
I
(g)
n −maxn(I

(g)
n )

))
≤ 0. (14)
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The frequency avoidance constraint considers the band gap between modal and ex-
ternal excitations. Examples of external excitations include engine speed and waves.
This constraint is useful when a designer cannot access the excitation spectrum, only
the peak frequency. The indicator function has a similar formulation to I(g) in Equa-
tion (13). A two-level KS aggregation is employed. The first level is over all the modal
frequencies, captured by

I
(l)
n,k = (0.15)2 −

(
1− ωn

ωexc,k

)2

≤ 0 n = 1, 2, . . . , N, (15)

where superscript (l) denotes the indicator is related to avoiding lock-in. A weakness
of this constraint is it does not directly consider the effect of foil flexibility on the lock-
in region even though it has been shown that increasing flexibility (quantified by the
reduced velocity Ū = U/(Ωψb) where Ωψ is the first in-air twisting natural frequency)
has increased lock-in susceptibility [16, 45]; Once again, this constraint limits the modal
frequency to be outside of 15% of the external. Then we evaluate the second level

fk = max
n

(I
(l)
n,k) +

1

ρKS

ln

(
N∑
n=1

e
ρKS

(
I
(l)
n,k−maxn(I

(l)
n,k)

))
k = 1, 2, . . . , K (16)

over all the excitation frequencies of interest and aggregate once more to give the final
constraint inequality as

hl = max
k

(fk) +
1

ρKS

ln

(
K∑
k=1

eρKS(fk−maxk(fk))

)
≤ 0. (17)

The flutter constraint we use is from Jonsson et al. [30], which uses double KS
aggregation on <{p}: first for all dynamic pressures (q = 1, ..., Nq), and then for all
evaluated modes (n = 1, ..., N). The result is the single constraint

hflut = KS (KS (<{pn,q})) ≤ 0, (18)

which is a conservative constraint on flutter because linearized theory typically has a
more conservative instability speed prediction than if all nonlinear flow and structural
effects are considered (limit-cycle oscillation happens after flutter).

3 Design optimization setup

3.1 Baseline design

We apply the optimization algorithm to a full-scale prototype CFRP lifting surface
that could be the horizontal part of a rudder T-foil on a medium-sized, surface craft,
with a full-scale vessel length of 20 m (assuming draft of 0.3 m). We model one half
of the T-foil’s lifting surface as a cantilevered beam. For context, this is around the
length of the USS Flagstaff owned by the US Coast Guard in the 1960’s (shown in
Figure 4). We assume that the vessel has two foils in the conventional configuration
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with about 20% of the weight on the rear foil. We obtain the lifting surface planform
area by starting with a 2% profile area approximation and iterating geometries until
the lift coefficient for the lowest foilborne speed is reasonable (CL = 0.6). We use
values from Zubaly [46] to determine the other vessel particulars tabulated in Table 3.

Figure 4: USS Flagstaff was a 25 m LOA foiling vessel from the 1960’s. Our hypo-
thetical design is for a composite lifting surface of a T-foil for a similarly sized vessel.

While we could easily simulate the full-scale hydrofoil, we want results that can be
reproduced in experiments. The baseline scaled model studied in this section is a 1/3
length-scale, zero sweep and zero fiber angle foil that could be tested in a cavitation
tunnel. We use Froude (Fn) scaling because a smaller model of the vessel with the
foil can run at lower speeds; because the governing equations neglect gravitational
effects, Froude scaling is simply a method to scale the inflow velocity to the foil. To
obtain the perfectly scaled parameters, we use the scaling table derived for flexible
marine composite foils by Ng et al. [10] shown in Table 4; these scaling laws apply
to flexible composite lifting surfaces in potential flow and any lifting surface model of
lower order governing physics. The scaling laws for flexible anisotropic materials are
more stringent than those for isotropic or effectively rigid materials. This is because
more parameters in the flexible composite governing equations (such as those related
to bend-twist coupling) lead to more non-dimensional Π terms that must be kept equal
based on the Buckingham Π theorem. The scaling notation is λφ = φm/φp, where φ is
some parameter of interest for the model (subscript m) or prototype (subscript p).

3.2 Operating conditions

The full-scale vessel operates in head seas where we assume foilborne operating speeds
between 15–20 m/s (30–39 kts) for the full-scale, with 25% probability of operation on
the 15 m/s takeoff speed and 75% on the 20 m/s cruising speed. The probability of
operation are the weights for the objective functions for each operating point, and we
chose them, assuming a foiling vessel should spend most of its time foiling. These
design points and their weights are summarized in Table 5, where cavitation number
is σ = (p∞ − pv) / (0.5ρfU

2
0 ). We calculate σ using a vapor pressure of pv = 2.33 kPa.

Ideally, a probability density function would be used to weight the speed envelope,
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Table 3: Vessel particulars of full scale and model. We simulate a model scale so results
could be validated in an experiment

Parameter Full-scale Model (λL = 1/3) Units
Length overall, LOA 20 6.7 m
Length-to-beam ratio, LOA/B 6 6 —
Design draft, T 0.3 0.1 m
Waterplane coefficient, CWP 0.7 0.7 —
Block coefficient, CB 0.4 0.4 —
Foil depth 1 0.3 m
Vessel weight 8 0.3 tonne

Table 4: Scaling factors using Froude scaling (λFn = λU0/
√
λgλL = 1) for geometri-

cally similar composite plates assuming same fluid medium and gravitational constant.
Meeting every scaling factor here satisfies complete similitude between model and pro-
totype for the low-fidelity composite hydrofoil model [10].

Parameter Symbol Expression Fn scale

Froude number Fn = U0√
gb

λFn 1

Solid density ρs λρs 1

Poisson’s ratio νij λνij 1

Semi-chord b λL λL

Inflow velocity U0 λU0 λ
1/2
L

Elastic moduli Eij λEij λL

Shear moduli Gij λGij
λL

Natural, response, forcing frequencies and frequency resolutions ω λω λ
−1/2
L

but Liem et al. [47] showed for aircraft that as long as the important design points
are considered, the optimized solution does not change much with respect to the sheer
number of design points; they showed a small drag reduction at the nominal condition
between one design point and five design point optimization. Their multipoint design
still performed better away from the nominal condition, demonstrating the importance
of considering at least a few relevant design conditions.

We use incident wave periods with ω−1
wave = 8 s where we compute wave encounter

frequency (ωe) from

ωe = ωwave

(
1− U0

ωwave

g
cos(β)

)
, (19)

with β = 180◦ for head seas. We then assume a Rayleigh-distributed spectrum follow-

ing ζ(ω) = ω
ωe
e
−
(

ω2

ω2
e

)
where the scale parameter ωe is the wave encounter frequency. We

assume World Meteorological Organization (WMO) Sea State 3 (calmer end of mod-
erate waves) conditions with wave amplitude Aw = 0.5 m, so the amplitude spectrum

15



Table 5: Two discrete design operating points are considered. Foil depth for the scaled
model would be 1/3 of the full-scale, so to scale σ, the ambient pressure must be
lowered from typical 101.3kPa to 9.97kPa for the U0 = 10 m/s case and to 105.51kPa
for the U0 = 15 m/s case.

Variable Units Full-scale Model (λL = 1/3)
Takeoff (weight = 25%)
U0 m/s 10 5.8
Cavitation number — 2.2 2.2
Lift coefficient (CL) — 0.6 0.6
Cruise (weight = 75%)
U0 m/s 15 8.7
Cavitation number — 0.97 0.97
Lift coefficient (CL) — 0.3 0.3

becomes A(ω) = ζ(ω)Aw, which tells us the amplitudes of waves at that excitation
frequency. We compute the amplitude of wave loads on a single submerged hydrofoil
using

F̃wave(ω) = πρfsc̄A(ω)e−kwaveh

∣∣∣∣j 1

4
cωwaveωe + ωwaveU0C(k)

∣∣∣∣ (20)

which was originally derived by Faltinsen [34] based on potential flow with depth effects.
We simplified the equation by ignoring vessel motions. In this equation, k = 0.5ωec/U0

is wave reduced frequency, h is the depth of the foil from the free surface, and kwave =
ω2

wave/g is the wave number. Interactions with the free surface are not considered in
this equation. For simplicity, we assume the wave moments are related to the forces
by M̃wave = F̃waveeb. The full-scale wave spectrum is Figure 5, and we can see that the
wave frequency does not change much between flow speeds.

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

U
0

=15m/s

e
 = 0.149Hz

U
0

=10m/s

e
 = 0.141Hz

Figure 5: Rayleigh distributed full-scale wave spectrum in head seas. Peak frequency
does not differ much between the two speeds

Finally, we scale all geometric, material, fluid, and loading parameters required
by the computational model according to Fn-scaling to obtain the model-scale lift-
ing surface in the rightmost column of Table 6. The model must have particular
material properties to scale steady and dynamic FSI, and a general polymer matrix
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composite (PMC) can be made according to these specifications. Tuning the exact
solid density may be difficult, which one can verify from material selection diagrams
(Ashby plots [48]). Also, in reality, scaling of marine composites is not straightforward
if higher fidelity physics such as ply scaling, material failure, or water absorption, for
example, are included [10, 49, 50], so this scaling does make simplifying assumptions
about the modeled physics.

Table 6: Baseline and model parameters of the full-scale and model hydrofoil assum-
ing a perfectly Froude-scaled model. Lines separate geometric, fluid, and material
parameters. The 1, 2, and 3 directions represent the Cartesian coordinates defined
perpendicular to the fiber axis (2 is along the fiber direction in Figure 1).

Variable Units Full-scale Model (λL = 1/3)
s m 0.9 0.3
2b m 0.27 0.09
Λ ◦ 0 0
ε/(2b) — 6% 6%
xαb m 0 0
rsb m 0.078 0.026
eb m 0.0675 0.0225
ab m 0 0
ρf kg/m3 1000 1000
Wave peak frequency ωwave Hz 0.125 0.2165
WMO sea state 3 wave ampli-
tudes, Aw

m 0.5 0.1667

Submergence depth, h m 1 0.33
Material — CFRP PMC
θf

◦ 0 0
ρs kg/m3 1590 1590
E1 = E3 GPa 13.40 4.47
E2 GPa 117.80 39.3
G12 = G23 GPa 3.90 1.3
ν23 — 0.25 0.25

3.3 Critical frequencies

3.3.1 Cavitation

For simplicity, we set cavity shedding as a frequency constraint rather than as load
spectra. While the general objective in designing high-speed lifting surfaces would be
to avoid cavitation, small amounts of partial leading edge or tip vortex cavitation may
develop at the highest speeds. We determine frequencies using semi-empirical models
devised for a flexible CFRP hydrofoil [33, 51, 52]. The 1/3 scaled model is similar in
geometry to the NACA0009 studied in their work but with no taper. Semi-empirical
equations from Young et al. [33] predict peak frequencies due to cavity shedding based
on the effective cavitation parameter.
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The mean effective cavitation parameter is defined as ψe = σ/(2αe) where αe =
ψ̄+α0 is the effective angle of attack. However, we will find ψe by prescribing a cavity
length-to-chord ratio (Lc/c) and using the relation

Lc/c = 2.3e−0.35ψe , (21)

which is appropriate because the Lc/c for an optimized hydrofoil should be no more
than 5% for small periods of time (see optimized hydrofoil from Liao et al. [21] for
the size of a cavitation zone). In the results shown hereafter, we compute cavitation
properties using Lc/c = 0.05 to determine the significant cavity shedding frequency to
avoid. A cavitation-free, optimized geometry is our end goal, so the cavity shedding
frequency should reflect what the optimized lifting surface will experience. Steady
hydrodynamic loading for this problem is determined by assuming a fully wetted lift
slope instead of the modified lift slope due to sustained cavitation because the optimized
foil is not supposed to have sustained cavitation. Moreover, due to small Lc/c, we
justify the usage of fully wetted added mass and damping.

We find the mean chord-based Strouhal number of Type II re-entrant jet-driven
shedding using

St2 =
fc2c̄

U0

= 0.0045ψ3
e + 0.12. (22)

We do not consider Type I shockwave-driven shedding because the finished design
should never have such significant cavitation. We also impose the logic to not compute
cavitation frequencies if σ > 1.0 because most optimized hydrofoil designs can operate
cavitation free for σ > 1.0 at their design CL’s [21].

3.3.2 Vessel motions

We also need rough approximations of the vessel’s seakeeping natural frequencies, which
we can do using the uncoupled, undamped, approximated equations based on the vessel
parameters. They are

ωn,heave =

√
C33

m+ A33

=

√
ρfgAWP

m+ A33

(23)

ωn,roll =

√
∆GMT

Ixx + A44

=

√
∆GMT

mk2
xx + A44

(24)

ωn,pitch =

√
∆GML

Iyy + A55

=

√
∆GML

mk2
yy + A55

, (25)

where C33 is heave stiffness, Aii are the fluid-added masses in the ith DOF (3 ≡ heave,
4 ≡ roll, 5 ≡ pitch), m is mass of the vessel, AWP is waterplane area, kxx and kyy are
the radii of gyration, GMT and GML are the transverse and longitudinal metacentric
heights, respectively, and ∆ is the weight of the ship. For heave, A33 is on the order
of ∆; for roll, A44 is on the order of 0.2Ixx, the roll radius of gyration (kxx) is around
30–40% of B, and the transverse metacentric height varies based on the application,
so we assume it to be around 0.05B; for pitch, A55 is about twice Iyy, the pitch radius
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of gyration (kyy) is around 0.25LOA, and the longitudinal metacentric height is on
the order of LOA. These preceding estimates are based on typical values for ships
from the ITTC - Recommended Procedures and Guidelines. All full-scale frequencies
were estimated between 0.1 and 0.9 Hz. These natural frequencies assume a low Fn,
displacement-type vessel, which is not typical of a foilborne vessel. However, for lack of
a better theory, these equations give approximations for critical rigid body frequencies
for the sample problem to avoid.

3.3.3 Marine propulsion plant

We assume a waterjet-propelled vessel with a diesel engine and an 18-bladed impeller.
We use the specifications for the Caterpillar 3406E diesel engine simply because it is an
engine that could potentially provide enough power based on similar vessels1. However,
one would conduct a more thorough resistance and propulsion analysis to choose the
correct engine. We just need the engine RPM (2200RPM) since we aim to avoid the
excitation frequency. We assume a waterjet impeller at a static 1400 shaft RPM based
on typical values seen in design pamphlets for various manufacturers2; shaft RPM
changes with vessel speed, but we use a fixed value for simplicity. In reality, one would
match shaft RPM with the corresponding vessel speed.

We summarize all critical frequencies in Table 7.

Table 7: Critical frequencies to avoid onboard a high-speed composite craft. Frequen-
cies scaled by Froude scaling.

Source Full-scale [Hz] Model scale [Hz]
Peak wave encounter frequency 0.141–0.149 0.244–0.258
Roll, pitch, heave natural frequencies, respectively 0.18, 0.25, 0.85 0.31, 0.43, 1.47
Waterjet impeller shaft at 1400RPM 23.3 40.4
Main engine - Caterpillar 3406E 36.7 63.5
18-bladed impeller blade rate 270.0 467.6
Peak cavity shedding frequency 334 578

3.4 Optimization problem formulation

To solve the problem posed in Section 2.2, we have one multipoint-weighted objective
function, where design point weights are based on how much operating time is spent at
that design condition. We want one type of objective because having multiple objec-
tives introduces the difficulty of determining the appropriate weights for the different
objectives [43, Ch. 9]; as such, the single objective is the area under the frequency
response curve (fvib), and all the other dynamic performance metrics are constraints.
We choose the weighted area under the frequency response as the objective to minimize
because the upper-frequency limit may vary based on the problem. It is challenging to
prescribe a constrained upper limit on the weighted area under the frequency response

1teknicraft.com
2marinejetpower.com offers some guidance on waterjet selection
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curve if the upper-frequency limit is not scaled consistently between problems. The
upper-frequency limit may vary based on the available information. For example, if a
spectral excitation signal from an engine manufacturer only goes between 0 and 360 Hz
and another excitation signal from another manufacturer has a different range, the
designer has to choose the appropriate frequency range.

In contrast, the functions for frequency avoidance and coalescence, maximum tip
deflections, maximum mean deflections, and flutter have intuitive and scalable formula-
tions as constraints. There should be a minimum band gap between critical frequencies
and an upper limit on the tip and mean deflections. There is less incentive to expand
the frequency band gap and minimize deflections further as long as a critical threshold
is met.

The optimization problem is detailed in Table 8. We have geometric and material
design variables: fiber angle, sweep, and angle of attack. We do not allow negative
sweep or fiber angles since they both promote static divergence. Forward sweep leads
to geometric nose-up bend-twist coupling because the apparent angle is increased for
positive bending, and the CP is farther ahead of the EA. Forward sweep can also catch
marine debris, so it is generally not favored for hydrofoils. Aligning fibers towards the
trailing edge leads to material nose-up bend-twist coupling since the hydrofoil is stiffer
along the fibers. The angle of attack is a variable because we have steady lift constraints
to satisfy.

Table 8: Design optimization problem

Function/Variables Description Lower Upper Units Qty
minimize

∑
i wt× fvib Area under the frequency response, vi-

brations
— — — 1

with respect to θf Fiber angle 0 30 ◦ 1
Λ Sweep angle 0 30 ◦ 1
α0 Rigid angle of attack 1 10 ◦ 1

subject to CL,stat − CL,i Steady lift coefficient for design point i 0 0 — 1
ε/c Thickness-to-chord ratio 10% 10% — 1
s Constant semi-span s0 s0 m 1
c Constant chord c0 c0 m 1
TR = ctip/croot Constant taper ratio 1 1 — 1
htip, stat Static tip bending is less than 25% of

chord and tip twisting is less than 10◦
— 0 — 2

htip Total tip bending is less than 25% of
chord and tip twisting is less than 10◦

— 0 — 2

hg Frequency coalescence constraint — 0 — 1
hl Frequency avoidance constraint — 0 — 1
hdef Maximum amplitude in mean frequency

response in bending is less than 15% of
chord and in twisting is less than 5◦

— 0 — 2

hflut No flutter — 0 — 1
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3.5 Optimization method

Because of the associated overhead cost of setting up gradients and the reduced prob-
lem dimensionality of this particular problem, we use a heuristic method for tailoring
the steady and dynamic hydroelastic performance. This method is sufficient for a pre-
liminary design, but when the number of design variables is large, it is more scalable to
use a gradient-based method [53]. First, we run a parameter sweep of fiber and sweep
angles using 10◦ steps (18 total designs × 2 design speeds = 36 full runs of DCFoil)
and plot contours of the objective function to assist us in choosing better designs. The
order of solvers is always steady, then dynamic hydroelastic analysis. We first perform
a steady analysis by letting α0 vary to satisfy the steady lift requirement while checking
the static deflection constraint. During this steady analysis, if the deflection constraint
is violated or the steady lift requirement cannot be met within the range of alpha0, we
stop execution because the dynamic analysis is more computationally expensive. Only
if designs meet steady performance requirements do we complete the dynamic analysis.
For our specific example, the steady performance requirement limits the feasible design
variables to 0 ≤ Λ ≤ 30◦, 0 ≤ θf ≤ 30◦, and α0 ≤ 10◦.

4 Results
To give a better idea of the performance of the scaled composite hydrofoils in the initial
design space, we plot the objective function contours of all designs that meet the steady
performance requirements in Figure 6. The first two plots are the contours for the two
design points, and the third is the weighted sum. These designs were subjected to the
wave loading spectra from Figure 5. Not all of these designs may meet the dynamic
constraints, but we show all of them just to build intuition on which configurations have
small fvib. The minimum in this design space represents the composite hydrofoil with
the smallest weighted area under the frequency response curves, which we formulated
to indicate the vibration performance.

While the minimum in Figure 6 may have the least vibration, we circle a smaller
space of designs in green in Figure 6 to refine the search for the optimal design. In gen-
eral, submergence effects on the modal coalescence and mode switching characteristics
are more severe for higher fiber angles regardless of flow speed because the torsion and
bending frequencies converge to each other at high fiber angle [12]. Excessive backward
sweep is also undesirable because of the loss in hydrodynamic efficiency due to down-
wash and upwash effects on the flow field [54] and increased potential for tip vortex
cavitation [55]. For these reasons, we circle the smaller design space (8◦ ≤ θf ≤ 22◦

and 5◦ ≤ Λ ≤ 20◦) that neglects the smaller merit function values of the higher θf
and Λ designs. The benefit of not using a formal optimization method for tailoring the
steady and dynamic performance is that we have more freedom to use design intuition
about aspects our computational model does not simulate.

After applying our dynamic constraints and heuristically checking designs, we reach
a preliminary optimal design given in Table 9.

The performance comparison to the baseline is separated into steady and dynamic
hydroelastic performance. We plot the static tip deformations in Figure 7 to show that
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(c) Weighted sum

Figure 6: Objective function contours for the PMC 1/3-scaled model hydrofoil in
the initial design space before dynamic constraints are applied. Plots 6a and 6b are
the separate design speeds and plot 6c is the weighted sum of these based on the
design points and probability of operation conditions (weights) given in Table 5. We
want to find the design that minimizes the objective (darkest blue contour) to avoid
excessive vibrations for our load spectra and satisfy dynamic constraints. The green
circle represents a more refined search space based on factors not considered in the
model, and white lines are iso-levels for the objective function

Table 9: Optimized versus baseline foil design variables

Variable Optimized Baseline
CL = 0.6 CL= 0.3 CL = 0.6 CL= 0.3

α0 8.9◦ 4.6◦ 6.1◦ 1.4◦

θf 10◦ 0◦

λ 5◦ 0◦

the optimized design exhibits smaller static deformations than the baseline because of
the nose-down bend-twist coupling caused by both backward sweep and angling fibers
towards the leading edge. Figure 7 shows the baseline is close to violating the bending
constraint, so the optimized design has better static hydroelastic performance. The
steady performance data are tabulated in Table 10. The baseline hydrofoil tip bending
and twisting deformations increase with speed because its CP is forward of the EA and
has nose-up bend-twist coupling. Because the optimal hydrofoil has a positive sweep
and fiber angle, twist deformations are nose-down due to geometric and material nose-
down bend-twist coupling. Tip twisting plus the angle of attack remains below 12◦, so
there is no immediate risk of tip stall. Tip bending is below 25% of the mean chord,
so there is no immediate risk of static divergence.

The dynamic hydroelastic performance improvement is shown in Figure 8, where
we plot the frequency response spectra of the baseline and optimized designs. The
dynamic performance of the foil did not vary significantly between the design speeds,
so we show the results for the higher speed for brevity. The baseline’s bending and
twisting dynamic response is higher and has more area under the curve, verifying
our objective functions. There are no other peaks in the response curves at higher
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Table 10: Static wing tip deflections of the baseline and optimized model-scale hy-
drofoil. Conditions for CL = 0.6 is U0 =

√
λL10 m/s = 5.8 m/s and for CL = 0.3,

U0 =
√
λL15 m/s = 8.7 m/s. Optimized avoids excessive steady deflections and has

nose-down tip twist due to both backward sweep and fibers angled towards the leading
edge.

DOF
Optimized (θf = 10◦,Λ = 5◦) Baseline (θf = 0◦,Λ = 0◦)
CL = 0.6 CL= 0.3 CL = 0.6 CL= 0.3

Bending (w/b̄) 0.4 0.39 0.42 0.5
Twisting (ψstat) −0.47◦ −0.46◦ 5.3◦ 6.3◦

Lift coefficient (CL) 0.27 0.55 0.28 0.57

Bending constraint

Total tip angle 

constraint (base)

Total tip angle 

constraint (opt)

base

base

opt

opt

Figure 7: Predicted non-dimensional static tip deformations as a function of speed of
the baseline (orange dash-dot) versus optimized (blue solid) design for bending (left)
and twisting (right). The optimized design has smaller deformations in the speed range
and is well below the bending deflection constraint (horizontal purple dashed line shown
on left) and tip angle constraints (color coded open circles shown on right). Tip angle
constraints vary with the operating speed because the base angle (α0) changes with
speed to meet the lift requirement.

frequencies since the wave loading is mainly at the lower frequency end, hence the
x-axis limits. We also plot the total response of the optimized and baseline result
normalized by its static response in Figure 9. Only the higher flow speed is shown
for brevity. Peaks denote resonance frequency; the height and width of peaks indicate
the level of damping, where higher and skinnier peaks are less damped. Since peaks
do not line up with the critical external frequencies, this is further validation that our
frequency avoidance constraints worked. The normalized response of the optimized
hydrofoil is much lower across all frequencies indicating the foil would have less severe
dynamic load amplification. The lower speed case gave a similar conclusion.

We explain the dynamic response behavior in Figure 8 by revisiting the beam
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Figure 8: Comparison of dynamic tip deflections between baseline (orange dash-dot)
and optimized (blue solid) scaled model clearly show the performance is improved.
U0 = 8.7 m/s. The optimized design avoids excessive dynamic deformations due to the
wave loading spectra

Equations (1) and (2) and the hydrodynamic terms in Equations (6) and (7) where
matrix subscript notation is used. The optimized design is stiffer because of both
the positive fiber angle and backward sweep. Terms in the Cf and Kf matrices with
positive signs are restoring, whereas negative signs are disturbing. Nose-down material
bend-twist coupling from the fibers is restoring, and backward sweep leads to geometric
nose-down bend-twist coupling because of apparent negative camber. The sin(Λ) terms
in Kf are positive except for Kf,12, so more sweep leads to greater fluid restoring elastic
forces. All sin(Λ) terms in Cf are positive, so more sweep increases the fluid damping
forces. The dynamic response of the optimized configuration is lower than the baseline
because it is more damped and stiff, and the response is inversely proportional to
damping and stiffness.

The final verification and test of the practicality of our design is a root-loci plot
for the speed sweep between our given design speeds coupled with mode shape plots.
The vessel may have two design speeds, but it will always operate in a range of speeds;
transient resonance, while brief, can also lead to excessive vibrations, dynamic load
amplification, and accelerated fatigue. We run the steady solver at every speed to
determine the α0 to satisfy the total dimensional lift requirement before using the
root-finding solver from DCFoil. The plot of real and imaginary parts of the system
poles (a.k.a. the eigenvalues p) is Figure 10.

The mode shapes in quiescent fluid, which can qualitatively describe the mode
shape at operating speed since there is no mode switching in this case, are given
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Figure 9: Normalized mean response of optimized vs. baseline scaled model at 8.7 m/s.
Critical frequencies marked by dashed purple lines

in Figure 11. They show that the optimized hydrofoil has coupled mode shapes in
water due to material anisotropy from the nonzero θf ; in comparison, the baseline that
has θf = 0◦ still exhibits some coupling, which is due to the EA and CP not being
collocated, but this coupling effect is still less than a case with nonzero θf . Sweep does
not affect quiescent water mode shapes because it does not affect the quiescent flow
field, structural stiffness, or mass distribution. We also see in Figure 11 that the mode
order is different because the third mode of the baseline is primarily bending, whereas
the optimized has a primarily twisting third mode.

8.1m/s

5.2m/s8.1m/s
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Figure 10: Root-loci of the scaled baseline (left) and optimized (right) composite hy-
drofoil where critical frequencies to avoid are shown in horizontal dashed purple lines.
Due to axis limits, only some of the critical frequencies from Table 7 are shown. The
two design points listed in Table 5 are circled in maroon. The baseline design is too
close to the waterjet (w.j.) frequency at the low speed so lock-in is a concern. The
optimized design has potential transient issues with mode 2’s natural frequency pass-
ing through the waterjet frequency, but it is still considered a better design than the
baseline. There are no issues with the scaled main engine (m.e.) or scaled rigid body
(r.b.) frequencies for either configuration.
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Figure 11: First three non-dimensional mode shapes of the baseline (left) and opti-
mized (right) design in quiescent water (zero flow speed). Compared to the baseline,
the nonzero fiber angle of the optimized results in more significant coupling in the
bending and twisting mode shapes. The order of modes is also affected by fiber angle
(θf )

Figure 10 verifies the avoidance of resonance and lock-in of our optimal solution in
that the speed-dependent natural frequencies for the design points are far enough from
critical frequencies. We also avoid frequency coalescence because the modes’ =(p) do
not converge on each other in this speed range. Flutter is also avoided since the poles do
not cross the imaginary axis, but Hopf bifurcation would eventually occur at a higher
speed. However, mode 2 (primarily twisting) crosses the waterjet impeller frequency
near the full-scale 14 m/s speed, so there will be transient resonance. Fortunately, the
system is damped with a damping loss factor of about ηt = 1.65, so this may not be a
severe problem. Most of the damping is due to potential damping from radiated waves
captured by Theodorsen’s unsteady theory. In reality, there is viscous hydrodynamic
damping, but it is ignored because we use potential theory. Structural damping does
not play a significant role since it is typically small (we set 2% material damping),
whereas hydrodynamic damping can be 10–40% for low-ordered modes.

Equations (1) and (2) and Equations (6) and (7) can once again help explain the
system pole behavior in Figure 10. Theodorsen terms with reduced frequency, k have
a real and imaginary part related to the magnitude and phase, respectively. Matrices
with cos(Λ) are larger in magnitude for small sweep angles compared to those with
sin(Λ). Bending-related damping is the first row of terms in Cf . The term Cf,12 in the
cos(Λ) matrix is always negative for our foil. This term is typically responsible for the
bending flutter of the ‘new mode’ at a high enough speed. All other terms in the Cf

matrix are positive and damp out motions. With this in mind, at any given speed, all
these damping effects diminish in magnitude as we approach high frequencies because
the real part of Theodorsen’s function goes from 1 to 1/2 as k →∞; therefore, higher
order modes have less damping, which is seen in Figure 10 by the more positive <(p)
values at higher k.

As speed increases for the optimized foil, =(p) in Figure 10 decreases for all modes

26



since fluid de-stiffening forces and moments increases with U2
0 . Damping terms in Cf

increase in magnitude with U0, which is observed with the <(p) values becoming more
negative except for mode 2, which is impacted by the speed- and frequency-dependent,
negative Cf,12 term. Since k of mode 2 is decreasing, the negative damping effect of
Cf,12 increases because the bending shape contribution to mode 2 increases with speed.
Furthermore, since the structure is anisotropic, the nonzero fiber angle couples bending
to twisting deformations, so the negative damping effect of Cf,12 is more pronounced
in the optimized than the baseline because the baseline structurally decouples bending
and twisting.

To further illustrate the effect of water on the system natural frequencies, we also
plot the in-air root-loci in Figure 12 using ρair = 1.225 kg/m3. For this vessel speed
sweep, the natural frequencies =(p) = Ω are much higher than the in-water results
shown in Figure 10. The poles (p) stay nearly constant for this speed range because
the variation of forces with respect to speed is small with the low air density. Damping,
represented by ηt = −2ξ/Ω, is lower in air than in water because the fluid damping
terms, which are proportional to ρf , are smaller for air by about three orders of mag-
nitude. The proportionality to ρf also means the speed-dependent effects in air for
this dimensional speed range are less discernable than the in-water root loci in Fig-
ure 10. Frequencies in air are more separated compared to the submerged eigenvalues,
so modal coalescence would not be captured by a purely in-air dynamic aeroelastic
analysis. An in-air dynamic analysis would also fallaciously lead us to believe mode 1
(40.2 Hz) of the optimized hydrofoil will lock-in with the waterjet frequency (40.4 Hz).
Because the solid-to-fluid density ratio (µ) is higher in air and our reduced velocity is
fairly low by aircraft standards, this dynamic aeroelastic analysis in Figure 12 would
be about the same as a typical modal analysis of the in-vacuum structural dynam-
ics of the composite hydrofoil. The comparison between Figure 10 and 12 illustrates
the importance of considering the in-water modal characteristics for design to capture
natural frequencies, modal coalescence, and dynamic instabilities.

Based on the results from Figure 10, we recommend that the operator of the full-
scale vessel with the optimized hydrofoil should avoid remaining at the full-scale 14 m/s
speed to avoid this resonance based on interpolating root-loci and scaling the speed
back up. This is similar to how some ship operators are advised to avoid idling the
engine at a particular RPM.

Table 11 lists the dynamic constraint values to verify feasibility; violations are writ-
ten in bold red font. The optimized design satisfies all constraints, while the baseline
violates the frequency avoidance constraint (hl) because of the waterjet and impeller
frequencies. The base design also violates the total tip deflection constraints, so it is
at risk of tip stall, as shown in Figure 7. This means there is potential for dynamic
load amplifications and vibrations due to lock-in or resonance of a system mode of
the baseline with these external sources because the wetted system natural frequency
changed with flow speed to be in proximity (15%) with one of the critical frequencies.
Our prediction of the lock-in of the baseline system modes with propulsion plant fre-
quencies underscores the need for accurate simulations of the dynamic hydroelasticity
of lightweight composites because traditional metallic marine structures are usually as-
sumed to have constant natural frequency regardless of speed. Several researchers have
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Figure 12: In-air root loci of the scaled baseline and optimized composite hydrofoil for
the same speed sweep as shown in Figure 10 for in-water cases. Speed-dependent effects
on p for this speed sweep are less apparent in air. Natural frequencies (=(p)) in air
are much higher than the in-water values. The damping values (<(p)) are much lower
in air than in water. An in-air analysis would erroneously predict that the optimized
hydrofoil is at risk of lock-in with the waterjet (w.j.), but the hydrofoil operates in
water, so it is not an issue. Natural frequencies in air are also more separated than
in water; we would not assume any risk of modal coalescence for these flow speeds
compared to in-water plots (Figure 10)

shown that speed impacts the system’s natural frequencies of marine structures, and
this effect is more noticeable for low solid-to-fluid-added mass ratios [10, 11, 32, 56].
Neither design exhibits flutter (hflut) since damping remains positive nor modal coales-
cence (hg) since frequencies are not close enough with each other. Mean deformations
and tip deformation constraints (hdef and htip respectively) are satisfied in both designs
for the load scenario. For brevity, we do not list the htip, stat constraint values since, by
our definition, if htip is satisfied, then so is htip, stat.

Table 11: Dynamic constraint values show that the optimized design is feasible. If
multiple values are listed, the ordered pair is bending and twisting. There is only an
upper bound on these constraints, so negative values mean constraints are satisfied;
red and bold means constraint violation

Constraint Optimized Baseline Upper bound
CL = 0.3 CL= 0.6 CL = 0.3 CL= 0.6

htip (-0.127, –5.815) (-0.142, -1.507) (0.025, -2.190) (-0.1153, 1.0468) 0
hl (-0.0003) (-0.075) (0.011 (mode 2 & waterjet) ) (0.023 (mode 5 & impeller)) 0
hg (-0.207) (-0.114) (-0.067) (-0.084) 0
hdef (-0.2989, -4.991) (-0.29884, -4.9966) (-0.299, -4.991) (-0.297, -4.982) 0
hflut -17.877 -8.506 0
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5 Discussion

5.1 Optimization algorithm

We used a heuristic optimization method appropriate for the reduced problem size that
also allowed us design freedom to make adjustments to the “optimal” design based on
physics not captured in the model, such as submergence and viscous effects. Because of
these unmodeled physics, we did not employ a formal optimization algorithm such as
a particle swarm method or genetic algorithm that may have resulted in highly swept
designs with high θf . Instead, we used the merit functions and constraints to aid us
in making more informed choices about the optimal design variables instead of a fully
automated optimization.

Lastly, the computational time of this study was prohibitive for the current model
since we used a scripted language (MATLAB). Cost is also increased for many discrete
frequencies because each forcing frequency requires a solution of the governing equa-
tions. For our runs, we analyzed 2000 discrete frequencies between 0 and 200 Hz for
the full-scale (0–346 Hz for the model scale). Each frequency response analysis for a
design run costs 30 minutes in serial, as shown in Table 12. This study had at most
18 full runs if we used the naive approach, corresponding to 9 hours of simulations.
These costs are not practical for design optimization, so we propose using a gradient-

Table 12: Computational metrics of the optimization for 18 potential design analyses
(2 speeds and 9 designs). Runs are on 1 thread of Intel Core i7-8700 CPU @ 3.20GHz

Number of discrete frequencies per design analysis Run time
2000 28 min 29 sec

based method to reduce the number of function evaluations in the future. We can also
improve performance by using a compiled coding language and parallelizing processes.

5.2 Solution of design problem

Using our merit functions and constraints, we produced a composite hydrofoil with
better steady and dynamic performance than the baseline design while satisfying steady
lift requirements and avoiding excessive deflections, vibrations, noise, dynamic load
amplification, dynamic instability, and accelerated fatigue. We had a reduced problem
size with only three geometric and material design variables: angle of attack, fiber
angle, and sweep angle.

Even though the essential marine lifting surface physics were considered in this
study, a detailed optimization is necessary to capture more complex fluid and structural
mechanics. In future studies, one would later refine the steady performance of this
design using high-fidelity computational models to improve characteristics such as, but
not limited to, lift-drag ratio, cavitation and flow separation avoidance, and material
failure avoidance.

Most external excitation frequencies were considered, but viscous simulations would
be needed to predict vortex shedding frequencies, which typically are coherent between
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Strouhal numbers of 0.2–0.3. One could also make low-order approximations of these
frequencies using relations between Reynolds numbers and vortex shedding.

More accurate damping forces from viscous and memory effects are also important
to consider in higher fidelity since our model used inviscid theory but did not inte-
grate the memory effects in time domain simulations [10]; both of these effects add to
damping, so we are potentially overpredicting the amplitudes of motions by neglecting
them.

Lifting surface wake-structure interaction with other components such as the hull or
upstream structures may also need to be considered for the entire hull-foil system; we
assumed uniform external flow, but viscous propulsor-rudder-hydrofoil-hull interactions
may be significant as it has been shown that pressure fluctuations on a rudder from a
propeller can result in unwanted vibrations and noise [57, 58]. We know that propellers
with more skew (same as sweep) tend to have fewer vibration issues, so the spatially
varying and non-uniform wake affects the optimal design variables of a composite
hydrofoil when its performance as part of the whole vessel system is considered.

Depth and multiphase flow effects on added mass (and thus, system frequencies) and
damping should also be considered in future optimizations because changing depth or
small amounts of cavitation and ventilation may result in potential lock-in, resonance,
or modal coalescence. Ideally, the hydrofoil is designed to avoid or delay cavitation
and ventilation, but submergence depth will change with vessel motions and waves.

The coupling effect of vessel motion with the flexible hydrofoil should also be con-
sidered in the lifting surface design. We assumed a cantilevered hydrofoil, but hydrofoil
motions will impact vessel motions and vice versa, resulting in different hydrofoil dy-
namics since the boundary conditions are different. Considering rigid body motion
would allow us to consider body-freedom flutter in our lifting surface design. From
this, one should consider the stability of the hydrofoil craft. Mader and Martins [59]
formulated stability derivatives for aircraft, and a similar approach could be used for
the hydrofoiling vessel.

We simplified the design study significantly by allowing no thickness, twist, or taper
variables. Thickness has a crucial effect on the flexibility of a lifting surface since the
bending and torsional stiffnesses are proportional to ε4. The effect of twist and taper
on dynamic performance should also be investigated because they both alter the flow
and structural performance.

Furthermore, the critical frequencies we designed for, such as cavitation, engine,
and impeller frequencies, may not be constant throughout vessel operation though we
assumed they were for simplicity. In the future, a probability density function could
be used on frequency sources that are not fixed to model the change in excitation
frequencies over the operating envelope. Despite this, the preliminary study served
its purpose of design exploration and verification of our objectives and constraints.
Practical applications of this model and method would be sweeping through design
parameters and generating Pareto fronts to inform designers in what directions they
should push their composite foil designs to achieve their desired steady and dynamic
performances. Designers should use a higher-fidelity verification after this for the detail
design phase.
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6 Conclusions
This work represents the first steady and dynamic hydroelastic optimization of com-
posite hydrofoils that uses both material and geometric design variables, considering
modal coalescence and multiple operating points.

The optimized composite hydrofoil satisfies the design goal of meeting steady lift
and deflection constraints while avoiding excessive vibration and dynamic load am-
plifications. Resonance frequencies are far enough from rigid body modes, engine
frequencies, impeller shaft and impeller blade rate frequencies, cavity shedding fre-
quencies, and wave frequencies. We also avoid frequency coalescence, which has not
been addressed in previous hydrofoil design optimization.

The optimized hydrofoil is more damped at the critical frequencies and stiffer be-
cause of the slight backward sweep and slight forward fiber angle because of the relative
contributions of generalized fluid forces in the coupled equations of motion as explained
in Section 4. Severe fiber and sweep angles could result in frequency coalescence or
lower critical instability speeds.

Marine composite lifting surface design differs from aircraft lifting surface design
because it can exploit more significant hydrodynamic damping effects and avoid the
greater fluid de-stiffening effects. This adds freedom to tune the dynamic hydroelastic
performance in ways that cannot be realized in a less dense fluid such as air.

Considering multiple design speeds in optimization is critical for composite hydro-
foils, mainly due to changing system natural frequencies, damping, and steady loads
with respect to flow speed. We used a multipoint approach to consider the vessel oper-
ating profile. As shown in our baseline versus optimized results, the systems’ dynamic
characteristics changed with speed leading to resonance frequencies coming too close
to the waterjet for the baseline.

Our optimized hydrofoil avoids resonance with the waterjet and all other considered
external frequencies for our design speeds. However, in between design speeds, the
resonance frequency of mode 2 crosses the waterjet, albeit with a positive damping
loss factor. The transient resonance may be an issue, but it is still better than lock-in
or resonance at a design point, so the optimized composite hydrofoil is still superior.

We especially need to consider how water lowers the system’s natural frequencies
and changes band gaps between modes in the optimization, which drastically changes
the design problem from that of aircraft composites. When we compared in-water to
in-air root-loci plots, we saw dramatic differences in the behavior of the system poles
for both the baseline and optimized hydrofoils across the speed sweep.

Traditional approaches for analyzing the dynamic performance of structures per-
form only a modal or aeroelastic analysis, and aeroelastic analyses are less common.
However, as we have shown, a dynamic hydroelastic evaluation is critical to predicting
and avoiding excessive vibrations, accelerated fatigue, and dynamic load amplifications
because water changes the modal behavior. As a result, neglecting the in-water dy-
namic performance and only performing a dry modal analysis can lead to erroneous
results.

In summary, the newly developed objective function is an appropriate metric to
capture vibrations of the composite hydrofoil. Combined with the newly developed
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and previously devised constraints, we tailored a composite hydrofoil’s steady and dy-
namic performance to limit the static and dynamic deformations using a smaller set of
design variables. This design optimization method can be generalized to many marine
composite lifting surface problems, such as for the design of rudders, fin stabilizers,
turbines, energy harvesting devices, energy saving devices, bilge keels, and hydrofoils
that need to minimize (or maximize) static and dynamic deformations.
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A Equations of Motion

A.1 Boundary Conditions for Cantilevered Hydrofoil

Geometric (wing clamped root, y = 0):

w = 0, ψ = 0, w′ = 0, ψ′ = 0 (26)
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Natural (wing free tip, y = L):

EIsw
′′′ +Ksψ

′′ + abEIsψ
′′′ = 0 (27)

EIsw
′′ +Ksψ

′ + abEIsψ
′′ = 0 (28)

GJsψ
′ +Ksw

′′ − abEIsw′′′ − Ssψ′′′ = 0 (29)

abKsψ
′ + abEIsw

′′ + Ssψ
′′ = 0 (30)
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