
Structural and Multidisciplinary Optimization manuscript No.
(will be inserted by the editor)

pyOpt: A Python-Based Object-Oriented Framework for
Nonlinear Constrained Optimization

Ruben E. Perez · Peter W. Jansen · Joaquim R.R.A. Martins

Received: date / Accepted: date

Abstract We present pyOpt, an object-oriented frame-
work for formulating and solving nonlinear constrained
optimization problems in an efficient, reusable and portable
manner. The framework uses object-oriented concepts,
such as class inheritance and operator overloading, to
maintain a distinct separation between the problem for-
mulation and the optimization approach used to solve
the problem. This creates a common interface in a flex-
ible environment where both practitioners and devel-
opers alike can solve their optimization problems or
develop and benchmark their own optimization algo-
rithms. The framework is developed in the Python pro-
gramming language, which allows for easy integration of
optimization software that is programmed in Fortran,
C, C++, and other languages. A variety of optimization
algorithms are integrated in pyOpt and are accessible
through the common interface. We solve a number of
problems of increasing complexity to demonstrate how
a given problem is formulated using this framework,
and how the framework can be used to benchmark the
various optimization algorithms.

Ruben E. Perez
Department of Mechanical and Aerospace Engineering, Royal

Military College of Canada, Kingston, ON, Canada, K7K 7B4

Tel.: +1-613-541-6000 ext. 6168
Fax: +1-613-542-8612

E-mail: Ruben.Perez@rmc.ca

Peter W. Jansen
Department of Mechanical and Aerospace Engineering, Royal
Military College of Canada, Kingston, ON, Canada, K7K 7B4

E-mail: Peter.Jansen@rmc.ca

Joaquim R.R.A. Martins
Department of Aerospace Engineering, University of Michigan,

Ann Arbor, MI 48109, USA

Tel.: +1-734-615-9652
E-mail: jrram@umich.edu

Keywords Optimization algorithms · Constrained op-
timization · Object-oriented programming · Aerostruc-
tural optimization

1 Introduction

Various high quality numerical optimization packages
are available to solve design optimization problems (Moré
and Wright 1993). These packages are written in differ-
ent programming languages and each one of them has a
unique way of formulating the optimization problem to
be solved. For a given optimization problem, practition-
ers tend to spend substantial time and effort in learning
and implementing code-specific interfaces for their ap-
plications. If the optimization package is developed in
a low-level language, the interfacing task becomes par-
ticularly challenging, as complex syntax, enforced syn-
tax typing, special consideration for memory manage-
ment, and compiling are required to use such packages.
Optimization algorithm developers are confronted with
similar problems when they want to test, compare, and
benchmark new algorithms by solving multiple prob-
lems with different optimizers.

There have been efforts towards helping both prac-
titioners and developers with the above difficulties. A
number of approaches have been used. One approach
has been to development of algebraic modeling lan-
guages (AMLs) such as AMPL (Fourer et al 2003),
GAMS (Rosenthal 2008), and AIMMS (Bisschop and
Roelofs 2008), which use a common set of mathemat-
ical constructs. Solvers make use of the common con-
structs to translate the optimization problem to their
specific algorithmic representations. While a large set
of problems can be modeled with this approach, it is

2

hard to integrate existing application models already
programmed in other languages.

Another approach has been to develop a framework
— using a standard programming language — that en-
ables the use of different optimizers by executing them
via a system call interface that uses a set of standard-
ized files for optimization problem definition input and
solution output. An example of this approach is the
DAKOTA toolkit (Eldred et al 2007). Since a stan-
dard programming language is used in lieu of an al-
gebraic modeling language, this type of framework de-
velopment adds the flexibility of handling existing ap-
plication models programmed in the same language.

More recently, object-oriented programming has been
incorporated into such frameworks, allowing them not
only to take advantage of code reusability but also to
enable them to use programming constructs that are
similar in nature to the mathematical constructs used
by ALMs. While existing object-oriented optimization
frameworks enable the solution of large and complex
problems with existing application models, until recently
they have mainly been programmed in low-level lan-
guages such as C/C++. An example of such a frame-
work is OPT++ (Meza 1994; Meza et al 2007).

The problem of interfacing application models and
optimization algorithms programmed in different lan-
guages still remains in such frameworks. An alternative
to address such a problem is to use a high-level pro-
gramming language, such as Matlab or Python. Such
languages not only provide a flexible environment to
model optimization problems, but also enable easier
interfacing of application models and optimizers writ-
ten in different low-level languages. This approach, en-
hanced with object-oriented constructs, leverages the
ease of use and integration provided by a high-level lan-
guage with the efficiency of numerical computations of
compiled languages.

The advantage provided by high-level languages can
be observed in a plethora of recent projects. For exam-
ple, pyIPOPT (Xu 2009), CVXOPT (Dahl and Van-
denberghe 2008), SciPy.optimize (Jones et al 2001), and
TANGO (Tan 2007) provide direct Python interfaces to
compiled-language optimizers. Similarly, the Pyomo (Hart
2009) project provides algebraic modeling capabilities
within Python, while NLpy (Friedlander and Orban
2008) connects Python to the AMPL algebraic model-
ing language. Other projects, such as YALMIP (Lofberg
2004) and TOMLAB (Holmström et al 2010) in Matlab,
or puLP (Mitchell 2009) and OpenOpt (Kroshko 2010)
in Python, also offer system call interfacing frameworks
to different optimizers. In some projects, the optimiza-
tion algorithms themselves are implemented in Python

as opposed to a compiled language Jacobs et al (2004);
Friedlander and Orban (2008).

The goal of the effort described herein is to develop
an object-oriented framework programmed in Python
that facilitates the formulation of optimization prob-
lems, the integration of application models developed
in different programming languages, and the solution
and benchmarking of multiple optimizers. This facili-
tates the tasks for both practitioners and developers
alike.

The problems to be solved can be written as a gen-
eral constrained nonlinear optimization problem, i.e.,

min
x

f (x)

subject to gj (x) = 0, j = 1, . . . ,me,

gj (x) ≤ 0, j = me + 1, . . . ,m,

xiL ≤ xi ≤ xiU , i = 1, . . . , n,

(1)

where x ∈ <n, f : <n → <1, and g : <n → <m. It
is assumed that the objective function f (x) is a non-
linear function, and that the equality and inequality
constraints can be either linear or nonlinear functions
of the design variables x.

The main characteristics of the pyOpt framework
are described below.

Problem-Optimizer Independence: Object-oriented con-
structs allow for true separation between the opti-
mization problem formulation and its solution by
different optimizers. This enables a large degree of
flexibility for problem formulation and solution, al-
lowing the use of advanced optimization features,
such as nested optimization and automated solution
refinement with ease and efficiency.

Flexible Optimizer Integration : pyOpt already provides
an interface to a number of optimizers and enables
the integration of additional optimizers both open-
source and commercial alike. Furthermore, the in-
terface allows for easy integration of gradient-based,
gradient-free, and population-based optimization al-
gorithms that solve the general constrained nonlin-
ear optimization problem (1).

Multi-Platform Compatibility: The framework base classes
and all implemented optimizers can be used and
tested in different operating system environments,
including Windows, Linux, and OS X, and different
computing architectures, including parallel systems.

Parallelization Capability: Using the message passing
interface (MPI) standard, the framework can solve
optimization problems where the function evalua-
tions from the model applications run in parallel
environments. For gradient-based optimizers, it can

3

also evaluate gradients in parallel, and for gradient-
free optimizers it can distribute function evalua-
tions.

History and Warm-Restart Capability: The user has the
option to store the solution history during the opti-
mization process. A partial history can also be used
to warm-restart the optimization.

This article is organized as follows. The next sec-
tion outlines the software implementation philosophy
and the programming language selection. Section 3 de-
scribes the class design in pyOpt and lists the opti-
mization algorithms integrated into the framework. Sec-
tion 4 demonstrates the solution of three optimization
problems using pyOpt with multiple optimization algo-
rithms. In the last section we present our conclusions.

2 Software Design

The design of pyOpt is driven by the need to provide an
easy-to-use optimization framework not only for practi-
tioners, but also for developers. Different programming
languages were considered for the development of py-
Opt and Python (Beazley 2006) was selected. Python is
a free, high-level programming language that supports
object-oriented programming and has a large following
in the scientific computing community (Oliphant 2007;
Langtangen 2008). Python fullfils all of our code design
development requirements according to the principles
described below.

2.1 Clarity and Usability

For optimization practitioners, the framework should
be usable by someone who has only basic knowledge
of optimization. An intuitive interface should be pro-
vided in which the optimization problem formulation
resembles its mathematical formulation. For developers,
the framework should provide intuitive object-oriented
class structures where new algorithms can be integrated
and tested by a wide range of developers with diverse
programming backgrounds. Python provides a clear and
readable syntax with intuitive object orientation and a
large number of data types and structures. It is highly
stable and run in interactive mode, making it easy to
learn and debug. The language supports user-defined
raising and catching of exceptions, resulting in cleaner
error handling. Moreover, automatic garbage collection
is performed, which frees the programmer from the bur-
den of memory management.

2.2 Extensibility

The framework and its programming language should
provide a solid foundation for additional extensions or
modifications to the framework architecture, to its classes
and modeling routines, to the optimization algorithm
interfaces, and to the user application models. Python
provides a simple model for loading Python code de-
veloped by users. Additionally, it includes support for
shared libraries and dynamic loading, so new capabil-
ities can be dynamically integrated into Python appli-
cations.

2.3 Portability

An important requirement for the framework is that
it must work on several computer architectures. Not
only should it be easily ported across computer plat-
forms, but it should also allow easy integration of the
user models and optimizers across computer platforms.
Python is available on a large number of computer ar-
chitectures and operating systems, so portability is typ-
ically not a limitation for Python-based applications.

2.4 Integration Flexibility

The framework should also provide the flexibility to
support both tight coupling integration (where a model
or optimizer is directly linked into the framework) and
loose coupling integration (where a model or optimizer
is externally executed through system calls). Further-
more, application models and solvers developed in het-
erogeneous programming languages should be easily in-
tegrated into the framework. Python excels at interfac-
ing with high- and low-level languages. It was designed
to interface directly with C, making the integration of C
codes straightforward. Integration of Fortran and C++
codes can be done using freely available tools, such as
f2py (Peterson et al 2001) and SWIG (Blezek 1998),
respectively, which automate the integration process,
while enabling access to the original code functionality
from Python.

2.5 Standard Libraries

The framework should have access to a large set of
libraries and tools to support additional capabilities,
such as specialized numerical libraries, data integration
tools, and plotting routines. Python includes a large
set of standard libraries, facilitating the programming
of a wide array of tasks. Furthermore, a large number

4

of open-source libraries are available, such as the scien-
tific computing library SciPy, the numerical comput-
ing library NumPy, and the plotting library matplotlib.
These libraries further extend the capabilities available
to both optimization practitioners and developers alike.

2.6 Documentation

The programming language used for the framework de-
velopment should be well documented, and should also
provide tools to properly document the code and gen-
erate API documentation. An extensive set of articles,
books, online documentation, newsgroups, and special
interest groups are available for Python and its ex-
tended set of libraries. Furthermore, a large number
of tools, such as pydoc, are available to generate API
documentation automatically, and to make it available
in a variety of formats, including web pages.

2.7 Flexible Licensing

To facilitate the use and distribution of pyOpt, both the
programming language and the framework should have
open-source licenses. Python is freely available and its
open-source license enables the modification and dis-
tribution of Python-based applications with almost no
restrictions.

3 Implementation

Abstract classes have been used throughout pyOpt to
facilitate reuse and extensibility. Figure 1 illustrates the
relationship between the main classes in the form of a
unified modeling language (UML) class diagram. The
class structure in pyOpt was developed based on the
premise that the definition of an optimization problem
should be independent of the optimizer. An optimiza-
tion problem is defined by the Optimization abstract
class, which contains class instances representing the
design variables, constraints, and the objective func-
tion. Similarly, optimizers are defined by the Optimizer
abstract class, which provides the methods necessary
to interact with and solve an optimization problem in-
stance. Each solution, as provided by a given optimizer
instance, is stored as a Solution class instance. The de-
tails for each class are discussed below, where all class
diagrams presented follow the standard UML represen-
tation (Arlow and Neustadt 2002).

3.1 Optimization Problem Class

Any nonlinear optimization problem (1) can be repre-
sented by the Optimization class. The attributes of
this class are the name of the optimization problem
(name), the pointer to the objective function (objfun),
and the dictionaries that contain the instances of each
optimization variable (variables), constraint (constraints),
and objective (objectives). Each design variable, con-
straint, and objective is defined with its own instance
to provide greater flexibility for problem reformulation.
The class provides methods that help set, delete and
list one or more variables, constraints and objectives in-
stances. For example, addCon instantiates a constraint
and appends it to the optimization problem constraints
set. The class also provides methods to add, delete, or
list any optimization problem solution that is stored in
the dictionary of solution instances (solutions).

The design variables are represented by the Variable
class. Attributes of the class include a variable name
(name), a variable type identifier (type), its current
value (value), as well as its upper and lower bounds
(upper and lower). Three different variable types can
be used: continuous, integer, and discrete. If a variable
type is continuous or discrete, the user-specified up-
per and lower bounds are used directly. If a variable is
defined as discrete, the user provides a set of choices
(choices) and the lower and upper bounds are auto-
matically set to represent the choice indices.

Similarly, the Constraint class allows the defini-
tion of equality and inequality constraints. The class
attributes include the constraint name (name), a type
identifier (type), and its value (value).

Finally, the Objective class is used to encapsulate
the objective function value.

3.1.1 Optimization Solution Class

For a given Optimization instance, the Solution class
stores information related to the optimum found by a
given optimizer. The class inherits from the Optimization
class, and hence it shares all attributes and methods
from Optimization. This allows the user to perform
automatic refinement of a solution with ease, where the
solution of one optimizer is used directly as the initial
point of another optimizer. Additional attributes of the
class include details from the solver and its solution,
such as the optimizer settings used, the computational
time, and the number of evaluations required to solve
the problem.

5

Function
Evaluation

O
ptim

ization

+ String nam
e

+ Pointer objfun
- Dictionary variables
- Dictionary objectives
- Dictionary constraints
- Dictionary solutions

+ __init__()
+ getVar()
+ addVar()
+ addVarG

roup()
+ setVar()
+ delVar()
+ getVarSet()
+ getO

bj()
+ addO

bj()
+ setO

bj()
+ delO

bj()
+ getO

bjSet()
+ getCon()
+ addCon()
+ addConG

roup()
+ setCon()
+ delCon()
+ getConSet()
+ solution()
+ getSol()
+ addSol()
+ setSol()
+ delSol()
+ getSolSet()
+ __str__()

G
radient

+ String m
ethod

+ String m
ode

+ Scalar step_size

+ __init__()
+ getG

rad()
+ getHess()

O
bjective

+ String nam
e

+ Scalar value

+ __init__()
+ ListAttributes()
+ __str__()

Variable

+ String nam
e

+ String type
+ Scalar value
+ Scalar lower
+ Scalar upper
+ Dictionary choices

+ __init__()
+ ListAttributes()
+ __str__()

Constraint

+ String nam
e

+ String type
+ Scalar value

+ __init__()
+ ListAttributes()
+ __str__()

Solution

+ String optim
izer

+ Scalar opt_tim
e

+ Scalar opt_evals
+ Dictionary opt_inform
+ Dictionary options_set
+ Boolean display_opt
+ Dictionary param

eters

+ __init__()
+ __str__()
+ write2file()

Solver

__solve__

0..*

O
ptim

izer

+ String nam
e

+ String category
+ Dictionary options
+ Dictionary inform

s

+ __init__()
+ __solve__()
+ __call__()
+ setO

ption()
+ getO

ption()
+ getInform

()
+ ListAttributes()
- _on_setO

ption()
- _on_getO

ption()
- _on_getInform

()

History

+ String filenam
e

+ String m
ode

+ __init__()
+ write()
+ read()
+ close()

N
1

N
1

N
1

N

0
1

Solver
Program

0..*

F
ig

.
1

p
y
O

p
t

cla
ss

rela
tio

n
sh

ip
s

U
M

L
d

ia
g
ra

m

6

3.2 Optimization Solver Class

All optimization problem solvers inherit from the Optimizer
abstract class. The class attributes include the solver
name (name), an optimizer type identifier (category),
and dictionaries that contain the solver setup parame-
ters (options) and message output settings (informs).
The class provides methods to check and change default
solver parameters (getOption, setOption), as well as
a method that runs the solver for a given optimization
problem (solve). As long as an optimization package
is wrapped with Python, this class provides a common
interface to interact with and solve an optimization
problem as defined by the Optimization class. When
the solver is instantiated, it inherits the Optimizer
attributes and methods and is initialized with solver-
specific options and messages. By making use of object-
oriented polymorphism, the class performs all the solver-
specific tasks required to obtain a solution. For exam-
ple, each solver requires different array workspaces to be
defined. Depending on the solver that is used, sensitiv-
ities can be calculated using the Gradient class. Once
a solution has been obtained, it can be stored as a so-
lution instance that is contained in the Optimization
class, maintaining the separation between the problem
being solved and the optimizer used to solve it. The
history of the solver optimization can also be stored in
the History class. A partially stored history can also
be used to enable a “warm-restart” of the optimization.

3.3 Optimization Solvers

A number of constrained optimization solvers are cur-
rently integrated into the framework. All these optimiz-
ers are designed to solve the general nonlinear optimiza-
tion problem (1). They include traditional gradient-
based optimizers, as well as gradient-free optimizers.
A brief description of each optimizer currently imple-
mented is presented below.

3.3.1 SNOPT

This is a sparse nonlinear optimizer written in Fortran
that is particularly useful for solving large-scale con-
strained problems with smooth objective functions and
constraints (Gill et al 2002). The algorithm consists of
a sequential quadratic programming (SQP) algorithm
that uses a smooth augmented Lagrangian merit func-
tion, while making explicit provision for infeasibility in
the original problem and in the quadratic programming
subproblems. The Hessian of the Lagrangian is approx-
imated using a limited-memory quasi-Newton method.

3.3.2 NLPQL

This is another sequential quadratic programming (SQP)
method that is also written in Fortran and solves prob-
lems with smooth continuously differentiable objective
function and constraints (Schittkowski 1986). The algo-
rithm uses a quadratic approximation of the Lagrangian
function and a linearization of the constraints. A quadratic
subproblem is formulated and solved to generate a search
direction. The line search can be performed with respect
to two alternative merit functions, and the Hessian ap-
proximation is updated by a modified BFGS formula.

3.3.3 SLSQP

This optimizer is a sequential least squares program-
ming algorithm (Kraft 1988). It is written in Fortran
and uses the Han–Powell quasi-Newton method with
a BFGS update of the B-matrix and an L1-test func-
tion in the step-length algorithm. The optimizer uses
a slightly modified version of Lawson and Hanson’s
NNLS nonlinear least-squares solver (Lawson and Han-
son 1974).

3.3.4 FSQP

This code, which is available in either C or Fortran,
implements an SQP approach that is modified to gen-
erate feasible iterates (Lawrence and Tits 1996). In ad-
dition to handling general single objective constrained
nonlinear optimization problems, the code is also capa-
ble of handling multiple competing linear and nonlin-
ear objective functions (minimax), linear and nonlinear
inequality constraints, as well as linear and nonlinear
equality constraints (Zhou and Tits 1996).

3.3.5 CONMIN

This optimizer implements the method of feasible direc-
tions in Fortran (Vanderplaats 1973). CONMIN solves
the nonlinear programming problem by moving from
one feasible point to an improved one by choosing at
each iteration a feasible direction and step size that
improves the objective function.

3.3.6 MMA/GCMMA

This is a Fortran implementation of the method of mov-
ing asymptotes (MMA). MMA uses a special type of
convex approximation (Svanberg 1987). For each step
of the iterative process, a strictly convex approximating
subproblem is generated and solved. The generation of
these subproblems is controlled by the so-called moving

7

asymptotes, which both stabilize and speed up the con-
vergence of the general process. A variant of the origi-
nal algorithm (GCMMA) has also been integrated into
the framework. The variant extends the original MMA
functionality and guarantees convergence to some local
minimum from any feasible starting point (Svanberg
1995).

3.3.7 KSOPT

This Fortran code reformulates the constrained prob-
lem into an unconstrained one using a composite Kreisselmeier–
Steinhauser objective function (Kreisselmeier and Stein-
hauser 1979) to create an envelope of the objective func-
tion and set of constraints (Wrenn 1989). The envelope
function is then optimized using a sequential uncon-
strained minimization technique (SUMT) (Fiacco and
McCormick 1968). At each iteration, the unconstrained
optimization problem is solved using the Davidon–Fletcher–
Powell (DFP) algorithm.

3.3.8 COBYLA

This is an implementation of Powell’s nonlinear derivative-
free constrained optimization that uses a linear approx-
imation approach (Powell 1994). The algorithm is writ-
ten in Fortran and is a sequential trust-region algo-
rithm that employs linear approximations to the ob-
jective and constraint functions, where the approxima-
tions are formed by linear interpolation at n+ 1 points
in the space of the variables and tries to maintain a
regular-shaped simplex over iterations.

3.3.9 SOLVOPT

This optimizer, which is available in either C or Fortran,
uses a modified version of Shor’s r-algorithm (Shor 1985)
with space dilation to find a local minimum of nonlin-
ear and non-smooth problems (Kuntsevich and Kappel
1997). The algorithm handles constraints using an ex-
act penalization method (Kiwiel 1985).

3.3.10 ALPSO

This is a parallel augmented Lagrange multiplier par-
ticle swarm optimizer developed in Python (Perez and
Behdinan 2007). It solves nonlinear non-smooth con-
strained problems using an augmented Lagrange mul-
tiplier approach to handle constraints. This algoritm
has been used in challenging constrained optimization
applications with multiple local optima, including the
aerostructural optimization of aircraft with non-planar
lifting surfaces (Jansen et al 2010). Other versions of

particle swarm algorithms have also been used to op-
timize aircraft structures (Venter and Sobieszczanski-
Sobieski 2004).

3.3.11 NSGA2

This optimizer is a non-dominating sorting genetic al-
gorithm developed in C++ that solves non-convex and
non-smooth single and multiobjective optimization prob-
lems (Deb et al 2002). The algorithm attempts to per-
form global optimization, while enforcing constraints
using a tournament selection-based strategy.

3.3.12 ALHSO

This Python code is an extension of the harmony search
optimizer (Geem et al 2001; Lee and Geem 2005) that
handles constraints. It follows an approach similar to
the augmented Lagrange multiplier approach used in
ALPSO to handle constraints.

3.3.13 MIDACO

This optimizer implements an extended ant colony op-
timization to solve non-convex nonlinear programming
problems(Schlüter et al 2009). The algorithm is writ-
ten in Fortran and handles constraints using an oracle
penalty method (Schlüter and Gerdts 2009).

3.4 Optimization Gradient Class

Some of the solvers described above use gradient in-
formation. The Gradient class provides a unified in-
terface for the gradient calculation. pyOpt provides an
implementation of the finite-difference method (default
setting) and the complex-step method (Martins et al
2003). The complex-step method is implemented auto-
matically by pyOpt for any code in Python; for other
programming languages, the user must implement the
method. pyOpt also allows users to define their own
sensitivity calculation, such as a semi-analytic adjoint
method or automatically differentiated code. A parallel
gradient calculation option can be used for optimiza-
tion problems with large numbers of design variables.
The calculation of the gradients for the various design
variables is distributed over different processors using
the message passing interface (MPI), and the Jacobian
is then assembled and sent to the optimizer.

8

3.5 Optimization History Class

When any of the Optimizer instances are called to solve
an optimization problem, an option to store the solu-
tion history can be used. This initializes an instance of
the History class, which has two purposes. The first
is to store all the data associated with each call to the
objective function. The data consists of the values for
the design variables, objective, constraints, and if appli-
cable, the gradients. The History class opens two files
when initialized: a binary file with the the actual data
and an ASCII file that stores the cues to that data.
The data is flushed immediately to the files at each
write call.

The second purpose of the History class is to al-
low the warm-restart of a previously interrupted opti-
mization, even when the actual optimization package
does not support it. The approach works for any deter-
ministic optimization algorithm and relies on the fact
that any deterministic algorithm will follow exactly the
same path when starting from the same point. If the
history file exists for previous a optimization that fin-
ished prematurely for some reason (due to a time limit,
or a convergence tolerance that was set to high), pyOpt
can restart the optimization using that history file to
provide the optimizer with the objective and constraint
values for all the points in the path that was previously
followed. Instead of recomputing the function values at
these points, pyOpt provides the previously computed
values until the end of the history. After the end of the
history has been reached, the optimization continues
with the new part of the path.

To allow quick access, the cue file is read in at the
initialization of the class. The position and number-
of-values cues are then used to read in the required
values, and only those values, from the binary file. The
optimizer can be called with options for both storing a
history and reading in a previous history. In this case
two instances of the history class are initialized, one in
write mode and one in read mode. If the same name is
used in both history files, the history instance in read
mode is only maintained until all its history data has
been read and used by the optimizer.

4 Examples

We illustrate the capabilities of pyOpt by solving four
different optimization problems. The first three prob-
lems involve explicit analytic formulations, while the
last problem is an engineering design example involv-
ing more complex numerical simulation.

4.1 Problem 1

This first example demonstrates the flexibility enabled
by maintaining independence between the optimization
problem and the optimization solver. The problem is
taken from the set of nonlinear programming exam-
ples by Hock and Schittkowski (Hock and Schittkowski
1981) and it is defined as,

min
x1,x2,x3

− x1x2x3

subject to x1 + 2x2 + 2x3 − 72 ≤ 0

− x1 − 2x2 − 2x3 ≤ 0

0 ≤ x1 ≤ 42

0 ≤ x2 ≤ 42

0 ≤ x3 ≤ 42.

(2)

The optimum of this problem is at (x∗1, x
∗
2, x

∗
3) = (24, 12, 12),

with an objective function value of f∗ = −3456, and
constraint values g (x∗) = (0,−72).

Figure 2 lists the source code for this example using
two optimizers. There are four major sections in the
code:

1. Import of the modules containing the optimization
problem and the solver classes

2. Definition of the objective function
3. Instantiation of the optimization problem object and

definition of the problem design variables, objective,
objective function, and constraints

4. Instantiation of the optimization solver objects, set-
ting of the solver options, and solution of the prob-
lem by the solvers

Each optimizer is instantiated with a set of default
options that work in most cases. This way, we maximize
the likelihood of success for less experienced optimiza-
tion practitioners. On the other hand, users that have
experience with a given optimizer can easily modify the
default set of options. In Figure 2 for example, the first
optimizer makes use of its default derivative estimation
(finite differences), while the second optimizer makes
use of the complex-step method (set by the “CS” input
flag). The outputs of the solution by the two sample
solvers are shown in Figure 3. Since all solvers share
the same Optimizer abstract class, the output format
of the results is standardized to facilitate interpretation
and comparison.

Since complete independence between the optimiza-
tion problem and the solvers is maintained, it is easy to
solve the same optimization problem instance with dif-
ferent optimizers. For example, Table 1 and Figure 4
show a comparison of the different optimization ap-
proaches currently implemented into the framework for

9

I m p o r t F r a m e w o r k M o d u l e

f r o m p y O p t _ o p t i m i z a t i o n i m p o r t O p t i m i z a t i o n

I m p o r t F r a m e w o r k O p t i m i z e r s

f r o m p y S N O P T i m p o r t S N O P T

f r o m p y N L P Q L i m p o r t N L P Q L

D e f i n e O p t i m i z a t i o n P r o b l e m O b j e c t i v e F u n c t i o n

d e f o b j f u n c (x) :
f = −x [0]∗ x [1]∗ x [2]
g = [0 . 0]∗ 2
g [0] = x [0] + 2.∗ x [1] + 2.∗ x [2] − 72 .0
g [1] = −x [0] − 2.∗ x [1] − 2.∗ x [2]
f a i l = 0
r e t u r n f , g , f a i l

I n s t a n t i a t e O p t i m i z a t i o n P r o b l e m

o p t _ p r o b = O p t i m i z a t i o n (’ H o c k a n d S c h i t t k o w s k i N L P P r o b l e m ’ ,
o b j f u n c)

D e f i n e P r o b l e m D e s i g n V a r i a b l e s (3 C o n t i n u o u s V a r i a b l e s)

o p t _ p r o b . a d d V a r G r o u p (’ x ’ ,3 , ’ c o n t i n u o u s ’ , l o w e r =0.0 ,
u p p e r =42.0 , v a l u e =10.0)

D e f i n e P r o b l e m O b j e c t i v e F u n c t i o n V a r i a b l e

o p t _ p r o b . a d d O b j (’ f ’)

D e f i n e P r o b l e m C o n s t r a i n t V a r i a b l e s

(2 I n e q u a l i t y C o n s t r a i n t s)

o p t _ p r o b . a d d C o n G r o u p (’ g ’ ,2 , ’ i n e q u a l i t y ’)

D i s p l a y D e f i n e d O p t i m i z a t i o n P r o b l e m

p r i n t o p t _ p r o b

I n s t a n t i a t e O p t i m i z e r s

s n o p t = S N O P T ()
n l p q l = N L P Q L ()

F i r s t O p t i m i z e r - S e t O p t i o n a n d S o l v e P r o b l e m

(F i n i t e D i f f e r e n c e s)

s n o p t . s e t O p t i o n (’ M a j o r f e a s i b i l i t y t o l e r a n c e ’ , 1 . 0 e−6)
s n o p t (o p t _ p r o b)
p r i n t o p t _ p r o b . s o l u t i o n (0)

S e c o n d O p t i m i z e r - S e t O p t i o n a n d S o l v e P r o b l e m

C o m p l e x - S t e p)

n l p q l . s e t O p t i o n (’ A c c u r a c y ’ , 1 . 0 e−6)
n l p q l (o p t _ p r o b , ’ C S ’)
p r i n t o p t _ p r o b . s o l u t i o n (1)

Fig. 2 Python source code that implements Problem 1

Problem 1. All optimizers started from the same ini-
tial point specified in the code (Figure 2). The conver-
gence criteria and settings for each optimizer vary, so
we tried to achieve the same level of convergence tol-
erance. Gradient-based methods calculated sensitivities
using the default finite-difference approach with a step
size of 10−6. Since an analytic solution can be obtained
for this example, the optimum solutions returned by the
different optimizers were compared to the exact one.
In Table 1, the comparison is made using an l2-norm
of the difference between the optimal design variables,
the objective function and constraint values, and their
corresponding exact values, i.e.,

ε̄x = ‖x∗ − xexact‖2
ε̄f = ‖f (x∗)− f (xexact)‖2
ε̄g = ‖g (x∗)− g (xexact)‖2

(3)

Similarly, the convergence histories for the various
optimizers are shown in Figure 4. The comparison met-
ric used here is the relative error of the objective func-
tion values, i.e.,

εf =
∥∥∥∥f (x∗)− f (xexact)

f (xexact)

∥∥∥∥
2

(4)

SNOPT Solution to Hock and Schittkowski NLP Problem

==

Objective Function: objfunc

Solution:

--

Total Time: 0.0310

Total Function Evaluations: 13

Lambda: [-144.0000003 0.0]

Sensitivities: FD

Objectives:

Name Value

f -3456.000000

Variables (c - continuous , i - integer , d - discrete):

Name Type Value Lower Bound Upper Bound

x1 c 23.999996 0.00e+000 4.20e+001

x2 c 12.000001 0.00e+000 4.20e+001

x3 c 12.000001 0.00e+000 4.20e+001

Constraints (e - equality , i - inequality):

Name Type Bound

g1 i -1.00e+021 <= 0.000000 <= 0.00e+000

g2 i -1.00e+021 <= -72.000000 <= 0.00e+000

--

NLPQL Solution to Hock and Schittkowski NLP Problem

==

Objective Function: objfunc

Solution:

--

Total Time: 0.0160

Total Function Evaluations: 8

Lambda: [-144.00 0.0]

Sensitivities: CS

Objectives:

Name Value

f -3456.000000

Variables (c - continuous , i - integer , d - discrete):

Name Type Value Lower Bound Upper Bound

x1 c 24.000003 0.00e+000 4.20e+001

x2 c 12.000000 0.00e+000 4.20e+001

x3 c 11.999999 0.00e+000 4.20e+001

Constraints (e - equality , i - inequality):

Name Type Bound

g1 i -1.00e+021 <= 0.000000 <= 0.00e+000

g2 i -1.00e+021 <= -72.000000 <= 0.00e+000

--

Fig. 3 Solution output of optimization Problem 1 for two differ-

ent optimizers: SNOPT and NLPQL

In Table 1 and Figure 4, we can see that for this con-
vex problem, the four SQP optimizers (SNOPT, NLPQL,
SLSQP, and FSQP) provide the most accurate solutions
for the specified convergence tolerance. The FSQP op-
timizer requires the largest number of evaluations of all
SQP approaches, since it generates a feasible point at
each iteration before solving the SQP subproblem. Sim-
ilarly to the SQP optimizers, the modified method of
feasible directions (CONMIN) and both versions of the
method of moving asymptotes (MMA and GCMMA)
provide accurate solutions with a low number of func-
tion evaluations. The other local gradient-based op-
timizer (KSOPT) solves the problem using a SUMT
approach with a composite objective function, leading
to more function evaluations and reduced accuracy in
the solution. The gradient-free locally constrained op-
timizers (COBYLA, and SOLVOPT) require a larger
number of function evaluations relative to the gradient-
based optimizers. As expected, the gradient-free con-
strained global optimization approaches take a signifi-
cantly larger number of function evaluations. However
it is worth noting that ALPSO finds the optimum solu-
tion with a good degree of accuracy, while requiring a
significantly fewer evaluations than other gradient-free
algorithms.

10

Table 1 Comparison of solutions for Problem 1

Solver fevals εf ε̄f ε̄x ε̄g

SNOPT 26 2.8948e-14 6.1845e-11 3.9170e-6 4.4409e-16

NLPQL 19 2.8948e-14 2.0171e-7 1.3159e-4 8.5650e-10

SLSQP 32 2.8948e-14 7.1917e-6 7.2722e-8 7.0629e-8

FSQP 112 2.2204e-16 1.3642e-12 1.8364e-8 4.4409e-16
CONMIN 29 2.2204e-16 3.5016e-11 6.4512e-8 3.4165e-13

MMA 13 2.2204e-16 4.0164e-8 1.7463e-6 3.9456e-10

GCMMA 14 2.2204e-16 1.3816e-6 3.0437e-4 1.7208e-8
KSOPT 2648 6.6359e-4 9.4230e-1 2.8081e-3 9.2547e-3

COBYLA 112 2.2204e-16 6.3664e-12 7.5885e-7 4.4409e-16

SOLVOPT 201 2.7777e-7 4.8339e-5 1.3612e-3 3.4287e-7
ALPSO 4600 2.3148e-7 7.9805e-4 3.9254e-3 6.7994e-6

NSGA2 150000 1.0602e-3 3.6636 5.5472e-1 2.4889e-6

ALHSO 39384 9.6354e-4 3.3253 8.5523e-1 8.9124e-5
MIDACO 15000 1.6297e-2 5.6322e+1 3.8072 1.4091e-4

100 101 102 103 104 105

Iteration

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

ε f

SNOPT

NLPQL

SLSQP

FSQP

CONMIN

MMA

GCMMA

KSOPT

COBYLA

SOLVOPT

ALPSO

NSGA2

ALHSO

MIDACO

Fig. 4 Comparison of convergence histories for Problem 1

4.2 Problem 2

In this example, we show how optimizer instances can
be reused multiple times to solve different optimization
problems. To illustrate this capability, we analyze the
effect of changing the number of design variables for the
various gradient-based optimizers currently available in
pyOpt. The optimization problem is the classic general-
ized Rosenbrock’s function (Rosenbrock 1960; De Jong
1975; Schittkowski 1987) modified by the authors to
include an n-dimensional constraint, i.e.,

min
xi

n−1∑
i=1

(
100(xi2 − xi+1)2 + (1− xi)2

)
subject to

n−1∑
i=1

(
0.1− (xi − 1)3 − (xi+1 − 1)

)
≤ 0

− 5.12 ≤ xi ≤ 5.12, i = 1, . . . , n

(5)

where the constraint is active at the optimum.

Similarly to the first example, all optimizers started
from the same initial point, (x1, . . . , xn) = (4, . . . , 4),
and use their default options. Sensitivities were com-
puted using the complex-step derivative approximation
with a step size of 10−20. Figures 5 and 6 show a com-
parison of the relative error in the optimum objective
function (4) and in the optimum design variable values
for the different optimizers versus the number of design
variables in the problem. Comparisons of all gradient-
based and gradient-free optimizers are made with re-
spect to the solution obtained by a reference optimizer
(SNOPT). Similarly, Figure 7 shows a comparison of
the total number of objective function evaluations re-
quested by each optimizer for increasing dimensionality
of the problem described by Equation (5). For gradient-
based optimizers, analytic gradients are provided with
each function evaluation. All optimizers find the prob-
lem optimum while maintaining a good degree of ac-
curacy. The variation in accuracy between the different
results is due to the difference in the convergence cri-
teria used by each optimizer. All SQP based optimiz-
ers, NLPQL, SLSQP and FSQP, provide good solution
accuracy when compared to SNOPT, while maintain-
ing the same degree of relative error at higher dimen-
sionality. This comes at the expense of larger number
of function evaluations as the dimensionality increases.
The sequential linear approach used by the SLSQP op-
timizer starts to suffer from degraded convergence ac-
curacy beyond a dimensionality of 100. The CONMIN
optimizer seems to be less accurate when compared to
SNOPT, with a significant loss of accuracy for more
than 50 design variables. For both moving asymptote
based algorithms (MMA and GCMMA), a consistent
level of accuracy per required number of evaluations can
be observed regardless of the problem dimensionality.
In the case of KSOPT, accuracy of the solution seems

11

to improve slightly with increased problem dimension-
ality. However, the number of required function eval-
uations increases significantly. For lower problem di-
mensionality, both gradient-free optimizers (COBYLA,
SOLVOPT) maintain a constant number of evaluations
and accuracy level until the problem dimensionality
reaches 50, above which significant accuracy degrada-
tion and increase in number of evaluations can be ob-
served. When compared to other accurate optimizers,
SNOPT shows a less pronounced increase in number
function evaluations versus dimensionality.

100 101 102 103 104

Problem Dimensionality, n

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

ε f

NLPQL

SLSQP

FSQP

CONMIN

MMA

GCMMA

KSOPT

COBYLA

SOLVOPT

Fig. 5 Objective function accuracy versus dimensionality of

Problem 2

100 101 102 103 104

Problem Dimensionality, n

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

ε̄ x

NLPQL

SLSQP

FSQP

CONMIN

MMA

GCMMA

KSOPT

COBYLA

SOLVOPT

Fig. 6 Design variable accuracy versus dimensionality of Prob-
lem 2

100 101 102 103 104

Problem Dimensionality, n

101

102

103

104

105

106

107

Fu
n
ct

io
n
 E

v
a
lu

a
ti

o
n
s

NLPQL

SLSQP

FSQP

CONMIN

MMA

GCMMA

KSOPT

COBYLA

SOLVOPT

SNOPT

Fig. 7 Number of function evaluations versus dimensionality of

Problem 2

4.2.1 Optimizers Paths

The behavior of different optimizers when solving Prob-
lem (5) in two dimensions is shown in Figure 8. The
optimization paths of each optimizer for three different
starting points are shown along with the total number
of function evaluations.

All SQP approaches (SNOPT, NLPQL, SLSQP, and
FSQP) follow similar paths. When starting rom the fea-
sible starting point, they follow the narrow valley of the
Rosenbrock function toward the optimum. Wen start-
ing from the infeasible starting points, both SNOPT
and NLPQL show backtracking, with NLPQL moving
to the upper bound of the design variables in its first
step. The FSQP algorithm moves into the feasible de-
sign space in its first iteration since it enforces feasi-
bility at each iteration. From all three starting points,
MMA quickly moves towards the design variable upper
bounds, and then slowly follows the function valley. For
all three starting points, the initial steps of GCMMA
and CONMIN follow a path that seems influenced by
the steepest descent direction at the starting point. For
the infeasible starting points, CONMIN rapidly reaches
the feasible region and then moves near the edge of the
constraint until it reaches the function valley, where it
slowly descends towards the optimum. When starting
from the feasible starting point, KSOPT, COBYLA,
and SOLVOPT follow the narrow valley toward the op-
timum. COBYLA requires the largest number of func-
tion evaluations. When starting from the infeasible start-
ing points, KSOPT and SOLVOPT do some backtrack-
ing, while COBYLA follows a similar descent direction
toward the optimum as CONMIN and GCMMA.

12

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 801
Start Point (-3.0,3.0), fevals: 63
Start Point (-3.0,-3.0), fevals: 72

(a) SNOPT

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 90
Start Point (-3.0,3.0), fevals: 58
Start Point (-3.0,-3.0), fevals: 34

(b) NLPQL

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 90
Start Point (-3.0,3.0), fevals: 57
Start Point (-3.0,-3.0), fevals: 42

(c) SLSQP

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 123
Start Point (-3.0,3.0), fevals: 112
Start Point (-3.0,-3.0), fevals: 96

(d) FSQP

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 754
Start Point (-3.0,3.0), fevals: 134
Start Point (-3.0,-3.0), fevals: 3437

(e) CONMIN

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 6269
Start Point (-3.0,3.0), fevals: 7393
Start Point (-3.0,-3.0), fevals: 6236

(f) MMA

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 11245
Start Point (-3.0,3.0), fevals: 3255
Start Point (-3.0,-3.0), fevals: 7136

(g) GCMMA

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 707
Start Point (-3.0,3.0), fevals: 699
Start Point (-3.0,-3.0), fevals: 660

(h) KSOPT

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 66819
Start Point (-3.0,3.0), fevals: 2145
Start Point (-3.0,-3.0), fevals: 604

(i) COBYLA

6 4 2 0 2 4 6
x1

6

4

2

0

2

4

6

x
2

Start Point (4.0,4.0), fevals: 370
Start Point (-3.0,3.0), fevals: 314
Start Point (-3.0,-3.0), fevals: 282

(j) SOLVOPT

Fig. 8 Optimizer paths for Problem 2 with n = 2

4.3 Problem 3

In this example, we show how the object-oriented de-
sign of pyOpt can be used to enhance the capabilities
available to the optimization practitioner. Many opti-
mization problems have multiple local minima and non-
convex design spaces. Consider for example, the follow-

ing modification of the unconstrained problem origi-
nally defined by Bersini et al. (Bersini et al 1996), to

13

which we added a constraint,

min
x1,x2

−
5∑
k=1

ck exp

(
− 1
π

2∑
i=1

(xi − aki)2
)

cos

(
π

2∑
i=1

(xi − aki)2
)

s.t.


20.04895−

(
(x1 + 2)2 + (x1 + 1)2

)
≤ 0

− 2 ≤ x1 ≤ 10

− 2 ≤ x2 ≤ 10,

(6)

where,

a =
[
3 5 2 1 7
5 2 1 4 9

]
c =

[
1 2 5 2 3

] (7)

Figure 9 shows the unconstrained design space for
this problem. A large number of local optima exists
and the global optimum is at (x∗1, x

∗
2) = (2.003, 1.006),

where the function value is f∗ = −5.1621 and the con-
straint is active.

Fig. 9 Contour plot for optimization Problem 3, showing the

inequality constraint.

The utility of gradient-based optimizers for this type
of problem is severely limited. The strategy we used to
solve this type of problem is to find the probable global
minimum using constrained global optimizers such as
ALPSO and NSGA2, and then refine the solution by
using a gradient-based optimizer. With most optimiza-
tion software, this refinement requires the preparation
of two optimization inputs for the two optimizers, and
extensive scripting. In a typical scenario for the second
optimizer that provides a solution refinement, the opti-
mum values obtained by the first optimizer have to be

manually processed and used to produce a new input
file. With pyOpt, the optimization solution is inherited
directly from the optimization problem class, sharing all
its attributes and properties. Inheritance allows us to
directly pass the solution of one optimizer and make it
the initial point of another. Figure 10 shows the source
code that implements this strategy for the solution of
the problem stated in Equation (6). Following the class
inheritance, the refinement results are stored as a so-
lution of the first optimizer. With this nesting of solu-
tions, multiple levels of refinement are possible.

I m p o r t F r a m e w o r k M o d u l e

f r o m p y O p t _ o p t i m i z a t i o n i m p o r t O p t i m i z a t i o n

I m p o r t F r a m e w o r k O p t i m i z e r s

f r o m p y A L P S O i m p o r t A L P S O

f r o m p y S N O P T i m p o r t S N O P T

D e f i n e O p t i m i z a t i o n P r o b l e m O b j e c t i v e F u n c t i o n

d e f o b j f u n c (x) :
a = [3 , 5 , 2 , 1 , 7]
b = [5 , 2 , 1 , 4 , 9]
c = [1 , 2 , 5 , 2 , 3]
f = 0.0
f o r i i n x r a n g e (5) :

f += −(c [i]∗ e x p (−(1/ p i)∗ ((x [0]− a [i])∗∗2 + \
(x [1]− b [i])∗∗2))∗ c o s (p i ∗((x [0]− a [i])∗∗2 + \
(x [1]− b [i])∗∗2)))

e n d

g = [0 . 0]∗ 1
g [0] = 20.04895 − (x [0]+2 .0)∗∗2 − (x [1]+1 .0)∗∗2
f a i l = 0
r e t u r n f , g , f a i l

I n s t a n c i a t e O p t i m i z a t i o n P r o b l e m

o p t _ p r o b = O p t i m i z a t i o n (’ L a n g e r m a n n M u l t i m o d a l P r o b l e m ’ ,
o b j f u n c)

D e f i n e P r o b l e m D e s i g n V a r i a b l e s (3 C o n t i n u o u s V a r i a b l e s)

o p t _ p r o b . a d d V a r G r o u p (’ x ’ ,2 , ’ c o n t i n u o u s ’ , l o w e r =−2.0,
u p p e r =10.0)

D e f i n e P r o b l e m O b j e c t i v e F u n c t i o n V a r i a b l e

o p t _ p r o b . a d d O b j (’ f ’)

D e f i n e P r o b l e m C o n s t r a i n t V a r i a b l e s

(1 I n e q u a l i t y C o n s t r a i n t)

o p t _ p r o b . a d d C o n (’ g ’ , ’ i n e q u a l i t y ’)

D i s p l a y D e f i n e d O p t i m i z a t i o n P r o b l e m

p r i n t o p t _ p r o b

I n s t a n c i a t e O p t i m i z e r s

a l p s o = A L P S O ()
s n o p t = S N O P T ()

S o l v e P r o b l e m w i t h C o n s t r a i n e d G l o b a l O p t i m i z e r

a l p s o (o p t _ p r o b)
p r i n t o p t _ p r o b . s o l u t i o n (0)

R e f i n e S o l u t i o n U s i n g L o c a l G r a d i e n t - B a s e d O p t i m i z e r

s n o p t (o p t _ p r o b . s o l u t i o n (0))
p r i n t o p t _ p r o b . s o l u t i o n (0) . s o l u t i o n (0)

Fig. 10 Python source code that implements the automatic re-

finement for Problem 3

Table 2 and Figure 11 show a comparison of two
optimization refinement cases used to solve Problem 3.
The first case, whose source code is listed in Figure 10,
uses the ALPSO as the gradient-free global optimizer,
while the second case uses NSGA2. Both cases are au-
tomatically refined in the second stage using SNOPT.
Both ALPSO and NSGA2 use the same population
size (40). To maintain uniformity in the comparison,
the total number of generations allowed for the NSGA2
is specified so that the number of function evaluations
match those required by the ALPSO algorithm to find

14

a solution. As seen in the results, both gradient-free
global optimizers are able to successfully find the re-
gion containing the global minimum. The ALPSO op-
timizer provides a solution with lower absolute error
than NSGA2. SNOPT is able to further refine the solu-
tion obtained and achieve the required accuracy in both
cases. Note that the solution refinement is not limited
to the strategy we used. Different refinement strategies
are possible, combining any of the optimizers in pyOpt.

0 200 400 600 800 1000 1200 1400 1600 1800
Cumulative Function Evaluations

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ε f

ALPSO

SNOPT (ALPSO Refinement)

NSGA2

SNOPT (NSGA2 Refinement)

Fig. 11 Convergence histories for the automatic refinement so-
lution of Problem 3

4.4 Problem 4

In this final example, the capability to parallelize the
gradient computation is shown in the aerostructural de-
sign of the wing for a medium-range commercial air-
craft (Jansen et al 2010). Medium-fidelity aerodynamic
and structural analyses are used (Chittick and Mar-
tins 2008; Poon and Martins 2007). Aerodynamic forces
and moments are computed by a vortex-lattice panel
method with added estimates for viscous drag and tran-
sonic compressibility effects (Jansen et al 2010). The
panel method forms and solves the following system:

AΓ − b = 0, (8)

where A is the aerodynamic influence coefficient ma-
trix, Γ is the vector of panel circulations, and b is the
boundary condition vector given by the flight conditions
and the wing twist distribution. Structural deflections,
stresses, and weight are computed using an equivalent
beam finite-element model of the aircraft wingbox. The
structural analysis is governed by the following equa-
tion:

Ku− f = 0, (9)

where K is the stiffness matrix of the structure, u is
the nodal displacement vector, and f is the vector of
external nodal forces.

These two systems of equations are coupled through
b, which depends on u, and through f , which is a func-
tion of Γ . The simultaneous solution of the linear sys-
tems (8) and (9), which defines the state of the aerostruc-
tural system, is obtained by a block Gauss–Seidel iter-
ation. A more detailed description of these models is
provided in Jansen et al. (Jansen et al 2010).

The goal of the optimization is to minimize the take-
off weight, WTO, while ensuring that the aircraft meets
a specified design range and making sure that the struc-
tural stresses at the maneuver condition does not ex-
ceed the yield stress. The aerostructural optimization
problem as shown in Figure 12 is formulated as follows:

min
α,αmvr,γ,tj

WTO

s.t.



L = Wi

CLmvr

CLcruise

= 2.5

1.5σj |CLmvr
≤ σyield

− 15 ≤ α ≤ 15

− 15 ≤ γ ≤ 15

0.06 ≤ tj ≤ Rj

(10)

where α and αmvr are the aircraft angles of attack at
the cruise and maneuver conditions, respectively, and γ
is the tip twist angle. The wall thicknesses of the beam
elements are represented by tj , where j = 1, . . . , nelems.
These thicknesses are prevented from exceeding the ra-
dius of the beam, Rj , and have a lower bound corre-
sponding to the minimum gauge thickness. The aircraft
weight depends on the structural weight of the wing
and the weight of the fuel required to meet the speci-
fied range. The lift is constrained to match the weight
of the aircraft at cruise, Wi. The stresses of the beam
elements are calculated at the structurally critical 2.5g
pull-up maneuver condition and are constrained to be
equal to or lower than the yield stress of the material
with a 1.5 safety factor.

The maximum number of processors that can be
used in the parallel gradient computation depends on
the number of design variables in the optimization prob-
lem. This is due to the processor management approach,
which statically allocates the gradient computation of
each individual design variable to the available proces-
sors. The aerostructural optimization problem is solved
using SNOPT, with gradients computed in parallel by a
SiCortex SC072-PDS computer. The wing is discretized
using 29 elements resulting in 32 design variables, and
hence a maximum of 32 processors are used. The op-

15

Table 2 Automatic refinement solutions for optimization Problem 3

Solver fevals εf ε̄f ε̄x ε̄g

Case 1

ALPSO 1720 4.6749e-7 2.4132e-6 3.2809e-4 1.8079e-3
SNOPT Refinement 8 2.8014e-12 1.4461e-11 1.9884e-8 4.4409e-16

Case 2

NSGA2 1720 1.9971e-5 1.0309e-4 2.3613e-3 2.1151e-2
SNOPT Refinement 8 7.5309e-13 3.8876e-12 1.2599e-9 4.4409e-16

O ptim izer

Aerodynam ic Solver Structural Solver

f

u

α, αm vr, γ tj

 W M TO ,W i ,σj L ,C L,m vr ,C L,cru ise

M ulti-D isc ip lina ry

A na lys is

XY

Z

XY

Z

Fig. 12 Aerostructural design optimization problem

timization parallel gradient implementation speed-up
and efficiencies are shown in Figures 13(a) and 13(b),
respectively.

The ideal speed-up and efficiency of a parallel com-
putation are given by Amdahl’s law. The portion of the
algorithm that can be parallelized, which corresponds
to the gradient computation, was estimated to be 89%
of the total execution time. Due to the static processor
allocation, the efficiency of the parallel gradient calcula-
tion is significantly reduced when the number of design
variables is not an integer multiple of the number of
processors used. This results in the steps exhibited by
the speed-up graph. For 8, 12, 16, and 32 processors the
speed-up and efficiency is close to the theoretical max-
imum, while between those numbers, the increase in
processors provides little improvement. This trend be-
comes even more pronounced as the number of proces-
sors increases. Beyond 16 processors, the performance
deteriorates with increasing number of processors up to
32 processors, where performance closely matches the
theoretical maximum again.

The optimal lift and stress distributions obtained for
the aerostructural optimization problem are shown in

0 5 10 15 20 25 30 35
Number of Processors

1

2

3

4

5

6

7

P
a
ra

lle
l
S
p
e
e
d
 U

p

Parallel Gradient Calculation
Theoretical Maximum

(a) Parallel Speed-Up

0 5 10 15 20 25 30 35
Number of Processor

10

20

30

40

50

60

70

80

90

P
a
ra

lle
l
E
ff

ic
ie

n
cy

 [
%

]

Parallel Gradient Calculation
Theoretical Maximum

(b) Parallel Efficiency

Fig. 13 Parallel gradient calculations performance for Problem 4

Figures 14(a) and 14(b), respectively. The optimal lift
distribution shows the shift of the lift towards the root,
which alleviates the bending moment in the wing and
enables a reduction in structural weight. This shift in
loading is slightly more pronounced in the structurally
critical maneuver condition. At the cruise condition, a
more elliptical distribution is favored in order to im-

16

prove the aerodynamic performance. The elements of
the beam are fully stressed at the maneuver condition
to minimize the structural weight.

0.0 0.2 0.4 0.6 0.8 1.0
Spanwise Location

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

c l
c

C
L
c r
ef

elliptical

CL,cruise

CL,mvr

(a) Lift Distribution

0 5 10 15 20 25 30
Spanwise Element

0

10

20

30

40

50

60

70

80

v
o
n
 M

is
e
s

S
tr

e
ss

 [
ks

i]

Cruise
Maneuver
Yield Stress

(b) Stress Distribution

Fig. 14 Results for Problem 4

5 Summary

In this article, we presented pyOpt: a flexible object-
oriented framework developed in Python to solve non-
linear constrained optimization problems using a num-
ber of existing optimization packages. The framework
design makes extensive use of object-oriented features,
such as abstract classes, common interfaces, and logical
hierarchical structures. This enables consistent and in-
tuitive constructs that help in the solution of optimiza-
tion problems and the use of different optimization al-
gorithms. Since the optimization problem is kept sepa-

X

0
5

10
15

20
25

30
35

Y

0
5

10
15

20
25

30
35

40
45

50
55

60
65

Z

-2

0

2

4

6

8

ManeuverUndeformed C ruis e

Fig. 15 Optimized wing geometry for Problem 4, showing jig

shape and deformed shapes for both the cruise and maneuver
conditions, with dimensions in feet.

rate from the optimization algorithms, a large degree of
flexibility is provided to both users and developers alike.
Users and developers can currently take advantage of
the solvers already integrated into the framework, as
well as history storage, warm-restart, and parallel gra-
dient computation capabilities. The four example prob-
lems demonstrate the simplicity and power of pyOpt
in formulating, solving, and refining optimization prob-
lems, as well as in using and comparing optimization
solvers. While pyOpt is still in development, it will be
made available as an open source project that provides
a simple but powerful platform for optimization.

References

(2007) TANGO Project: Trustable Algorithms for Nonlinear Gen-
eral Optimization. URL http://www.ime.usp.br/ egbirgin/-
tango/

Arlow J, Neustadt I (2002) UML and the Unified Process: Prac-

tical Object-Oriented Analysis and Design. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA

Beazley DM (2006) Python Essential Reference, 3rd edn. Sams
Publishing, Indianapolis, IN

Bersini H, Dorigo M, Langerman S, Geront G, Gambardella L

(1996) Results of the first international contest on evolution-
ary optimisation (1st ICEO). In: IEEE International Confer-

ence on Evolutionary Computation, pp 611–615

Bisschop J, Roelofs M (2008) AIMMS — User’s guide. Tech. rep.,
Paragon Decision Technology, Haarlem, The Netherlands

Blezek D (1998) Rapid prototyping with SWIG. C/C++ Users

Journal 16(11):61–65
Chittick IR, Martins JRRA (2008) Aero-structural optimization

using adjoint coupled post-optimality sensitivities. Structural

and Multidisciplinary Optimization 36(1):59–77
Dahl J, Vandenberghe L (2008) CVXOPT: Python Soft-

ware for Convex Optimization, Documentation. URL
http://abel.ee.ucla.edu/cvxopt/

De Jong KA (1975) An analysis of the behavior of a class of

genetic adaptive systems. PhD thesis, University of Michigan
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: NSGA-II. Evolution-

17

ary Computation, IEEE Transactions on 6(2):181–197, DOI
10.1109/4235.996017

Eldred MS, Brown SL, Adams BM, Dunlavy DM, Gay DM,

Swiler LP, Giunta AA, Hart WE, Watson JP, Eddy JP,
Griffin JD, Hough PD, Kolda TG, Martinez-Canales ML,

Williams PJ (2007) DAKOTA, a multilevel parallel object-
oriented framework for design optimization, parameter esti-

mation, uncertainty quantification, and sensitivity analysis:

Version 4.0 users manual. Technical Report SAND 2006-6337,
Sandia National Laboratories

Fiacco AV, McCormick GP (1968) Nonlinear Programming: Se-

quential Unconstrained Minimization Techniques. John Wi-
ley, New York

Fourer R, Gay DM, Kernighan BW (2003) AMPL: A Mod-

elling Language for Mathematical Programming, 2nd edn.
Brooks/Cole–Thomson Learning, Pacific Grove, CA

Friedlander M, Orban D (2008) NLpy: Nonlinear Programming

in Python. URL http://nlpy.sourceforge.net/index.html
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic op-

timization algorithm: Harmony search. Simulation 76:60–68,
DOI 10.1177/003754970107600201

Gill PE, Murray W, Saunders MA (2002) SNOPT: An

SQP algorithm for large-scale constrained optimization.
SIAM Journal on Optimization 12:979–1006, DOI

10.1137/S0036144504446096

Hart W (2009) Operations Research and Cyber-Infrastructure,
Springer, chap Python Optimization Modeling Objects (Py-

omo), pp 3–19

Hock W, Schittkowski K (1981) Test Examples for Nonlinear Pro-
gramming Codes, Lecture Notes in Economics and Mathe-

matical Systems, vol 187. Springer

Holmström K, Göran A, Edvall M (2010) User’s Guide
for TOMLAB 7. TOMLAB Optimization AB, URL

http://www.tomlab.biz
Jacobs J, Etman L, van Keulen F, Rooda J (2004) Framework for

sequential approximate optimization. Structural and Multi-

disciplinary Optimization 27:384—400, DOI 10.1007/s00158-
004-0398-8

Jansen P, Perez R, Martins J (2010) Aerostructural optimiza-

tion of nonplanar lifting surfaces. AIAA Journal of Aircraft
47(5):1490–1503, DOI 10.2514/1.44727

Jones E, Oliphant T, Peterson P, et al (2001) SciPy: Open Source

Scientific Tools for Python. URL http://www.scipy.org
Kiwiel KC (1985) Methods of descent for nondifferentiable op-

timization. In: Lecture Notes in Mathematics, vol 1133,

Springer-Verlag, Berlin
Kraft D (1988) A software package for sequential quadratic

programming. Tech. Rep. DFVLR-FB 88-28, DLR German
Aerospace Center — Institute for Flight Mechanics, K oln,
Germany

Kreisselmeier G, Steinhauser R (1979) Systematic control design
by optimizing a vector performance index. In: IFAC Sympo-

sium on Computer-Aided Design of Control Systems, Inter-

national Federation of Active Controls, Zurich, Switzerland
Kroshko DK (2010) OpenOpt. URL http://openopt.org
Kuntsevich A, Kappel F (1997) SolvOpt manual: The solver for

local nonlinear optimization problems. Tech. rep., Institute
for Mathematics, Karl-Franzens University of Graz, Graz,

Autria

Langtangen HP (2008) Python Scripting for Computational Sci-
ence, Texts in Computational Science and Engineering, vol 3,
3rd edn. Springer

Lawrence CT, Tits AL (1996) Nonlinear equality constraints
in feasible sequential quadratic programming. Optimization

Methods and Software 6:265–282

Lawson CL, Hanson RJ (1974) Solving Least Square Problems.
Prentice-Hall, Englewood Cliffs, N.J.

Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for

continuous engineering optimization: Harmony search theory
and practice. Computer Methods in Applied Mechanics and

Engineering 194:3902–3933, DOI 10.1016/j.cma.2004.09.007

Lofberg J (2004) YALMIP: A toolbox for modeling and optimiza-
tion in MATLAB. In: CACSD Conference, Taipei, Taiwan

Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-

step derivative approximation. ACM Transactions
on Mathematical Software 29(3):245–262, DOI

http://doi.acm.org/10.1145/838250.838251

Meza JC (1994) OPT++: An object oriented class library for
nonlinear optimization. Technical Report SAND 1994-8225,

Sandia National Laboratories

Meza JC, Oliva RA, Hough PD, Williams PJ (2007) OPT++:
An object oriented toolkit for nonlinear optimization. ACM

Transactions on Mathematical Software 33(2):12:1–12:27,
DOI 10.1145/1236463.1236467

Mitchell S (2009) puLP: An LP modeler in Python, Documenta-

tion. URL https://www.coin-or.org/PuLP/
Moré JJ, Wright SJ (1993) Optimization Software Guide. SIAM

Publications

Oliphant TE (2007) Python for scientific computing. Computing
in Science and Engineering 9(3):10–20

Perez R, Behdinan K (2007) Swarm Intelligence: Focus on Ant

and Particle Swarm Optimization, 1st edn, International
Journal of Advanced Robotic Systems, chap Particle Swarm

Optimization in Structural Design, pp 373–394. ISBN 978-3-

902613-09-7
Peterson P, Martins JJRA, Alonso JJ (2001) Fortran to Python

interface generator with an application to aerospace engineer-
ing. In: 9th International Python Conference, Long Beach,

California

Poon NMK, Martins JRRA (2007) An adaptive approach to con-
straint aggregation using adjoint sensitivity analysis. Struc-

tural and Multidisciplinary Optimization 30(1):61–73

Powell MJD (1994) Advances in Optimization and Numerical
Analysis, Kluwer Academic, Dordrecht, chap A direct search

optimization method that models the objective and con-

straint functions by linear interpolation, pp 51–67
Rosenbrock HH (1960) An automatic method for finding the

greatest or least value of a function. Computer Journal 3:175–

184
Rosenthal RE (2008) GAMS — A user’s guide. Tech. rep., GAMS

Development Corporation, Washington, DC, USA
Schittkowski K (1986) NLPQL: A Fortran subroutine for solv-

ing constrained nonlinear programming problems. Annals of

Operations Research 5(2):485–500
Schittkowski K (1987) More test problems for nonlinear program-

ming codes. Lecture Notes in Economics and Mathematical
Systems 282

Schlüter M, Gerdts M (2009) The oracle penalty method. Journal

of Global Optimization 47(2):293–325, DOI 10.1007/s10898-

009-9477-0
Schlüter M, Egea J, Banga J (2009) Extended ant colony op-

timization for non-convex mixed integer nonlinear program-
ming. Computers and Operations Research 36(7):2217–2229

Shor N (1985) Minimization methods for non-differentiable func-

tions. In: Springer Series in Computational Mathematics,
vol 3, Springer-Verlag, Berlin

Svanberg K (1987) The method of moving asymptotes — A new

method for structural optimization. International Journal
for Numerical Methods in Engineering 24(2):359–373, DOI

10.1002/nme.1620240207

18

Svanberg K (1995) A globally convergent version of MMA with-
out linesearch. In: First World Congress of Structural and

Multidisciplinary Optimization, Goslar, Germany

Vanderplaats GN (1973) CONMIN — A Fortran program for
constrained function minimization. Technical Memorandum

TM X-62282, NASA Ames Research Center, Moffett Field,
California

Venter G, Sobieszczanski-Sobieski J (2004) Multidisciplinary op-

timization of a transport aircraft wing using particle swarm
optimization. Structural and Multidisciplinary Optimiza-

tion 26:121–131, URL http://dx.doi.org/10.1007/s00158-

003-0318-3, 10.1007/s00158-003-0318-3
Wrenn G (1989) An indirect method for numerical optimiza-

tion using the Kreisselmeier–Steinhauser function. Contrac-

tor Report NASA CR-4220, NASA Langley Research Center,
Hampton, VA

Xu E (2009) pyIPOpt: An IPOPT connector to Python. URL

http://code.google.com/p/pyipopt/
Zhou JL, Tits AL (1996) An SQP algorithm for finely discretized

continuous minimax problems and other minimax problems
with many objective functions. SIAM Journal on Optimiza-

tion 6(2):461–487

