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Abstract Constraint aggregation is the key for efficient
structural optimization when using a gradient-based opti-
mizer and an adjoint method for sensitivity analysis. We
explore different methods of constraint aggregation for
numerical optimization. We analyze existing approaches,
such as considering all constraints individually, taking the
maximum of the constraints and using the Kreisselmeier–
Steinhauser (KS) function. A new adaptive approach based
on the KS function is proposed that updates the aggregation
parameter by taking into account the constraint sensitivity.
This adaptive approach is shown to significantly increase the
accuracy of the results without additional computational cost
especially when a large number of constraints are active at the
optimum. The characteristics of each aggregation method and
the performance of the proposed adaptive approach are shown
by solving a wing structure weight minimization problem.

Keywords Constraint aggregation · Constraint handling ·

Adjoint sensitivity analysis · Kreisselmeier–Steinhauser
function · Adaptive constraint aggregation

1 Introduction

For most engineering problems, design constraints are neces-
sary and must be taken into account during the optimization.
When considering large numbers of constraints, however, the
computational cost of numerical optimization increases, and
the convergence behavior is affected. In large-scale prob-
lems such as the multidisciplinary design optimization of
aircraft, approaches are needed to minimize these effects to
obtain the optimum in reasonable time with adequate ac-
curacy. For problems with large numbers of design vari-
ables, only gradient-based algorithms, such as sequential
quadratic programming (SQP), that utilize both function
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value and function gradient exhibit an acceptable conver-
gence rate. When using gradient-based algorithms, the cal-
culation of the objective function and constraint gradients
can be the most time-consuming step in the optimiza-
tion cycle depending on which method is used to estimate
the gradient. The computation of the gradient can be per-
formed efficiently by using algorithms such as the direct
method, which is efficient for cases with few variables and
many constraints. Alternatively, when computing the gra-
dients of a few functions with respect to many variables,
an adjoint method is better suited. The adjoint method
was first used to perform sensitivity analysis of structures
by Haug and Feng (1978) and has since been applied
to numerous structural optimization problems (Haftka and
Gürdal 1993), including the aerostructural design of aircraft
configurations using a coupled-adjoint approach (Martins
et al. 2004).

For problems with large numbers of both design variables
and constraints, however, there are no methods that can com-
pute the full sensitivity matrix efficiently. By using constraint
aggregation, constraints are lumped into a single composite
function. With only a single or few composite constraints,
the adjoint method can compute the sensitivities efficiently.
In addition, constraint aggregation reduces discontinuities at
the intersection of constraints by forming a continuously dif-
ferentiable function.

The Kreisselmeier–Steinhauser (KS) function is a widely
used constraint aggregation method for gradient-based opti-
mization, which has been used in various applications, includ-
ing aerodynamic shape optimization (Anderson and Bonhaus
1997), chemical process design (Rooney and Biegler 2002),
and aircraft design (Stettner and Schrage 1992; Akgün et al.
2001; Martins et al. 2004).

Our main interest in constraint aggregation stems from
its application to a high-fidelity, aerostructural optimization
framework that optimizes aircraft configurations with respect
to both the aerodynamics and structures (Alonso et al. 2004).
The structural module of this framework uses the KS function
to aggregate the stress constraints so as to take advantage of
the coupled-adjoint method that it employs to perform effi-
cient aerostructural sensitivity analysis (Martins et al. 2005).
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The objective of this article is twofold. First, we would
like to study the properties of the KS function and examine
the solutions it yields. In the current literature, there is no
in-depth analysis of the use of the KS function in numerical
optimization. From previous applications of the KS function
(Haftka and Gürdal 1993; Akgün et al. 2001), it is well known
that it yields conservative results. However, the optima and
the convergence behavior were not compared to a reference
case where constraints are considered separately.

Second, we propose an adaptive constraint aggregation
method based on the original KS function that yields more
accurate optimization results. The improvements are illus-
trated by the weight minimization of a wing structure, where
the new method is compared with the original KS function,
the maximum constraint approach, and the reference case,
for which the constraints are considered separately.

In the following section, we present the different con-
straint aggregation methods and discuss the theory behind
them. We then proceed to present and discuss results from
the structural weight minimization of an aircraft wing.

2 Motivation

Within our aircraft design framework, the main utility of the
KS function is to make the coupled-adjoint sensitivity calcu-
lation of stress constraints more efficient. While our goal is
to closely examine the optimization with adjoint sensitivities
of the composite constraint, only the structural optimization
will be studied. Consider the typical structural optimization
problem

minimize
x∈Rn

W (x)

subject to
σ (x)

σ yield
− 1 ≤ 0, σ ∈ Rm

xmin − x ≤ 0. (1)

where W is the structural weight, x is the vector of design
variables, σ represents the stresses in each finite element of
the structural model, and σyield is the yield stress of the mate-
rial. When using high-fidelity models, there may be O(106)
elements and the number of constraints may be of the same
order or greater, especially if buckling constraints are also
considered.

When the sensitivities of the constraint functions are
calculated using finite differences, the number of required
function evaluations is proportional to the number of design
variables. Therefore, finite differencing is only feasible for
cases with few design variables or when the cost of the analy-
sis is very low.

The adjoint method, however, is a method whose
computational cost is independent of the number of design
variables. The governing equations are only solved once, fol-
lowed by the adjoint calculation of the sensitivities. The state

variables of the structural analysis are the displacements, u,
which are obtained by solving the governing equation

R = Ku − F = 0, (2)

where K is the stiffness matrix, and F represents the applied
forces.

Applying the chain rule to the function of interest, I , we
obtain its total sensitivity with respect to the design variables

dI

dx
=

∂ I

∂x
+

∂ I

∂u
du
dx

. (3)

The functions of interest in our structural optimization
problem (1) are the weight and the stresses. However, unlike
the stresses, the weight does not depend on the displacements
and therefore does not require a sensitivity analysis method
that accounts for the governing equations.

We also know that the total sensitivity of the governing
equation residuals must be zero and, therefore,

dR
dx

=
∂R
∂x

+
∂R
∂u

du
dx

= 0. (4)

Solving for the sensitivity of the displacements with re-
spect to the design variables, we obtain

du
dx

= −

[
∂R
∂u

]−1
∂R
∂x

, (5)

and substituting this results into the total sensitivity (3) yields

dI

dx
=

∂ I

∂x
−

∂ I

∂u

[
∂R
∂u

]−1

︸ ︷︷ ︸
ψ

∂R
∂x

. (6)

From this equation, we can see that the matrix of sen-
sitivities ∂R/∂u can be factorized with one of two possible
right-hand sides: −∂ I/∂u or ∂R/∂x. Factorizing the matrix
with a column of the latter term is the basis for the direct
method. Factorizing with the former vector, one eliminates
the dependence on the design variables and obtains the ad-
joint equation

∂R
∂u
ψ = −

∂ I

∂u
. (7)

For each function of interest, a different adjoint vector is
required. As a result, the cost of the adjoint method is pro-
portional to the number of functions of interest, and it is most
efficient when the system has one or few outputs. Thus, the
application of the adjoint method to our optimization problem
(1) is not advantageous when the number of finite elements
is large.

There are cases for which a factorization of ∂R/∂u can
be performed once and stored in memory. For these cases,
solving the adjoint (7) with multiple right-hand sides can be
a very efficient procedure. However, in the aerostructural op-
timization framework mentioned previously, the adjoint cal-
culation is coupled, involving computational fluid dynamics,
and explicit computation of the factorization is impractical.
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This invariably results in an expensive procedure when com-
puting the sensitivities of many functions.

By assuming that the constraints are continuous—but not
necessarily continuously differentiable—the constraints can
be aggregated into a composite constraint. Through this re-
formulation, multiple constraints are aggregated into the KS
function, and the modified optimization problem can be writ-
ten as

minimize
x∈Rn

W (x)

subject to KS[σ (x)] ≤ 0, σ ∈ Rm

xmin − x ≤ 0. (8)

In this modified optimization problem, the KS function is
a scalar that represents a conservative estimate of the maxi-
mum of all the constraints at any point in the design space. We
will present the KS function in more detail in the following
section.

3 Theory

In this section, we define the original optimization problem,
describe the two methods that are currently used for constraint
aggregation, and present the method that we propose.

3.1 Standard approach: individual constraints

This approach consists in solving the original problem for-
mulation, which considers all constraints separately. This can
be written as

minimize
x∈Rn

f (x)

subject to g(x) ≤ 0, g ∈ Rm . (9)

3.2 The maximum constraint approach

The maximum constraint approach is the simplest constraint
aggregation method. The most violated constraint is consid-
ered, while the remaining constraints are ignored. The opti-
mization problem for this approach is defined as

minimize
x∈Rn

f (x)

subject to max
[
g(x)

]
≤ 0, g ∈ Rm . (10)

A severe problem with this approach is that during the
optimization process, the search direction is determined by
considering only the most violated constraint, usually leading
to the violation of another constraint in the next iteration.
Most optimization algorithms find it extremely difficult to
solve an optimization problem of this form.

3.3 Constraint aggregation using
the Kreisselmeier–Steinhauser function

The KS function was first presented by Kreisselmeier and
Steinhauser (1979). The function uses a “draw-down” fac-
tor or aggregation parameter, ρ, which is analogous to the
penalty factor in penalty methods sometimes used in con-
strained optimization.

The function produces an envelope surface that is C1
continuous and represents a conservative estimate of the
maximum among the set of functions (Wrenn 1989). This
formulation was first used to aggregate multiple objectives
and constraints into single functions and was widely used
before direct constrained optimization techniques became
popular.

The KS function can be used to aggregate just constraints
into single composite function defined as

KS
[
g (x)

]
=

1

ρ
ln

 m∑
j=1

eρg j (x)

 , (11)

This definition is mostly used with conjunction with the
SQP and trust-region methods (Akgün et al. 1999, 2001;
Martins et al. 2004).

The properties of the KS function as derived by Raspanti
et al. (2000) are listed below.

1. KS (x, ρ) ≥ max
[
g(x)

]
for all ρ > 0.

2. lim
ρ→∞

KS (x, ρ) = max
[
g(x)

]
.

3. KS (x, ρ2) ≥ KS (x, ρ1) for all ρ2 > ρ1 > 0.
4. KS (x, ρ) is convex if and only if all constraints are

convex.

These properties are vital for the successful use of the
KS function as a constraint aggregation technique in non-
linear programming. Properties 1 and 2 indicate that the KS
function overestimates the maximum of the constraints, and
therefore a positive value of KS is returned if a constraint
is violated or close to being violated. Property 3 relates the
conservativeness of the estimate in violation to the magni-
tude of the aggregation parameter, ρ. As ρ increases, the KS
function approaches the maximum constraint at the current
design point. Property 4 implies that the use of the KS func-
tion does not alter the convexity of a problem. Therefore, if
the original problem is convex, the modified problem with
constraints aggregated into KS function remains convex.

To reduce numerical difficulties caused by numerical
overflow, we use an alternate formulation of the KS func-
tion given by

KS
[
g (x)

]
= gmax (x) +

1

ρ
ln

 m∑
j=1

eρ(g j (x)−gmax(x))

 , (12)

where gmax is the maximum of all constraints evaluated at the
current design point, x.
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The magnitude of the KS function value at a particular
design point is bounded from above and below as follows:

gmax (x) < KS
[
g (x)

]
< gmax (x) +

ln m

ρ
. (13)

The lower bound (most accurate) value is gmax (x). The
upper bound (least accurate) value is inversely proportional
to the “draw-down” factor, ρ, that determines the difference
between the KS function and the maximum value of the con-
straint. As ρ approaches infinity, the KS function becomes
equivalent to gmax, the maximum of the all the constraints.
The sum of exponentials and the factor ρ ensure that the
value of the KS function is dominated by the largest values
in g. When a given constraint is not active, its contribution
is several orders of magnitude smaller than that of active
constraints.

From (13), we can calculate the maximum error for a
particular value of ρ or the ρ value from a chosen maximum
error. A machine-zero error could theoretically be achieved
by choosing a large enough ρ. However, obtaining numerical
estimates of second derivatives at the design points where the
constraints intersect poses difficulties because the curvature
at those points can be very large. Estimating the Hessian of
the KS function at such points yields an ill-conditioned ma-
trix when ρ is too large, which causes numerical difficulties.
Therefore, ρ = 50 is a reasonable value that is often used
(Akgün et al. 2001; Raspanti et al. 2000; Wrenn 1989).

In the following single-variable example, the application
of the KS function as a constraint aggregation method and the
effect of increasing ρ for inequality constraints can be visu-
alized. Consider the following convex inequality constraints:

g1 (x) =
5

ln (x)
−

x

5
− 4 ≤ 0 (14)

g2 (x) =
x2

40
+

x

5
− 2 ≤ 0 (15)
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Fig. 1 KS function of two inequality constraints for increasing ρ

The KS function of these two constraints forms the en-
velope shown in Fig. 1. Note that the convexity of the KS
function is inherited from the original constraints, and there-
fore the KS function is also convex. Also, as ρ increases, the
KS function approaches the maximum constraint, gmax. This
is most noticeable at the intersection of the two constraints.

3.4 Adaptive approach for constraint aggregation

The original KS approach can be classified as nonadaptive as
it carries the predetermined aggregation parameter ρ through-
out the optimization. Although this parameter (typically 50
or less) is selected to avoid numerical problems, the func-
tion returns a conservative value, and therefore this widely
adopted approach results in inaccuracies in the optimization
results. These inaccuracies increase with the number of active
constraints, as shown in Fig. 2 for an analytic optimization
problem (Qin and Nguyen 1994). This problem is selected
because it is representative of the behavior at the vicinity
of local optima, which is typical of structural optimization
problems with stress constraints.

The error in the optimum is 10% for 100 constraints and
increases to 15% for 2,500 constraints. In practical finite
element models, for which O(104) elements—and thus the
same order of stress constraints—are routinely used, the er-
ror would exceed %18, which is unacceptable in most cases.
Note that the relationship shown in Fig. 2 agrees with the
maximum error determined from (13).

This suboptimal result suggests that the traditional ap-
proach poses difficulties to the optimizer, which prevent it
for converging to the true optimum. The main reason for this
error is the fact that the feasible region defined by the KS
function does not necessarily contain the true optimum. As
shown in Fig. 3, for an example, with one design variable
and two inequality constraints, where f (x) is the objective,
and g1(x), g2(x) are the constraints, the objective function
changes more rapidly across the domain than the constraints.
It is clear that the KS function in this case defines a smaller
feasible region than the true feasible region defined by the
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Fig. 2 Relative error in optimization result using the KS function with
ρ = 50
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Fig. 3 Feasible region reduction when using the KS function

original constraints. Thus, the actual feasible region is not
visible to the optimizer if the KS function is used. This effect
becomes more significant when the optimum is located at a
point where multiple constraints are active.

As previously mentioned, although the KS function be-
comes a better approximation for increasing values of ρ,
this causes numerical difficulties due to an ill-conditioned
Hessian. Therefore, the value of the aggregation parameter
should only be increased as required. This can be achieved
by defining a nominal aggregation parameter at the beginning
of the optimization, and by increasing it as needed accord-
ing to the sensitivity of KS with respect to the aggregation
parameter, KS′

= dKS/dρ, at the current design point.
At design points away from constraints’ intersections,

KS′ is zero as there is either no active constraint or only one.
At design points close to the intersection of constraints, this
becomes nonzero and reaches a maximum when the design
point is at the constraints’ intersection, as dictated by (13).

Fig. 4 KS′ vs ρ at constraint intersection

Fig. 5 KS′ vs ρ near constraint intersection

Figures 4 and 5 show the KS sensitivity for increasing ρ for
design points at and nearby the constraints’ intersection.

In the adaptive KS approach, the aggregation parameter is
increased such that KS′ is less than or equal to an acceptable
tolerance, say, 10−6. This is the desired value, KS′

d . Given
the desired value and the current value, KS′

c, we may derive a
relationship by considering the slope in the logarithmic scale

log KS′

1 − log KS′
c

log ρ1 − log ρc
=

log KS′

d − log KS′
c

log ρd − log ρc
(16)

This relationship is derived from Fig. 4, and it is essen-
tially the secant method applied to log KS′.

The subscript 1 represents a value calculated at a fi-
nite step from the current point. In our application, ρ1 =

ρc + 10−3. By rearranging (16), the desired value, ρd , can
be expressed as

log ρd = log

(
KS′

d

KS′
c

) [
log

(
KS′

1

KS′
c

)]−1

log

(
ρ1

ρc

)
+ log ρc

(17)

In our implementation, ρc is set to 50. During the opti-
mization process, ρc is kept constant and ρd is used for the
calculation of KS and dKS/dx if KS′

c does not meet the pre-
scribed tolerance. Also, KS′ is calculated using complex-step
derivative approximation to obtain accurate results (Martins
et al. 2003). The resulting algorithm is described below.

The following information is given:

– Constraint functions: g(x), j = 1, . . . , m
– Initial aggregation parameter, ρc

– Desired KS sensitivity, KS′

d

When a constraint evaluation is requested by the opti-
mizer, the following sequence is executed:

1. Compute the KS function using the current parameters.
2. Compute KS′

c at current design point using ρc and the
constraint values.
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3. If KS′
c < KS′

d , return the current KS value; otherwise,
continue.

4. Compute ρd using (17).
5. Compute KS using ρd and return its value.

In the next section, we demonstrate that this algorithm
addresses the shortcomings of the conventional KS function
approach in a practical structural optimization problem.

4 Results

To demonstrate the application of the adaptive approach, a
weight optimization study is conducted for a wing structure
modeled with multiple spars and ribs, with a total of 45 tube
elements as illustrated in Fig. 6. The finite element model uses
a modified three-dimensional frame elements that account
for one translational degree of freedom (vertical) and two
rotational degrees of freedom (axial and transversal) at each
node, thus each element has a total of six degrees of freedom.

The design variables are the diameters of each tube el-
ement, the objective function is the weight of the structure,
and the constraints are the stresses in each element. The op-
timization problem can be stated as follows:

minimize
x∈R45

W (x)

subject to
σ (x)

σ yield
− 1 ≤ 0, σ ∈ R45

xmin − x ≤ 0. (18)

Note that the largest fraction of the computational cost
for this problem is the evaluation of the constraints, which re-
quires the solution of the finite element equations and the cal-
culation of the stresses. Also, the sensitivity computation of
the constraints involves a large number of inputs (design vari-
ables) and a large number of outputs (stress of each element),
and therefore constraint aggregation is required to use adjoint
method efficiently.

Fig. 6 Finite element model of the wing structure

Table 1 Computational cost of computing sensitivities for 45 design
variables and 45 stress constraints, 1 U=4 s

IC Max KSC AKS

Constraint vector evaluation 1 1 1 1
Forward difference 46 46 46 46
Central difference 91 91 91 91
Complex step 54 54 54 54
Adjoint method with forward-difference partial
derivatives
∂ I/∂x 0 1 1 1
∂ I/∂u 0 1 1 1
∂R/∂u 0 0 0 0
∂R/∂x 0 0 0 0
Adjoint solution, ψ 44 1 1 1
Total 48 4 4 4
Adjoint method with central-difference partial
derivatives
∂ I/∂x 1 1 1 1
∂ I/∂u 1 1 1 1
∂R/∂u 0 0 0 0
∂R/∂x 1 1 1 1
Adjoint solution, ψ 44 1 1 1
Total 49 5 5 5
Adjoint method using complex-step partial
derivatives
∂ I/∂x 1 1 1 1
∂ I/∂u 1 1 1 1
∂R/∂u 0 0 0 0
∂R/∂x 1 1 1 1
Adjoint solution, ψ 45 1 1 1
Total 48 5 5 5

4.1 Optimization settings

Results for all constraint handling methods described in
Section 3 were obtained. The reference method is the one
that considers all individual constraints separately (IC). The
constraint aggregation methods are the original KS function
(KSC), the maximum function (Max), and the new adaptive
KS function (AKS).

The adaptive constraint aggregation method was imple-
mented in a Python-based application program interface that
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Fig. 7 Gradient relative error vs step size
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Fig. 8 Initial structure,
mass=2741.351 kg

connects the optimizer, SNOPT, and the finite element solver.
SNOPT is an active-set SQP-based optimizer (Gill et al.
2002).

4.2 Sensitivity analysis

The computational costs for function and gradient evalua-
tions of the various constraint handling methods are listed

in Table 1. The first column (IC) corresponds to the compu-
tation of a 45 × 45 sensitivity matrix, while for the remain-
ing columns, only a vector with 45 components needs to be
computed. The constraint aggregation reduced the sensitiv-
ity computation cost of the adjoint method by one order of
magnitude.

Because the accuracy of finite differences varies widely
with step size, a study was conducted to establish the preci-
sion of the sensitivity results. Figure 7 shows the relative error
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Fig. 9 Optimized structure with
individual constraints (IC),
mass=183.500 kg
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Fig. 10 Optimized structure
using maximum of constraints
(Max), mass=247.152 kg
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Fig. 11 Optimized structure
using the KS function (KSC)
with ρ = 50, mass=194.224 kg
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Fig. 12 Optimized structure
using the adaptive KS function
(AKS), mass=183.076 kg
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in the gradient norm of stresses with respect to an element
thickness vs decreasing step size for four different sensitivity
analysis methods.

In this figure, we can see that the forward difference es-
timates exhibit linear convergence with decreasing step size,
which is consistent with the fact that the error term in the
forward difference formula is O(h). However, as the step
size decreases below 10−5, the relative error increases due to
subtractive cancellation.

The complex-step method exhibits quadratic conver-
gence, which is consistent with the error term in the complex-
step derivative approximation (Martins et al. 2003). Unlike
the forward difference, however, the complex-step method is
not subject to subtractive cancellation, and the relative error
remains at machine zero for step sizes below 10−5.

The adjoint method we used is semianalytic, i.e., the par-
tial derivatives in the adjoint (6) were computed using either
finite differences or the complex-step method. In Fig. 7, we
can see that the adjoint result using forward differences is
more accurate than the pure forward difference but is still
subject to the same subtractive cancellation errors.

The adjoint method with partial derivatives computed us-
ing the complex-step method, on the other hand, exhibits
much better accuracy with a relative error of 10−14 that is
step-size insensitive for steps below 10−6. These are the ex-
pected results that have been thoroughly analyzed by Martins
et al. (2003). Thus, the adjoint method with partial derivatives
computed using the complex-step method is used in the re-
sults that follow.

4.3 Optimization results

Figure 8 shows the initial structure with design variables ar-
bitrarily set to unity. The reference optimization case that
considers all constraints separately resulted in a minimum
mass of 183.5 kg and a fully stressed structure, as shown in
Fig. 9.

The optimization results using the different constraint ag-
gregation methods are shown in Figs. 9, 10, 11, and 12. The
result corresponding to the maximum of constraints formu-
lation, shown in Fig. 10, is clearly infeasible because several
constraints are violated.

The KS function formulation (Fig. 11) converged to a
minimum, but the resulting structure was not quite fully
stressed, and the final weight was 5.8% higher than the ref-
erence result. The adaptive KS approach achieved better ac-
curacy, with an error of only 0.2%, as seen in Fig. 12.

4.4 Convergence history

The convergence history of the optimization is shown in
Fig. 13 for all constraint handling methods. The logarithmic
axis of the figure shows the relative difference between the
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ence optimum vs wall-clock time

value of the objective function and the reference minimum
of the problem. This is plotted against the wall-clock time
to show the convergence behavior and accuracy of the final
result.

From this figure, we can see that the maximum constraint
approach demonstrated poor convergence behavior. Using
this approach, we could not obtain a converged solution. This
is due to the lack of first order continuity in the constraint,
which prevents the optimizer from properly estimating the
Lagrange multiplier and thus leads to difficulties when using
the active-set SQP optimizer.

The original KS function converges to a minimum in 30%
of the time taken by the reference case and the result. Be-
cause the optimum is located at the intersection of active
constraints, using a fixed aggregation parameter leads to re-
duction of the feasible region as seen by the optimizer and
thus the optimum is not as accurate as the reference. Using
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the adaptive approach, the optimization converges in 75% of
the reference time.

5 Optimization performance vs problem size

The sample optimization results demonstrated a better ac-
curacy relative to the original KS function and reduced
computational cost compared to treating the constraints indi-
vidually. We now study the impact of increasing the number
of constraints on the performance of the optimization.

Figure 14 shows the total optimization time vs the number
of constraints. The white colored symbols represent feasible
optimum, and the black symbols represent cases that did not
converge. Optimization with both the original KS formulation
and the adaptive approach returns feasible optima for all cases
that we ran. Although the adaptive KS approach incurs a
higher computational cost, it is much more accurate and thus
is a better choice when precision is important.

6 Conclusion

The motivation, derivation, and application of an adaptive
constraint aggregation method were presented. A widely used
constraint aggregation method, the KS function, utilizes the
full potential of adjoint sensitivities by reducing the number
of constraints. This is efficient for large-scale problems with
high computational cost for each function evaluation. The
original KS formulation has a conservative nature that leads
to suboptimal results especially when many constraints are
active at the optimum. The adaptive approach proposed in the
present work avoids this problem by updating the aggregation
parameter according to the constraint sensitivity. This leads
to a guaranteed accuracy in the result and is more robust than
using large magnitude of the aggregation parameter in the
original formulation.
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