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Ney R. Secco, John P. Jasa, Gaetan K. W. Kenway, and Joaquim R. R. A. Martins

Abstract Mesh generation for high-fidelity computational fluid dynamics simulations and aerodynamic
shape optimization is a time-consuming task. Complex geometries can be accurately modeled using overset
meshes, whereby multiple high-quality structured meshes corresponding to different aircraft components
overlap to model the full aircraft configuration. However, from the standpoint of geometry manipulation,
most methods operate on the entire geometry rather than on separate components, which diminishes the
advantages of overset meshes. To address this issue, we introduce a geometry module that operates on
individual components and automatically computes their intersections to update overset meshes during
optimization. We apply reverse-mode automatic differentiation to compute partial derivatives across this
geometry module, so that it fits into an optimization framework that uses a hybrid adjoint method (ADjoint)
to efficiently compute gradients for a large number of design variables. By using these automatically updated
meshes and the corresponding derivatives, we optimize the aerodynamic shape of the DLR-F6 geometry while
allowing changes in the wing–fuselage intersection. Sixteen design variables control the fuselage shape and
128 design variables determine the wing surface. Under transonic flight conditions, the optimization reduces
drag by 15 counts (5%) compared with the baseline design.
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Nomenclature
CD drag coefficient
CL lift coefficient
Dfuse fuselage diameter
f function of interest
g generic vector
nfuse fuselage shape variables
R CFD residuals
r nodal coordinates
t wing thickness
W flow-state variables
X generic inputs or design variables

Ẋ seeds of forward automatic differentiation derivative
X seeds of reverse automatic differentiation derivative
zwing wing shape variables
α angle of attack
∆xwing horizontal displacement of the wing
τwing wing twist angle
ψ adjoint variables

1 Introduction
With stricter environmental regulations, increased air traffic, and thinning profit margins, airlines and aircraft
manufacturers are looking to make the next generation of aircraft as efficient as possible. An airplane
configuration may be seen as a group of individual components, such as lifting surfaces, bodies, fairings, and
engines; this reflects on how we parametrize the shape of airplanes. Furthermore, from the aerodynamic
perspective, junctions between these components cause interference drag due to complex flow features such
as separation bubbles. Interference drag depends not only on the overall flow conditions, but also on the
detailed shape of the junction.

Low-fidelity tools, such as lifting-line theory and panel codes, can capture general trends associated with
individual aircraft components but do not model enough of the physics to accurately resolve the junction
flow. Although surrogate models of interference drag [1, 2] can be coupled to low-fidelity tools for preliminary
aircraft design [3], they allow only a limited number of design parameters for training, and the predictions
are only valid within the training domain of the surrogate model. Therefore, high-fidelity computational
fluid dynamics (CFD) simulations, such as Reynolds-averaged Navier–Stokes (RANS) analysis, is essential
for detailed analysis and optimization of junction geometries.

Another motivation to use high-fidelity aerodynamic models is that they allow rapid design of aircraft
without extensive wind-tunnel testing or other costly evaluation methods, while maintaining an acceptable
level of accuracy. Once computational models and analyses are created, several designs can be evaluated at
comparatively low cost. These multiple designs require a large number of variables for a detailed parametriza-
tion of the aerodynamic shape. Thus, gradient-based optimization techniques are necessary to efficiently
search the design space for the optimum configuration. Gradient-based optimization combined with the
adjoint method [4] is particularly powerful, since the cost of using the adjoint method to compute gradients
does not scale with the number of design variables [5].

CFD requires that the domain be discretized by using meshes, and creating these meshes for complex
geometries has historically been challenging, creating a bottleneck in the design process. Multiblock meshes
work well for simple geometries but are cumbersome for models with multiple complex features, such as the
truss-braced wing. To optimize this type of configuration in previous work, a CFD solver based on structured
multiblock meshes was used, but this limits the possible changes in the wing-truss junction geometry due
to difficulties in generating and deforming the cells in the concave regions around these junctions [6]. A
recurring problem is that, after the mesh-deformation procedures, surface deformations frequently generate
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negative-volume cells.
CFD using overset meshes [7] has the potential to overcome this problem because it allows high-quality

meshes to be independently generated for each component. These dedicated meshes can also be automatically
generated by using, for instance, hyperbolic mesh generation algorithms [8, 9]. Meshes specific to each
junction, called collar meshes, must also be generated to guarantee that the mesh edges represent the
intersection curve after the hole cutting process [10]. In addition to facilitating mesh generation, another
advantage of the overset approach is that, because overset meshes are composed of multiple independent
structured blocks, we can still use high-quality, memory-efficient structured meshes. Because of this, overset
CFD may excel for optimizations where geometry components shift significantly relative to each other,
such as when optimizing the location of the wing–fuselage intersection for a conventional airplane, or when
independently modifying components during an optimization.

Conversely, these advantages may be hampered if a limited geometry manipulation method is used in
the optimization. Although many geometry creation tools exist [11–13], most do not seamlessly integrate
geometry description and mesh generation. Furthermore, most of these tools do not calculate derivatives
of the geometry description with respect to the design variables, making them inefficient for gradient-based
optimization.

A recently proposed solution is to base the reference geometry on a parametrized CAD model and
use geometry surrogate models to replace the CAD engine in the optimization framework [14]. Provided
the surrogate model is smooth and differentiable, this approach provides analytical derivatives across the
geometry manipulation module. However, a large number of training points may be necessary to obtain
a valid surrogate for cases with several design variables and complex geometries. To avoid loss of surface
information, the user should also be careful when selecting which surface features from the CAD model are
exposed to the surrogate model training.

An alternative type of geometry manipulation method used in aircraft design optimization is the free-form
deformation (FFD) approach, which parametrizes shape perturbations rather than the shape itself [15, 16].
This approach not only reduces the number of design variables [17] but also allows the use of externally
provided geometries in native formats. Nevertheless, this method operates simultaneously on the entire
geometry, thereby ignoring valuable information on component subdivision. For instance, in a wing–fuselage
configuration, using FFD to translate the wing is impossible without changing the fuselage shape embedded
in the same FFD block. Even if the wing and body are embedded in separate FFD blocks, additional
nontrivial steps are required to track changes in intersection curves.

The goal of this work is thus to develop a geometry-manipulation approach that allows independent
parametrization of shape deformations at the level of both the individual component and the entire aircraft
while accounting for changes in intersections between these components. The approach is implemented
in a tool that we call pySurf that uses unstructured discrete surfaces as input to describe each primary
component. These surfaces are used to compute intersections between components and regenerate collar
meshes automatically at each optimization iteration. This tool also computes derivatives of mesh points with
respect to shape deformation design variables, which enables gradient-based aerodynamic shape optimization.
These derivatives are computed by using a hybrid adjoint method that combines analytic methods and
reverse-mode automatic differentiation (AD) so the computational cost is largely independent of the number
of design variables.

To demonstrate the tool that we have developed, we use a RANS overset solver to optimize the wing–
fuselage intersection of a conventional aircraft. We demonstrate the efficacy of the proposed methodology
and also provide new insights regarding wing–fuselage junction design for transonic flight conditions.

2 Methodology
As mentioned in the introduction, our aim is to fully exploit the overset mesh capabilities by extending the
component-based approach used in overset CFD solvers to the geometry manipulation module within the
optimization framework. Consequently, we also need to automatically track changes in junctions among
these primary components during optimization to properly modify the collar meshes.

Furthermore, the entire process by which a collar mesh is updated must be differentiated to enable
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gradient-based aerodynamic shape optimization. We use reverse-mode AD to efficiently compute the deriva-
tives of the generated mesh points with respect to the design variables, as detailed in Sec. 2.4.

2.1 Overview of collar mesh generation
To address the difficulty of automatically creating collar meshes, we developed a new geometry module called
pySurf that performs the following sequence of operations:

1. For each primary component, receive triangulated surfaces that represent the full vehicle geometry.
pySurf may either read these surfaces from a file at the beginning of the optimization or, at optimization
runtime, receive updated surfaces provided by a separate geometry-manipulation module, such as
FFDs.

2. Compute the intersections between the triangulated surfaces of the primary components.

3. Automatically generate surface collar meshes for the intersections. These meshes should be structured
to be compatible with the CFD solver used in this work.

These operations are represented in steps a–c of Fig. 1. A separate module called pyHyp generates the
volume mesh (step d in Fig. 1) and is introduced in Sec. 3.3. The resolution requirements for the triangulated
surface are discussed in Sec. 3.

(a) Triangulated surfaces (b) Intersection computation

(c) Surface mesh marching (d) Volume mesh extrusion

Figure 1: Steps for generating collar mesh for a wing–fuselage junction. pySurf is responsible for steps a–c.
The mesh extrusion module used in step d (pyHyp) is covered in Sec. 3.3.

2.2 Computation of intersection
Once pySurf receives the triangulated surfaces, it must compute the intersections between them. Because
of the significant number of triangles used to describe the aircraft geometry, we need a highly efficient
intersection algorithm.
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We describe here the steps to compute the intersections between two components (for instance, compo-
nents A and B). This process is repeated for every pair of primary components. First, we compute Cartesian
bounding boxes for the two primary components and then determine the intersection between these bound-
ing boxes. Next we flag the triangles from both components that belong to the bounding box intersection
region. This step is relatively quick since we just need to compare maximum and minimum values of nodal
coordinates against the Cartesian box bounds to flag the triangles.

In the second step, we take the flagged triangles of the component with fewer flagged triangles (for
example, component A) and build an alternating digital tree (ADT) [18] to minimize the tree complexity.
This tree structure groups discrete elements based on their spatial location so that we can efficiently find
the element pairs likely to intersect. We then take each flagged triangle of component B and perform ADT
searches to find the flagged triangles from component A that are likely to intersect it.

Finally, in the third step we use fast pairwise triangle-triangle intersection algorithms [19] on the candidate
elements given by the ADT searches to identify the two points that determine the intersection line between
each pair of triangles. We then concatenate the lines given by the pairwise triangle-triangle intersections to
determine the entire intersection curve. These intersection curves then serve as starting curves for generating
the hyperbolic surface mesh, as detailed in Sec. 2.3.

An arbitrary number of primary components can be intersected using this method. Each pairwise com-
ponent intersection may have multiple intersection curves and each is generated and stored for the user to
select as possible starting curves for the collar mesh generation.

We also added features dedicated to manipulating these intersection curves, such as merging, splitting,
and remeshing, thereby allowing the user to accurately control the topology, the number, and the distribution
of nodes describing the intersection. This is important because this curve is the starting point for the
hyperbolic surface marching. In addition, to maintain the same number of nodes in the CFD mesh, the
number of nodes distributed along the intersection curve remains the same throughout the optimization.

2.3 Generation of hyperbolic surface mesh
Having identified the intersection curves, we can now use established hyperbolic mesh-marching algorithms [8]
to produce the surface collar meshes. This type of mesh generation algorithm starts from a baseline curve and
then uses a marching scheme to generate the next layer of the surface mesh. This process is repeated until
the desired number of layers and mesh extension is reached. One advantage of hyperbolic marching schemes
over other mesh generation methods (such as transfinite interpolation [20]) is that they do not require the
outer boundary of the mesh domain to be defined, making the process easier to automate, especially for
collar meshes.

During mesh marching, we project the mesh points back onto the triangulated surfaces so that the mesh
is consistent with the prescribed geometry. For discrete surfaces, finding the nearest surface triangle by brute
force would not be tractable, especially when we must regenerate the mesh for each optimization iteration.
Thus, we use the ADT algorithm once again to efficiently project the mesh points onto the nearest surface
element. The ADT searches provide the surface elements closest to a given point, so that we only need to
compare projections on those filtered elements to find the closest one.

We also added features to the standard hyperbolic marching scheme to improve control over mesh gener-
ation. For instance, as the surface mesh is marched, the user can choose to preserve special surface features,
such as trailing edge corners. First we use line segments to create a discrete representation of these curves.
Next, we identify the node from the baseline curve closest to the guide curve segments and then project
this node onto the guide curve. In addition, we locally modify the marching equations for this node so that
it marches in a direction tangent to the guide curve. This process is repeated for every new layer of the
marched mesh.

In addition, we added a feature to preserve the relative node spacings from the baseline curve throughout
the entire mesh, which works as follows: After each new layer is generated, we redistribute the nodes of the
new layer by using the same relative arc lengths of the nodes in the baseline curve. This redistribution is
important when generating meshes near trailing edges because the artificial dissipation associated with the
marching scheme tries to smooth the nodal intervals near the trailing edge despite the local high refinement
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of the baseline curve.

2.4 Automatic differentiation
We need to efficiently and accurately compute derivatives of the objective and constraints for effective
gradient-based aerodynamic shape optimization. Toward this end, we apply the reverse-mode AD throughout
the entire analysis chain, which we discuss in detail in Sec. 3.7. Therefore, pySurf also uses the same AD
method to internally backpropagate partial derivatives.

In Sec. 2.2, we mentioned that pySurf has several tools to control the intersection curves. During forward
execution, pySurf stores all intermediary steps required by the user to generate the appropriate curves for
hyperbolic marching, then uses the same steps, but in reverse order, to reverse propagate the derivatives.

The automatically-differentiated code for pySurf is generated by using the Tapenade AD tool [21], but
we must still selectively alter the differentiation process of certain pySurf modules to obtain an efficient final
code.

For instance, during the forward execution of the surface-projection code used by the hyperbolic surface
marching, we store the indices of the triangles that received the projections so that we do not have to
repeat the ADT searches during reverse propagation of derivatives. Thus, we only need to differentiate the
point-to-triangle projection routine.

A similar procedure can be applied to the intersection computation code. During the forward execution,
we use all three steps described in Sec. 2.2. The first two steps use bounding boxes and ADT searches to
identify triangles likely to intersect, but they do not compute the intersection curve per se. Therefore, those
steps are kept outside of the differentiated routines, because we can store the pairs of intersecting triangles
during the forward execution of the code. Thus, only the pairwise triangle-triangle intersection algorithm
needs to be differentiated.

We also use an ad hoc differentiation approach for the linear system solver inside the hyperbolic marching
codes, since we already know the solution for this system from the forward execution. The surface mesh
marching module generates the surface mesh layer by layer. Let ri be a vector with 3n elements representing
the Cartesian coordinates of the n nodes of the ith layer of the surface mesh. The nodal coordinates of the
next layer are given by

ri+1 = ri + ∆ri, (1)

where the displacement ∆ri is obtained from the solution of a linear system defined by the discretized
hyperbolic equations

Ai · ∆ri = bi. (2)

The linear system of Eq. (2) is solved by using the lower-upper factorization algorithm from LAPACK
(Linear Algebra PACKage) [22, 23]. During the reverse execution of the code, we must propagate the
derivative seeds from the solution of the linear system (∆ri) back to the matrix Ai and the vector bi. In a
naive AD approach, we would have to build a differentiated version of the linear system solver. However, we
can avoid this because we know the solution of the linear system from the forward pass. The corresponding
reverse algorithm for Eq. (2) is [24]

AT
i · bi = ∆ri (3a)

Ai = −bi · ∆rTi . (3b)

We first solve the linear system of Eq. (3a) to compute bi with the same solver used for Eq. (2), then
we find Ai by using Eq. (3b). The advantage of this approach is that we only use the native routines from
LAPACK without any modification.

We validate the differentiated code in two steps: First, we use the finite-difference test to compare the
forward AD results against the original subroutine trends, then we check if the forward AD code and the
reverse AD code are consistent with the dot product test [25]. These two tests ensure that the reverse AD
code is consistent with the original subroutine. This process is applied to every differentiated module in
pySurf. Although we only need the reverse AD version of the code for optimization, these tests also require
that we generate the forward AD version with Tapenade.
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3 Optimization framework
pySurf on its own is just a geometry module, so it has to be coupled with other analysis tools and an optimizer
to create a fully capable framework for aircraft design optimization. Because of the high computational cost
of each analysis, high-fidelity aircraft design optimization requires a computationally efficient and massively
parallelized multidisciplinary framework. Furthermore, gradient-based optimization is necessary due to the
large number of design variables [5, 26, 27]. Thus, this framework must also be able to compute first-order
derivatives of both objective and constraint functions with respect to each design variable.

The multidisciplinary design and optimization of aircraft configurations with high fidelity (MACH) frame-
work [28] was developed with these needs in mind. This framework uses Fortran and C++ routines wrapped
with a Python interface to perform efficient high-fidelity aerostructural optimization. Specifically for this
work, we only use modules relevant to aerodynamic shape optimization, which include a geometry modeler
(pyGeo), a volume mesh generator (pyHyp), a volume mesh deformation module (pyWarp), an aerodynamic
solver (ADflow), an optimizer [sparse nonlinear optimizer (SNOPT)], and the newly added pySurf module
as the collar mesh generator. These modules are described in detail in the following sections.

To use this framework, the user should provide the following for each primary component:

Structured surface mesh with the desired resolution for the CFD analysis. This surface mesh is used to
generate the volume mesh with hyperbolic extrusion methods.

Unstructured discrete (triangulated) surface mesh for use as the reference to compute intersections
and generate the collar mesh.

FFD block that envelops the surfaces described above and whose control points give the necessary shape
control resolution for the optimization problem.

Here we should clarify why we need two descriptions—one structured and the other unstructured—
for each primary component. The structured mesh of the primary components has the surface resolution
required by the CFD solver, which is already an approximate description of the underlying continuous surface
representation. pySurf cannot use the same resolution to march new hyperbolic surface meshes for the collars
because this would cause an additional loss of information compared to the original continuous representation.
Therefore, the user also needs to provide another surface representation that is finer than that required by
the CFD so that the hyperbolic marching algorithm has a description of the surface geometry that is more
accurate than the primary structured mesh.

Because this finer triangulated surface mesh is not actually used by the CFD solver, it can be unstructured,
making it easier to generate and refine in critical regions, such as high-curvature areas. Because of the high
number of Newton searches required to embed all surface points into the FFDs, the use of a heavily refined
triangulated surface mainly impacts the setup time of the optimization. The increase in computational time
of the subsequent optimization steps is less noticeable because of the linear nature of the FFD method and
its derivatives.

The use of triangulated surfaces for automatic mesh generation is recognized as a possible practice for
automatic mesh generation [10, 29], because most geometry manipulation packages can output files with
this representation. Furthermore, discrete representations are less susceptible to geometry interpretation
problems, such as those caused by the use of different geometry kernels when dealing with analytic repre-
sentations [13].

Further details regarding the framework are also given by Kenway et al. [28], and this framework has been
used in several aerodynamic [30, 31] and aerostructural [32] design optimization studies. We now discuss
aspects of the framework modules used in this work.

3.1 Geometry modeler—pyGeo
pyGeo is a Python module that generates and manipulates geometries and propagates high-level design
variables (twist, chord, shape) to mesh-level changes. This module complements pySurf by handling the
primary component geometries, whereas pySurf focuses on intersections and collar meshes. pyGeo uses
an FFD approach to parametrize changes in geometry [16]. To set up a new geometry in pyGeo, we first
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generate a box of control points surrounding each primary component to define a trivariate B-spline mapping
within this volume. Each FFD block can be seen as a structured volume mesh that encompasses the surface
that we want to modify. We then use a Newton search to determine the parametric coordinates of the
structured surface mesh nodes within their corresponding B-spline boxes. We repeat the same process for
the triangulated surface nodes so that both surface representations are parametrized in the same B-spline
mapping and thus get consistent displacements.

Any changes applied to the control points can be transferred to the embedded surface nodes using the
B-spline mapping. Therefore, the positions of the FFD control points are the primary aerodynamic shape
variables of the problem: moving a node from the FFD block deforms the embedded surface.

The FFD deformation process for each component is independent of any other component because we
use separate overset meshes, triangulated surfaces, and FFDs. This gives the designer and the optimizer the
freedom to control components’ variations individually.

The FFD method parametrizes changes in geometry rather than the absolute parameters, which avoids
the use of CAD-based tools in the optimization process. Furthermore, the B-spline mapping is easily dif-
ferentiable [17], which allows for efficient computation of the derivatives of the surface node positions with
respect to control point positions.

3.2 Collar mesh generator—pySurf
pySurf, which is the module developed in the present work, produces collar meshes between intersected
geometry components as described in Sec. 2. pySurf uses the unstructured surface meshes that are updated
by pyGeo’s FFDs throughout the optimization to compute intersections among primary components.

During each optimization iteration, the surface collar meshes are regenerated by pySurf. Conversely, the
surface meshes of the primary component meshes are not recomputed but are directly updated by pyGeo
via FFD deformations.

3.3 Volume mesh generator—pyHyp
The previous modules operate on surface meshes; however, we need volume meshes for CFD analysis. We
use a hyperbolic volume mesh marching scheme [9] to extrude the surface meshes to produce volume meshes.
This mesh generation method is applied to the structured surface meshes of each primary component and
collars. This step is only done in the initialization phase to get the baseline volume meshes, which are then
deformed by the mesh deformation module (pyWarp) along the optimization since this is less expensive than
regenerating volume meshes at each design point.

The same advantages of hyperbolic mesh generation over other methods previously discussed for surface
meshes apply here, especially those regarding the degree of automation and robustness. The main user-
defined parameters are the height of the initial layer of cells and the extrusion distance. The selected
marching distance should allow a reasonable amount of overlap between the collar mesh and the primary
component meshes. Additionally, cells within the collar mesh should be smaller than the cells in the primary
component meshes to preserve collar mesh cells during the hole cutting process. We usually achieve this by
using an initial cell height for the collar meshes equal to 95% of the cell height of the primary components.
The surface meshes are extruded to a small extension (such as three mean aerodynamic chords). One example
of hyperbolic mesh extrusion was already shown in Fig. 1.

After the extrusion of all surface meshes, pyHyp uses the bounding box of these near-field volume meshes
to create a background mesh that reaches an appropriate distance for the far-field boundary conditions. The
background mesh generation process is discussed in more detail in Sec. 4.2.

pyHyp is not differentiated because it is used only in the initialization step and thus is not part of the
optimization cycle itself, as discussed in Sec. 3.7.

3.4 Volume mesh deformation—pyWarp
Within the optimization loop, we use pyWarp to deform the initial volume meshes generated by pyHyp based
on the updated component surfaces. pyGeo provides surface node updates for the primary components based
on the FFD deformations, whereas pySurf provides updated surface nodes for the collar meshes based on
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the recomputed intersections. Then pyWarp propagates the deformations of the surface nodes to the volume
nodes using an inexact explicit interpolation algorithm to reduce computational cost [33].

Given a baseline surface mesh and its corresponding deformed configuration, we can compute displace-
ments and surface normal rotations for each surface node. Each surface node defines a displacement field
in the volume based on its own displacements and rotations. The displacement of each volume node is
computed as a weighted average of the displacements predicted by the displacement fields of the surface
nodes at the volume node location. The weights of the averaging process decay with the distance between
the volume node and the corresponding surface node.

This mesh deformation procedure is also applied in a componentwise manner, so that each overset mesh is
deformed based only on its own wall surfaces. For instance, the wing surface nodes only affect the deformation
of the wing volume mesh nodes, the fuselage surface nodes only deform the fuselage volume mesh nodes, and
the collar surface nodes only deform the collar volume mesh nodes. This allows for relative motion between
primary components. In other words, if the wing is translated with respect to the fuselage, the movement
of the wing volume mesh nodes is not influenced by the fixed position of the fuselage surface nodes. The
background mesh remains fixed throughout the optimization because it has no associated surface.

The component-based deformation methodology applied to overset meshes can be advantageous in ge-
ometries with oblique junction angles between two distinct components. Volume cells in the gap between
these components do not have opposing surfaces driving their displacements, thereby allowing for additional
freedom of movement. Furthermore, the overset mesh cells in the junction regions are of higher quality than
a patched multiblock mesh, which allows the former to tolerate a wider range of deformations before the
mesh becomes invalid for CFD analyses.

Negative volume cells may still arise in the collar mesh if the junction corner angle becomes too se-
vere during the optimization. Alternative approaches such as regenerating the mesh or changing the mesh
topology could avoid this issue. However, we do not explore these options in this work because acute junc-
tion angles generally increase interference drag [1] and thus may not be favored by the aerodynamic shape
optimization framework.

pyWarp is also automatically differentiated by using Tapenade in reverse AD mode so it can compute
the derivatives of volume node positions with respect to surface node movements.

3.5 CFD solver—ADflow
Once volume meshes are generated and warped to reflect the changes in geometry, we use a CFD solver to
perform aerodynamic analysis on the new configuration and to obtain lift, drag, and moment coefficients.
These coefficients are then used by the objective and constraint functions in the optimization problem.

The aerodynamic solver used in this work is a newly implemented version of SUmb called ADflow [34, 35].
It is capable of solving Euler, laminar Navier–Stokes, and RANS equations in multiblock structured overset
meshes in a parallelized fashion using a second-order cell-centered finite volume formulation. The inviscid
fluxes are discretized with artificially dissipated central-differencing, whereas the viscous fluxes use standard
central-differencing.

ADflow initially solves steady problems by using time-marching schemes (such as the diagonalized diago-
nal dominant alternating direction implicit scheme [36] or the multistage explicit Runge–Kutta scheme [37])
to approach the basin of attraction. It then switches to a Newton–Krylov algorithm to converge to the
steady solution [38]. The switching criterion is defined as the point when the time residuals drop below a
user-specified threshold.

This CFD solver uses implicit hole cutting [39, 40] to determine which cells should be blanked, inter-
polated, or actually computed. The interpolated cell values are computed using a first-order interpolation
method. Once the flow converges, zipper meshes are used to fill the surface gaps, yielding a watertight
surface for the integration of the aerodynamic forces and moments [41]. In this work, we update the over-
set connectivities and zipper meshes at each optimization iteration. Further details regarding the overset
implementation in ADflow are presented by Kenway et al. [42].

ADflow’s drag predictions were previously evaluated in the Sixth Drag Prediction Workshop (DPW6) [43].
One important conclusion from DPW6 was that the standard Spalart–Allmaras (SA) turbulence model [44]
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could overestimate the size of separation bubbles in wing–fuselage junctions [45], and that this could be
mitigated by applying modifications to the turbulence model, such as the rotation correction [46], and the
quadratic constitutive relation (QCR) [47]. Therefore, we use the SA-R-QCR2000 turbulence model for all
simulations in this work.

A discrete adjoint approach gives the derivatives of the aerodynamic forces and moments with respect to
the nodal coordinates [35, 48]. We use Tapenade’s reverse-mode AD to compute the partial derivatives of
the CFD problem, as explained in Sec. 3.7. The derivatives currently computed by ADflow assume frozen
overset interpolation weights. In other words, the linearized code does not consider how changes in mesh
coordinates affect the overset interpolation weights. This discrepancy becomes less significant as the overset
mesh is refined because flow state variations within the interpolation stencils become smaller. Nevertheless,
the interpolation weights are updated in the next forward execution of the code.

3.6 Optimizer—SNOPT
We use SNOPT (Sparse Nonlinear Optimizer) [49], which is a gradient-based optimizer that implements the
sequential quadratic programming method. The user must provide functions of interest and their gradients.
SNOPT can handle large-scale nonlinear optimization problems with thousands of constraints and design
variables, making it suitable for aerodynamic shape and aerostructural optimizations [28, 31, 32, 42].

3.7 Derivative computation throughout the framework
Aerodynamic shape optimization usually involves a number of design variables that is much greater than
the number of functions of interest. For this scenario, the adjoint method is an efficient way to compute
derivatives [5, 35, 50]. However, a significant effort is required to implement this method because it needs
partial derivatives of the residual equations and other quantities used in the CFD code.

Let f = f(X,W) be a function of interest for the optimization problem (such as drag coefficient). This
function depends on the design variables X and the flow state variables W. The flow state variables are
obtained from the solution of the discretized flow equations: R(X,W) = 0. The total derivative of the
function f with respect to the design variables is

df

dX
=

∂f

∂X
−ψT · ∂R

∂X
, (4)

where the adjoint variables ψ can be obtained by solving the discrete adjoint system:[
∂R

∂W

]T
·ψ =

[
∂f

∂W

]T
. (5)

Our optimization framework uses a hybrid-adjoint approach [35], where the partial derivatives in Eqs. (4)
and (5) are computed using the reverse-mode AD of Tapenade.

Figure 2 shows the relationships between the reverse AD modules of the analysis chain. The backprop-
agation of derivatives starts at the last code of the analysis chain, which is the CFD solver. For given
derivative seeds of the CFD residuals (R) and function of interest (f), ADflow uses reverse AD versions of
its subroutines to obtain derivative seeds for three parameter sets: flow state variables (W), volume mesh
nodes (rvol), and flow condition design variables (Xaero), such as angle of attack. Lyu et al. [48] give specific
details on differentiating the RANS equations in ADflow.

The volume mesh derivative seeds (rvol) are split based on their corresponding components (such as wing,
fuselage, and collar), and then transformed into surface node derivatives (rsurf) by pyWarp. Next, pySurf
receives the derivatives of the collar surface mesh points and executes its own reverse-mode AD to back-
propagate the derivative information to the triangulated surface nodes (rtria). Then pyGeo accumulates the
derivatives coming from the triangulated surfaces (given by pySurf) and from the structured surface meshes
(given by pyWarp) of each primary component. Finally, pyGeo uses the FFD mapping to backpropagate
derivatives to the FFD control points, which are translated into derivatives with respect to design variables
(Xw for wing design variables and Xf for fuselage design variables).
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Figure 2: Backpropagation of reverse AD derivative seeds throughout the analysis chain. The plus signs
indicate that the derivative seed should be accumulated from multiple sources. Subscripts ‘w’, ‘f’, ‘c’, and
‘aero’ indicate that quantities refer to wing, fuselage, collar, and flow conditions, respectively.

The derivative seeds of the geometric design variables of the wing and fuselage, (Xw and Xf), are then
concatenated with the flow condition design variables (Xaero) to yield the derivative seeds of the complete
design variable vector (X), closing the reverse AD propagation. pyHyp is not included in Fig. 2 because it
is only used during the initialization step, not during the optimization itself.

We now explain how to use the chain of Fig. 2 to solve Eqs. (4) and (5). The reverse derivative seeds
from Fig. 2 are related as follows:

W =

[
∂R

∂W

]T
· R +

[
∂f

∂W

]T
· f, (6a)

X =

[
∂R

∂X

]T
· R +

[
∂f

∂X

]T
· f. (6b)

If we feed the reverse AD chain with R = 0 and f = 1, then the resulting W will be the right-hand side
of Eq. (5). Now, if we use R = g and f = 0, then W will be the matrix-vector product of the left-hand side
of Eq. (5) for an arbitrary vector g. Therefore, we can use matrix-free linear system solvers to solve Eq. (5)
and obtain ψ. In this work we use the generalized minimal residual method (GMRES) [51] implementation
in PETSc [52–54] to solve the linear system. Finally, if we apply R = −ψ and f = 1 to the reverse AD
chain, we get, according to Eqs. (4) and (6b), X = [df/dX]T , which is the total derivative of the function
of interest required by the optimizer.

This procedure must be applied for every function of interest to assemble and solve the corresponding
adjoint systems. Because we use reverse AD throughout the entire analysis chain, the cost of computing
derivatives scales with the number of functions of interest and not with the number of design variables.

3.8 Noise in functions of interest
Preliminary tests of the optimization framework showed that the functions of interest obtained from the
CFD evaluations contain noise. However, in the code verification steps, no significant noise appeared in the

11



variations in mesh point locations after mesh regeneration using the triangulated surfaces. Therefore, we
suspect that the noise originates from changes in the overset connectivity.

To clarify this point, we generate a simple geometry consisting of a cylindrical fuselage and a tapered,
swept wing based on that of a Boeing 717, which is then simulated in transonic flow conditions (Mach
0.8). We define a single design variable for the geometry: the longitudinal wing position with respect to
the fuselage (∆xwing from Fig. 3). The fuselage mesh remains fixed while the wing mesh is horizontally
translated according to the value of the design variable.

The intersection line retains the same shape because the wing is translated in the longitudinal direction
along the cylindrical fuselage. Therefore, there is no need to regenerate the collar mesh using the triangulated
surfaces, though the effects of changes in overset connectivity remain. To amplify the effects of changes in
connectivity, the overset mesh used for the analysis has only 0.3 million cells.

We next run flow simulations for a range of wing positions; the results are shown in Fig. 4. The function
shows noisy patterns with amplitudes on the order of tenths of drag counts for small wing displacements
(see right side of Fig. 4). The noise drops to the order of hundredths of drag counts if the mesh is refined
to 1.3 million cells because the interpolation layers become thinner. Therefore, we conclude that the main
contribution to the noise comes from changes in overset connectivity.

Figure 3: Transonic configuration used to study wing translation. The design variable ∆xwing controls the
horizontal displacement of the wing.
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Figure 4: Variations in drag for different horizontal wing positions normalized by the fuselage diameter
(Dfuse). The right plot shows drag variations for small displacements. The noise caused by changes in
overset connectivity decreases as the mesh is refined.
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4 DLR-F6 optimization
To demonstrate the capabilities of pySurf, we use it to optimize the aerodynamic shape of the DLR-F6 wing–
fuselage configuration [55]. This model was used extensively to generate benchmarks for drag prediction [56,
57] and as a baseline geometry for aerodynamic shape optimization [58–60].

In the baseline DLR-F6 configuration, a separation bubble appears at the trailing edge of the wing–
fuselage junction at CL = 0.5 [56], which makes this problem particularly interesting for optimizing the
wing–fuselage junction. A fairing was designed for the Third Drag Prediction Workshop (DPW3) to remove
the recirculation region and improve drag convergence studies [61]; this configuration is called DLR-F6-FX2B.
The separation bubble provides motivation to use the MACH framework, now with the pySurf module, to
optimize the aerodynamic shape of the DLR-F6 wing–fuselage junction.

Since pySurf enables independent manipulation of the wing and fuselage, we define three major groups
of geometric design variables: wing twist, wing shape, and fairing shape variables. We also use angle of
attack as a design variable so that the optimizer has an additional degree of freedom to match the desired
lift coefficient. The objective of the optimization is to minimize the drag coefficient (CD) at CL = 0.5,
M = 0.75, and Re = 5 × 106, following the same standards as in DPW3.

In addition to the lift constraint, we also consider thickness constraints for the wing and a bubble-gum
constraint for the fuselage, which means that the fuselage shape cannot go inside its original outer-mold line.
Table 1 summarizes the overall optimization problem.

To better understand the behavior of the fairing design variables, we propose the two optimization
problems listed in Table 2. In the first problem, only the fairing design variables are active (Problem F).
Conversely, the second problem (Problem F+T+S) uses all design variables and constraints listed in Table 1
to allow simultaneous optimization of the wing and the junction.

Table 1: DLR-F6 aerodynamic shape optimization problem.
Variable/function Description Quantity

Minimize CD Drag coefficient

with respect to α Angle of attack 1
nfuse Normal displacement of fuselage FFD control points 16
τwing Wing section twist 8
zwing Vertical displacement of wing FFD control points 128

Total design variables 153

subject to CL = 0.5 Lift constraint 1
t/tinit ≥ 0.99 Wing thickness constraint 100
∆zwing,TE,upper = −∆zwing,TE,lower Fixed trailing edge 8
∆zwing,LE,upper = −∆zwing,LE,lower Fixed leading edge 8
0.00 m ≤ nfuse ≤ 0.05 m Variable bounds 16

Total constraints 133

Table 2: Identification tags for the baseline case and each optimization problem.
Tag Active design variables Description
B α CL matching for the baseline configuration
F α, nfuse Fairing optimization
F + T + S α, nfuse, τwing, zwing Fairing, wing twist, and wing shape optimization

4.1 Geometric design variables and constraints
The geometric design variables affect the position of the FFD control points. The wing FFD is composed of a
volumetric block with 8 spanwise by 8 chordwise by 2 vertical nodes (see Table 3). The 8 wing twist variables
(τwing) apply uniform rotation around the quarter-chord to each chordwise section of the FFD block. The
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128 wing shape variables (zwing) move each control point of the FFD in the vertical direction to control
the airfoil shape. To avoid shear twist, the control points on either side of the upper and trailing edges
are constrained to move equal amounts but in opposite directions. This ensures that the airfoil chordline is
affected only by twist variables and not by shape variables [62].

Because this is a purely aerodynamic shape optimization problem, we also need to enforce thickness
constraints to obtain a realistic design. In this case we define a grid of 10×10 points over the wing planform
and then require the thickness at these points to remain at or above 99% of the baseline thicknesses.

The fuselage FFD consists of a block of 8 × 6 × 2 nodes that encompasses the region around the wing
intersection (see Table 3). The nodes in the outer two layers of the FFD are fixed to guarantee C1 continuity
with the undeformed part of the fuselage [15], what leaves a total of 16 free control points. These control
points are only allowed to move in a direction normal to the fuselage surface and can only move away from
the center of the fuselage, thereby ensuring the bubble-gum constraint.

Table 3: Inputs required by pySurf; these are generated by ICEM CFD using the original IGES representation
of the DLR-F6 model.

Triangulated surfaces Structured surface meshes FFD blocks

Wing

Fuselage

4.2 Problem setup
To set up the analysis and optimization cycle in the MACH framework, we must provide triangulated surfaces,
structured surface meshes, and FFD boxes for all primary components. We therefore import the IGES files
of the DLR-F6 configuration in ICEM CFD [63] to generate these inputs, which are listed in Table 3.

The wing structured surface mesh has 127,488 quadrilaterals, and the fuselage structured surface mesh
has 105,344 quadrilaterals. The wing and fuselage triangulated surfaces are refined in the high-curvature
regions (such as the leading edge), where we expect the collar mesh to grow. In this optimization, the wing
triangulated surface has 9,948 elements, whereas the fuselage triangulated mesh has 19,902 elements, making
a total of 29,850 triangles, which are mainly concentrated in the region of the wing–fuselage intersection.

Refining the triangulated surface to 1.3 million triangles for the collar mesh generation causes an average
displacement of 0.02 mm for the CFD mesh nodes at the wing–fuselage intersection line and a variation of
0.08 drag counts for the aerodynamic analysis of the baseline configuration, as shown in Fig. 5. Therefore,
the optimization results obtained with the former triangulated surface fall within analysis and manufacturing
tolerances.

While generating the triangulated surface, we also generate line segments to outline important features
of the geometry, such as the two corners of the blunt trailing edge. We project the marched collar mesh
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Figure 5: Effect of refinement of triangulated surface over CFD results. The coarse triangularization is used
for optimization.

nodes to the line segments to ensure that the corresponding features are represented in the CFD mesh, as
explained in Sec. 2.3.

In the next step, we use pySurf to perform the following operations on the triangulated surfaces to
generate the collar mesh:

1. Compute the intersection between the wing and fuselage triangulated surfaces.

2. Split the intersection curve at the wing leading edge and at the trailing edge corners; this splits the
intersection curve into three segments: upper skin, lower skin, and blunt trailing edge.

3. For each of these segments, create node distributions that are appropriate for CFD analysis (for in-
stance, with refined leading and trailing edges).

4. Merge the three remeshed curve segments back into a single curve.

5. Use the merged curve as a starting feature for the hyperbolic surface mesh marching on the wing and
on the fuselage to generate the collar mesh.

pySurf saves the order of these operations for the reverse propagation of derivatives. The execution of
these steps generates the collar mesh shown in Fig. 1.

In the initialization step, we use pyHyp to automatically extrude the surface meshes into near-field volume
meshes. The extrusion parameters, such as initial cell size and growth ratios, follow the DPW3 guidelines
for the coarse mesh level. The near-field meshes are extruded up to 2.5 times the mean aerodynamic chord
of the model.

The background mesh, which extends the domain to the far-field, is generated in two steps: First, we
generate a block of Cartesian cells to fill the bounding box defined by the near-field meshes. Next, we
use hyperbolic extrusion once again to march the outer surface of this Cartesian mesh to reach 100 mean
aerodynamic chords, which is the far-field distance specified by DPW3. The final overset mesh has 1.1
million cells.

4.3 Optimization results
We first optimize the DLR-F6 configuration only with respect to the fuselage shape variables (Problem F in
Table 2). All other design variables presented in Table 1 are fixed in this problem. The center of Figure 6
shows the optimized fairing for Problem F.

The optimized configuration reduces the drag by approximately five counts. The mesh deformation
method discussed in Sec. 3.4 generates negative volume cells in a single design point evaluation during the
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Figure 6: Rear views comparing fairing sizes obtained from different optimization problems. The fairing
shrinks as the optimizer gains more control over the wing properties.

optimization, when the volumes of three cells become negative. Nevertheless, the optimizer adjusts the size
of the line search step and proceeds without further negative volume issues.

Some fairing design variables reach the upper bounds for nfuse specified in Table 1. The fairing extends
even more if we relax these bounds, but excessive stretching leads to problems involving mesh deformation
and overset hole cutting. This behavior is explained by noting that, since the optimizer does not have the
freedom to modify the wing geometry, it tries to use the fairing to change the wing’s lift distribution. The
fairing is enlarged to unload the inboard region of the wing and shift the lift distribution toward the wing
tip. As shown in Fig. 7, the increased outboard load is closer to an elliptical distribution, which decreases
the lift-induced drag.

Next, we solve Problem F + T + S listed in Table 2 to investigate the effect of adding the wing design
variables. No negative volume cells develop in this second optimization case. Table 4 lists various relevant
performance figures regarding the two optimizations, such as optimality and wall time. Neither optimization
attains the desired reduction in optimality because both terminate due to numerical difficulties caused by
noise in the functions of interest, as explained in Sec. 3.8. The noise becomes a problem when the optimizer
is fine tuning the design near the optimum, where variations indicated by the gradients become smaller than
the noise amplitude. Nevertheless, for each problem, the optimizer still reduces the drag compared with the
baseline configuration.

Table 4 shows that increasing the number of design variables tends to reduce the drag. The full opti-
mization (F + T + S) reduces drag by 15 counts (i.e., 5%) compared with the baseline configuration.

Table 4: Performance figures for the baseline configuration and for each optimization problem.
Problem CL CD (counts) CD reduction (%) Initial optimality Final optimality Wall time (hours) Processors
B 0.5002 291.99 0.00 - - 0.2 64
F 0.4993 286.76 1.79 7.4 × 10−1 1.4 × 10−1 1.2 64
F + T + S 0.5000 276.85 5.19 1.2 × 10−2 4.7 × 10−3 6.0 128

Figure 6 shows how the optimized fairing geometry changes upon the activation of wing twist and wing
shape design variables. Including more degrees of freedom in the optimization reduces the fairing size.
Since the optimizer has additional variables to tailor the wing, the fairing variables are used only for local
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Figure 7: Comparison of aerodynamic characteristics of optimized configurations. (B) is the baseline con-
figuration and (F) is the fairing optimization. The inclusion of twist variables (T) allows the optimizer to
achieve more efficient lift distributions that are closer to an elliptical distribution, while adding wing shape
variables (S) results in smoother pressure distributions. The equivalent elliptical distribution (E) is also
shown.

adjustments to the wing–fuselage junction flow pattern, which requires smaller deformations. Therefore, the
fairing design variables no longer reach the prescribed bounds.

Figure 7 shows the lift and drag distributions for the different optimized configurations. The inclusion of
twist variables allows the optimizer to reach a more elliptical lift distribution by reducing the wing mounting
angle while increasing the incidence at the outboard sections. The introduction of wing shape design variables
removes shocks and results in designs with smoother lift distributions (see Fig. 7b), because the optimizer
can fine tune the thickness and camber along the wing.

Figure 8 shows the normal displacements on the fuselage surface for the two optimization problems. To
prevent recirculated flow in both problems, the optimizer adds two bumps on the fuselage: one near the
leading edge and another near the trailing edge.

The fairing design variables effectively remove the separated region of the junction trailing edge in all
optimization problems in which they are active, as seen in Fig. 9.

Finally, we show that the drag reduction of the optimized configurations is still present at finer mesh
levels. Figure 10 plots the mesh convergence study for the baseline and optimized configurations. The
relative ranking of the configurations in terms of drag remains the same for all mesh levels.

17



Figure 8: Contour plot showing the distance over which the fuselage surface moves during optimization. The
red line represents the wing–fuselage intersection curve of the baseline configuration. To reduce reversed-flow
regions, the optimizer extends the fairing both at the leading and trailing edges. When the optimizer controls
only the fairing, the fuselage surface shifts a relatively large distance.

Figure 9: Trailing edge of wing–fuselage junction after each optimization problem. Red regions indicate
reversed flow. The redesigned fairings eliminate the recirculation bubble in both optimizations.
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5 Conclusions
A new geometry module, pySurf, was implemented to automate collar mesh generation based on intersec-
tions and also to independently manipulate geometry components in problems involving aerodynamic shape
optimization. The intersection computation and surface mesh generation were differentiated to enable the
use of gradient-based optimization techniques for a rapid design cycle.

It was demonstrated that independent component manipulation, mesh deformation, and automatic collar
mesh generation were feasible for optimization tasks. It was also found that changes in the overset connec-
tivities cause numerical noise in the functions of interest. This noise level can be reduced by refining the
overset meshes. It was verified that the optimizer still manages to improve the design, even though it does
not strictly meet the optimality criteria.

The new geometry manipulation approach was used to design the wing–fuselage junction of the DLR-F6
and it was shown that a fairing-alone optimization might try to solve issues from the overall configuration,
which is unproductive. Adding wing design variables provides more options for the optimizer to solve these
issues, leaving the task of locally adjusting the wing–fuselage junction flow to the fairing design variables,
as originally intended. Therefore, it was concluded that one should include as many variables as possible to
avoid this issue. When all variables are active, the optimizer reduces drag by 15 counts (i.e., 5%) compared
with the baseline design.

Future work will focus on the application of the framework to optimize unconventional configurations,
such as truss-braced wings. It is also necessary to investigate methods to reduce the noise associated with
changes in the overset connectivity, such as switching to a frozen connectivity approach at the end of the
optimization.
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[53] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout,
V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., Zampini, S.,
Zhang, H., and Zhang, H., “PETSc Web page,” http://www.mcs.anl.gov/petsc, 2016.

[54] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout,
V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp, K., Smith, B. F., Zampini,
S., Zhang, H., and Zhang, H., “PETSc Users Manual,” Tech. Rep. ANL-95/11 - Revision 3.7, Argonne
National Laboratory, 2016.

[55] Brodersen, O., “Drag Prediction of Engine-airframe Interference Effects Using Unstructured Navier-
Stokes Calculations,” Journal of Aircraft , Vol. 39, No. 6, 2002, pp. 927–935.

[56] Laflin, K. R., Klausmeyer, S. M., Zickuhr, T., Vassberg, J. C., Wahls, R. A., Morrison, J. H., Broder-
sen, O. P., Rakowitz, M. E., Tinoco, E. N., and Godard, J.-L., “Data Summary from Second AIAA
Computational Fluid Dynamics Drag Prediction Workshop,” Journal of Aircraft , Vol. 42, No. 5, 2005,
pp. 1165–1178.

[57] Vassberg, J., Tinoco, E., Mani, M., Brodersen, O., Eisfeld, B., Wahls, R., Morrison, J., Zickuhr, T.,
Laflin, K., and Mavriplis, D., “Summary of the Third AIAA CFD Drag Prediction Workshop,” 45th
AIAA Aerospace Sciences Meeting and Exhibit , 2007. doi:10.2514/6.2007-260, AIAA 2007-260.

[58] Lee, B. J., Yim, J. W., Yi, J. S., and Kim, C., “Aerodynamic Shape Optimization Using Discrete
Adjoint Formulation Based on Overset Mesh Technique,” KSAS International Journal , Vol. 8, No. 1,
2007, pp. 95–104.

[59] Brezillon, J. and Dwight, R. P., “Applications of a Discrete Viscous Adjoint Method for Aerodynamic
Shape Optimisation of 3D Configurations,” CEAS Aeronautical Journal , Vol. 3, No. 1, 2012, pp. 25–34.

[60] Xu, S., Timme, S., Mykhaskiv, O., and Müller, J.-D., “Wing-body Junction Optimisation with CAD-
based Parametrisation Including a Moving Intersection,” Aerospace Science and Technology , Vol. 68,
2017, pp. 543–551.

23

http://dx.doi.org/10.2514/6.2013-2581
http://dx.doi.org/10.1137/S1052623499350013
http://dx.doi.org/10.2514/1.J052184
http://dx.doi.org/10.1137/0907058
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.2514/6.2007-260


[61] Vassberg, J., Sclafani, A., and DeHaan, M., “A Wing-body Fairing Design for the DLR-F6 Model: a
DPW-III Case Study,” 23rd AIAA Applied Aerodynamics Conference, 2005. doi:10.2514/6.2005-4730,
AIAA 2005-4730.

[62] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape Optimization Investigations
of the Common Research Model Wing Benchmark,” AIAA Journal , Vol. 53, No. 4, April 2015, pp. 968–
985. doi:10.2514/1.J053318.

[63] ANSYS ICEM CFD 14.0, ANSYS, Inc., 275 Technology Drive, Canonsburg, PA, October 2011.

24

http://dx.doi.org/10.2514/6.2005-4730
http://dx.doi.org/10.2514/1.J053318

	1 Introduction
	2 Methodology
	2.1  Overview of collar mesh generation 
	2.2  Computation of intersection 
	2.3  Generation of hyperbolic surface mesh 
	2.4  Automatic differentiation 

	3 Optimization framework
	3.1  Geometry modeler—pyGeo 
	3.2  Collar mesh generator—pySurf 
	3.3  Volume mesh generator—pyHyp 
	3.4  Volume mesh deformation—pyWarp 
	3.5  CFD solver—ADflow 
	3.6  Optimizer—SNOPT 
	3.7  Derivative computation throughout the framework 
	3.8  Noise in functions of interest 

	4 DLR-F6 optimization
	4.1  Geometric design variables and constraints 
	4.2  Problem setup 
	4.3  Optimization results 

	5 Conclusions
	6 Acknowledgments

