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Ney R. Secco and Joaquim R. R. A. Martins

Abstract The strut-braced wing aircraft configuration promises to reduce fuel burn by enabling higher
spans that reduce lift-induced drag. A successful design for this configuration depends on a careful trade-off
between the various sources of drag and structural weight. When using CFD-based aerodynamic shape
optimization, generating high-quality structured meshes for the strut-braced wing configuration becomes
challenging, especially near junctions. Furthermore, mesh deformation procedures frequently generate neg-
ative volume cells when applied to these structured meshes during optimization. We address this issue by
using overset meshes and a component-based parametrization technique to achieve a flexible design opti-
mization cycle capable of handling changing junctions. We use this approach to minimize drag of the PADRI
2017 strut-braced wing benchmark for a fixed lift constraint at transonic flight conditions. The drag of the
optimized configuration is 15% lower than the baseline due to the reduction of shocks and separation in the
wing-strut junction region. This result represents an example in which high-fidelity modeling is required
to quantify the benefits of a new aircraft configuration and address potential issues during the conceptual
design.
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1 Introduction
One approach to decrease aircraft fuel burn is the reduction of induced drag through longer wing spans.
However, when aerostructural trade-offs are considered, there is a limit to the span that can be achieved
before drag reduction is overwhelmed by structural weight increase [1, 2]. The strut-braced wing (SBW)
configuration addresses this issue by adding a strut to alleviate the bending moment in the main wing. The
additional strut allows the wing to have a longer span, lowering induced drag [3]. The strut also enables
the reduction of the main wing thickness-to-chord ratio, thus decreasing structural weight and wave drag.
Despite these benefits, the wing-strut junction increases interference drag; thus, the feasibility of this type
of aircraft depends heavily on the synergy between the wing and the strut, as well as on the careful design
of the junctions.

The truss-braced wing (TBW) is a variant of the SBW configuration in which the main wing has additional
supporting elements besides the strut, called juries [4]. The juries are used to stabilize buckling modes of the
wing and strut [5]. However, the additional junctions and the blockage effect of the juries in the wing-strut
gap result in even more complex trade-offs between aerodynamics and structures.

The Hurel–Dubois HD-34, built in the 1950’s and primarily used for aerial photography, was one of the
first TBW airplanes to be successfully flown [6]. Since then, multiple studies have been conducted to verify
the feasibility of this configuration for commercial transport, motivated by the desire to reduce fuel burn.
For instance, a study conducted by NASA in 1980 concluded that the SBW configuration would have a
lower fuel consumption when compared to conventional configurations, though the loss in productivity due
to lower cruise speeds and increase in costs associated with the wing size and complexity could hinder the
practicality of this configuration [7].

Despite these concerns, studies of SBWs and TBWs continued as new analysis and design tools became
available. Efforts in the late 1990’s and early 2000’s assessed the feasibility of the SBW in a commercial
transport mission profile using multidisciplinary tools involving aerodynamics, structures, propulsion, and
stability considerations [8, 9]. The complexity of the multidisciplinary environment often forced the use
of medium-fidelity and semi-empirical aerodynamics, such as discrete vortex method for induced drag [10],
Korn equation for wave drag, and skin-friction coefficients for parasite drag to obtain a tractable optimiza-
tion problem. In some efforts, the interference drag associated with junctions was estimated via surrogate
models [11, 12] for conceptual design of SBW and TBW configurations [3]. These models were often non-
ideal as the computational cost associated with the surrogate model generation could limit the number of
design parameters and their bounds.

More recently, NASA and Boeing have conducted analyses of the TBW configuration using both wind
tunnel tests and computational fluid dynamics (CFD) simulations as part of the SUGAR (Subsonic Ultra-
Green Aircraft Research) project [5]. One TBW configuration may even be included in the next-generation
of NASA X-planes to verify its potential for fuel burn reduction [13].

This increasing interest and investment in these configurations justifies efforts to increase the fidelity
of models used in SBW and TBW analyses to understand in more detail the aerodynamic and structural
interaction among the aircraft components and to correctly quantify the potential performance gains. For
instance, Carrier et al. [6] used a Reynolds-averaged Navier–Stokes (RANS) solver to compute aerodynamic
loads on the main wing which were then coupled with a finite-element model to compute structural de-
formation. Gagnon and Zingg [14, 15] performed Euler-based aerodynamic shape optimization of a SBW
considering both the main wing and strut.

In a previous study, we conducted a RANS-based aerodynamic shape optimization (ASO) of a TBW in
the transonic regime by using shape and twist design variables [16]. Though this study offered insights into
the performance of TBW configurations, it was limited in several respects that have since been addressed.

Firstly, it utilized a structured multiblock mesh for CFD analyses that prevented changes in the wing-strut
junction geometry due to complications in deforming the mesh near the concave regions of the junctions with-
out generating negative volume cells. We have since extended our CFD solver to handle overset meshes [17].
The overset methodology consists in having multiple overlapped meshes in space and then interpolating
information among them to reconstruct the overall flow field. This approach allows the independent gen-
eration of high-quality meshes fitted to each component and junction using, for instance, hyperbolic mesh
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extrusion [18]. Since overset meshes consist of overlapping structured meshes, the advantages of this type of
mesh, such as memory efficiency and mesh quality, still apply [19].

Overset meshes have already been used in ASO applications. Liao and Tsai [20] used overset meshes for
Euler-based optimization of airfoils using the continuous adjoint approach. Lee and Kim [21] implemented
the discrete adjoint method for an Euler-based CFD solver and optimized the wing of a wing-body aircraft
configuration using overset meshes. Lee et al. [22] later extended their methodology to the RANS equations
and the k-ω turbulence model to minimize distortion in a boundary-layer-ingestion engine inlet. Kenway
et al. [17] used overset meshes and the hybrid adjoint method to optimize the wing of the Common Research
Model (CRM) aircraft configuration while using RANS analysis with the Spalart–Allmaras (SA) turbulence
model.

Secondly, our previous TBW optimization was limited by characteristics of our geometry manipulation
module. The previous geometry manipulation method operated on the entire geometry, rather than on
individual components. Therefore, it was not possible to implement independent sets of design variables for
each component. For instance, if we changed the spanwise wing-strut intersection position, the lower surface
of the wing would be moved as well, causing unwanted compression and extension of surface cells on the
wing CFD mesh. We recently developed a component-based geometry manipulation module that allows the
strut to freely move with respect to the wing, avoiding the prior geometry limitations [23].

The goal of this work is to perform RANS-based aerodynamic shape optimization of a SBW in the
transonic regime using overset meshes and component-based geometry manipulation to allow wing-strut
junction shape design. We use the baseline SBW geometry and flow conditions from the Platform for Aircraft
Drag Reduction Innovation workshop (PADRI 2017) [24]. This geometry, shown in Fig. 1, consists of three
primary components: fuselage, wing, and strut. The fuselage geometry and the wing-fuselage junction is
kept unchanged in this work. Table 1 shows the main dimensions of each component and the flow condition
used for aerodynamic analysis.

We use a RANS overset solver for aerodynamic analysis that allows us to capture viscous effects, such as
separation around the junctions. The outer-mold line (OML) of each primary component is modified via free-
form deformation (FFD) boxes, and the intersections among these components are recomputed after every
geometry update using triangulated surfaces. The RANS analyses provide a more accurate quantification of
the drag reductions that are possible for the SBW, thus improving upon Euler-based studies [14, 15, 25] and
complementing previous low-fidelity multidisciplinary design optimization estimates [3, 4, 8, 9, 26].

Figure 1: Baseline SBW configuration of the PADRI 2017 workshop. Views are in different scales.

2 Optimization Framework
High-fidelity aircraft optimization requires a multidisciplinary framework that should be computationally
efficient and massively parallelized due to the high computational cost of each analysis. Gradient-based
optimization is a must due to the large number of design variables [27]; thus, this framework should be
capable of efficiently computing derivatives of the objective and constraint functions with respect to all
design variables.

The MACH framework (multidisciplinary design optimization for aircraft configurations with high fi-
delity) meets these needs [28]. Even though MACH has support for aerostructural optimization, this work
will exclusively utilize the modules required for aerodynamic shape optimization. These include the geometry
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Table 1: Geometric characteristics and flight condition used for the baseline SBW configuration analysis.

Wing Strut Fuselage

Planform area [m2] 161 Planform area [m2] 28.9 Length [m] 41.7
Span [m] 55.6 Span [m] 33.4 Diameter [m] 4.3
Mean aerodynamic chord [m] 3.264 Mean aerodynamic chord [m] 0.865
Aspect ratio 19.2 Aspect ratio 38.6
Taper ratio 0.256 Taper ratio 1.00
1/4 Chord sweep [deg] 15.0 1/4 Chord sweep [deg] 10.9
Dihedral [deg] -4.0 Dihedral [deg] 10.2

Flight Condition

Mach 0.72
α [deg] 1.0
Altitude [ft] 30,000

manipulator (pyGeo), the collar mesh generator (pySurf), the volume mesh deformation module (pyWarp),
and the flow solver (ADflow). We use these modules in each design iteration cycle to compute function values
and their gradients, which are then provided to the numerical optimizer (SNOPT). We also use a volume
mesh generation module (pyHyp) to generate the initial CFD meshes used throughout the optimization.

The optimization framework requires three groups of inputs for each primary component of the geometry:

Structured surface mesh (Fig. 2), which is used to generate the volume mesh by the hyperbolic extrusion
module (pyHyp). The mesh should be constructed with the desired resolution for the CFD analysis
and refined near intersections to facilitate the overset hole cutting process.

Triangulated (unstructured) surface mesh (Fig. 3), which is used as the reference for intersection
computation and collar mesh generation by the collar mesh generation module (pySurf). This tri-
angulated mesh should be finer than the structured surface mesh in order to appropriately represent
high-curvature regions (such as leading edges) for the collar mesh generation process.

Free-form deformation (FFD) box (Fig. 4), which envelops the surfaces described above and whose
control points give the necessary shape control resolution for the design optimization.

The overall computational framework arrangement is shown in the extended design structure matrix
(XDSM) [29] diagram of Fig. 5. Elements with the (0) superscript refer to the baseline configuration, while
the ∗ superscript denotes optimized values. Stacked elements indicate that the given data or module should
be defined for each aircraft component and collar mesh. This figure also highlights how the volume mesh
generation process is only used at the initialization step and then replaced by the mesh deformation module
during the optimization. The framework modules are described in the next sections, including utilization
details of the three sets of inputs. Further details on the MACH framework are provided by Kenway et al.
[28].
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Figure 2: Structured surfaces meshes of the primary components of the aircraft. The O-grids near intersec-
tions increase the cell density to facilitate the overset hole cutting process.

Figure 3: Triangulated surfaces used for intersection detection and collar mesh generation.
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Figure 4: FFD boxes of the primary components whose shape will be optimized. The dots represent the
FFD box control points.

X
(0)
tria X

(0)
surf DV

(0)
geo , α(0)

X
(0)
tria, X

(0)
surf

X
(0)
FFD

0:
pySurf 1 : X

(0)
collar

1:
pyHyp 5 : X

(0)
vol

DV ∗
geo, α

∗ 2, 8→3:
Optimization

3 : DVgeo 6 : α

3:
pyGeo

4 : Xtria 5 : Xsurf 7 : t

4:
pySurf

5 : Xcollar

5:
pyWarp

6 : Xvol

6:
ADflow

7 : CL, CD

8 : f, g
7:

Functions

Legend:
Xtria: triangulated mesh nodes
Xsurf : surface mesh nodes
XFFD: FFD nodes
Xcollar: collar mesh nodes
Xvol: volume mesh nodes
DVgeo: geometric design variables
α: angle of attack
t: OML thicknesses
CL: Lift coefficient
CD: Drag coefficient
f : objective function
g: contraint functions

Initialization
step

Figure 5: XDSM of the overall optimization framework. The initialization step generates the reference
volume nodes for the mesh deformation.

6



2.1 Geometry manipulation—pyGeo
pyGeo is a Python module capable of manipulating geometries with the FFD approach [30]. It uses structured
hexahedral boxes of control points (which we call FFD boxes) surrounding the geometry that we want to
manipulate to define a tri-variate B-spline mapping in the space. We then embed the structured surface
meshes and the triangulated meshes of the geometry by determining the parametric coordinates of each
surface node in these B-spline boxes. Any changes done to the control points can be transferred to the
embedded nodes via the B-spline mapping. With our aim of optimizing the shapes of the wing and the strut
of the SBW, we need to create two FFD boxes, one for each component (Fig. 4).

The positions of the FFD box control points become the primary shape variables of the problem. In
addition, pyGeo can translate high-level design variables such as twist, sweep, and span by simultaneously
moving several control points in a consistent manner. We describe the design variables defined for the SBW
optimization in more detail in Sec. 3.

The FFD method does not generate a new geometry by itself: it parametrizes displacements of the em-
bedded mesh nodes, allowing the optimization framework to be agnostic with respect to geometry generation
tools. Furthermore, the FFD method is suitable for gradient-based optimization since the B-spline mapping
is analytically differentiable [31].

We need to embed the surface nodes of the structured meshes and of the triangulated meshes into the
same FFD box so that both surface representations are subject to consistent deformations during every
optimization cycle. The updated triangulated surfaces are used by the pySurf module to regenerate surface
collar meshes, while the updated structured surface meshes are used by the mesh deformation module
(pyWarp) to update the volume nodes.

pyGeo can also measure the thicknesses of the embedded components. This allows us to define thickness
constraints to prevent unfeasible designs from the structural point of view, as we discuss in Sec. 3.

2.2 Collar mesh generation—pySurf
The use of overset meshes requires that each intersection between primary components have its own dedicated
mesh, which is called the collar mesh [32]. This specialized mesh is responsible for accurately representing the
intersection geometry. Since pyGeo changes each primary component independently, we need to recompute
intersections among these components to appropriately update the collar meshes, which is achieved by the
pySurf module [23].

pySurf uses the triangulated surfaces representing each primary component to detect intersections. In
every optimization iteration, pyGeo updates the triangulated surface nodes using FFD. Then pySurf uses
the updated triangulated surfaces (Fig. 6a) to find intersection curves among the components (Fig. 6b). We
use an alternating digital tree (ADT) search [33] to efficiently detect candidate intersecting triangles, upon
which we apply the actual triangle-triangle intersection algorithm [34].

Once we have the new intersection curve, we use hyperbolic surface mesh marching algorithms [35] to
grow structured surface meshes on each side of the intersection (Fig. 6c). We always distribute the same
number of points along the intersection curve prior to the mesh marching to ensure that the mesh topology
and the number of surface nodes remain the same throughout the optimization.

Before the optimization, the automatically generated surface collar mesh is used by the volume mesh
generation module (pyHyp) to generate the baseline volume collar mesh, as shown in Fig. 5. In contrast,
during the optimization, the mesh deformation module (pyWarp) uses the updated position of the collar
mesh surface nodes to deform the cells of the volume mesh. This procedure avoids the mesh regeneration
process, which is costly and generates discontinuities in the design space.

We apply automatic differentiation (AD) to the intersection detection and surface mesh marching algo-
rithms to generate an equivalent source code that computes derivatives of the collar mesh nodes with respect
to the triangulated surface nodes. Because the number of input variables of the overall optimization problem
is greater than the number of functions of interest, we generate the differentiated code with the reverse mode
of the Tapenade AD engine [36].

For the purposes of this work, we need to generate one triangulated surface for each primary component
of the SBW (Fig. 3). The SBW arrangement results in three intersections among these components and thus
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requires the corresponding collar meshes, as shown in Fig. 7 for the case of the baseline geometry.

a) Triangulated surfaces b) Intersection curve c) Hyperbolic mesh marching

Figure 6: Steps of the surface collar mesh generation for the wing-strut intersection.

Figure 7: Collar meshes generated over the triangulated surfaces of the SBW by pySurf.

2.3 Volume mesh generation—pyHyp
The CFD solver used in this work requires a structured volume mesh fitted to the airplane OML. We use
hyperbolic volume mesh marching schemes [18] to extrude structured surface meshes into volume meshes. We
apply this methodology to the user-provided structured surface meshes of each primary component (Fig. 2)
and to the surface collar meshes generated by pySurf (Fig. 7). These surface meshes should meet the required
resolution for CFD simulations, for instance, by refining leading edges, trailing edges, and junction areas.

The mesh extrusion for the SBW configuration is shown in Fig. 8. This step is completed at the be-
ginning of the optimization to generate the baseline volume meshes, as indicated by the initialization step
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a) Initial surface meshes b) Extruded near-field meshes

Figure 8: Hyperbolic extrusion of the surface meshes into volume meshes.

of Fig. 5. These meshes are subsequently deformed by the mesh deformation module (pyWarp) throughout
the optimization, as this process is computationally less expensive than regenerating new volume meshes at
each design point. Therefore, there is no need to differentiate the pyHyp module.

The surface meshes are extruded to a small extension, from 1 to 3 mean aerodynamic chords; the overset
interpolation boundary conditions are then applied at the external surface of those meshes. Then, pyHyp
uses the bounding box of these near-field volume meshes to create a background mesh that reaches an
appropriate distance for the far-field boundary conditions. The background mesh is generated in two steps.
First, we compute the bounding box defined by the near-field meshes and fill this box with Cartesian cells
based on an user-provided desired cell size. Next, we use hyperbolic extrusion to march the exposed surface
of this Cartesian block to the far-field distance. This distance is usually around 100 mean aerodynamic
chords, as recommended by the Third Drag Prediction Workshop [37]. The complete overset mesh of the
SBW configuration contains 5.6 million cells.

2.4 Volume mesh deformation—pyWarp
We use a mesh deformation algorithm (pyWarp) to modify the initial volume meshes based on surface modi-
fications dictated by the shape design variables at each optimization iteration. The pyWarp module performs
the mesh deformation using an inexact explicit interpolation algorithm [38] to propagate the displacements
and rotations of the surface nodes to the volume nodes. pyWarp requires updated positions of the surface
mesh nodes as inputs. pyGeo provides the surface nodes of the primary components, while pySurf outputs
the collar mesh surface nodes, as indicated in Fig. 5.

Each overset volume mesh is deformed independently under the influence of only its own surface nodes.
For instance, the strut surface nodes only affect the deformation of the strut CFD mesh. This prevents the
crushing of volume cells near the junction regions due to the simultaneous movement of primary components.
The background mesh has no associated surface, and thus remains fixed throughout the optimization.

We apply Tapenade’s reverse mode AD to the pyWarp module to compute the derivatives of the volume
node positions with respect to the surface mesh changes.

2.5 Flow solution—ADflow
ADflow is a flow solver capable of solving Euler, laminar Navier-Stokes, and RANS equations in multiblock
structured or overset meshes with a second-order cell-centered finite volume formulation. The inviscid
fluxes are discretized with central-differencing and artificial dissipation, while the viscous fluxes use standard
central-differencing. The code is based on the SUmb solver [39] and is augmented by implementing a Newton–
Krylov solver, adjoint derivative computation [40], and overset mesh capability [17].

We use the SA-R-QCR2000 turbulence model for all flow simulations in this work, which is the standard
SA turbulence model [41] augmented with rotation correction (R) [42] and quadratic constitutive relationship

9



(QCR2000) [43]. These corrections are necessary because the standard SA model overestimates trailing edge
separation bubble sizes at junctions as the mesh is refined [44]. Furthermore, the standard SA model does
not capture secondary recirculation structures at junction corners [45].

ADflow initially uses time-marching schemes, such as fourth-order Runge–Kutta or diagonalized diagonal
dominant alternating direction implicit scheme [46], to approach the basin-of-attraction of the steady state.
ADflow then switches to a Newton–Krylov algorithm to accelerate the convergence towards the steady
solution [47]. The switching criterion is determined when time residuals drop below a user-specified threshold.

This CFD solver uses implicit hole cutting [19, 48] to determine the overset connectivities. This includes
flagging which cells should be blanked, interpolated, or computed. We use first-order interpolation in the
dual mesh to compute the interpolated cell values. We then utilize zipper meshes [49] to fill the surface gaps
between overlapped meshes to provide a watertight surface for aerodynamic force integration. The overset
connectivity is recomputed in every optimization iteration to take into account the relative displacements
among the overset meshes. Kenway et al. [17] provide further details on the overset implementation in
ADflow.

ADflow computes the sensitivities of the aerodynamic forces and moments with respect to the nodal
coordinates with the hybrid adjoint approach [40, 50], in which we use Tapenade’s reverse mode AD to
compute the partial derivatives in the discrete adjoint equations. We use the preconditioned GMRES [51]
within PETSc [52–54] to solve the resulting adjoint linear system.

The differentiated code does not consider the effect of the mesh coordinates on the overset interpolation
weights. We solve this nonlinear relationship with an iterative Newton search during the forward execution of
the code, and we are investigating appropriate ways to efficiently backpropagate derivatives across this step.
Nevertheless, this assumption does not hinder the optimization [23] as we show in Sec. 4. The interpolation
weights are updated in the next forward execution of the code.

2.6 Optimization—SNOPT
The analysis modules previously described provide function values and gradients to SNOPT (sparse nonlinear
optimizer) [55], which is a gradient-based optimizer that implements the sequential quadratic programming
method. SNOPT handles large-scale nonlinear optimization problems with thousands of constraints and
design variables and is thus suitable for aerodynamic shape [56–58] and aerostructural optimizations [59–61].

We use pyOptSparse to handle the interface between SNOPT and the other modules of the MACH
framework. pyOptSparse is an open source Python module that wraps several optimizers under a unified
object-oriented interface. It is based on the original pyOpt framework [62]. pyOptSparse is available at
https://bitbucket.org/mdolab/pyoptsparse.

3 Design optimization problem
The optimization objective in this work is to minimize the drag of the SBW for a given Mach number, lift
coefficient, and wing planform. In other words, the optimizer may alter airfoil shapes and spanwise twist
distributions, while the span and chords of the wing and strut remain fixed. The changes are applied over
the whole wing and strut, including the wing-strut junction region.

We start with the baseline IGES description of the SBW provided in the PADRI 2017 website [24] to create
structured surface meshes (Fig. 2) and triangulated surface meshes (Fig. 3) for each primary component. We
then embed both surface meshes of each component into their corresponding FFD boxes (Fig. 4) to allow
pyGeo to manipulate their shape. The fuselage has no associated FFD since its geometry remains fixed for
this optimization. Regardless, we still require the fuselage triangulated surface for collar mesh generation.
The shape variables consist of hundreds of control points distributed over the FFD boxes. This leads to the
general formulation of the optimization problem in Table 2.

The wing FFD is comprised of two layers of 16 chordwise by 20 spanwise control points, with one layer for
the upper surface and one for the lower. These control points move vertically to change the underlying wing
surface shape. Control points within the same chordwise station can also be simultaneously rotated around
the quarter-chord to change the local twist. Wing twist is controlled in 10 spanwise locations along the FFD
and the intermediate twist values are interpolated between these locations. To avoid shear twist, the pairs
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Table 2: SBW aerodynamic shape optimization problem.

Variable/function Description Quantity
minimize CD Drag coefficient

with respect to −1.0 ≤ α ≤ 3.0 Angle of attack [deg] 1
−5.0 ≤ τwing ≤ 5.0 Wing sections twist [deg] 10
−0.05 ≤ ∆zwing ≤ 0.05 Vertical displacement of wing FFD control points [m] 640
−10.0 ≤ τstrut ≤ 5.0 Strut sections twist [deg] 11
−0.06 ≤ ∆nstrut ≤ 0.06 Normal displacement of strut FFD control points [m] 242

Total design variables 904

subject to CL = 0.4058 Lift constraint (baseline at α = 1.0 deg) 1
t/tinit,wing ≥ 0.999 Wing thickness constraint 60
∆zwing,TE,upper = −∆zwing,TE,lower Wing fixed trailing edge constraint 20
∆zwing,LE,upper = −∆zwing,LE,lower Wing fixed leading edge constraint 20
t/tinit,strut ≥ 0.999 Strut thickness constraint 84
∆nstrut,TE,upper = −∆nstrut,TE,lower Strut fixed trailing edge constraint 11
∆nstrut,LE,upper = −∆nstrut,LE,lower Strut fixed leading edge constraint 11

Total constraints 213

Figure 9: Points of the wing (blue) and strut (red) where thickness constraints are enforced.

of control points on the leading and trailing edges must move equal distances in opposing directions. This
requirement is enforced by the leading and trailing edge constraints listed in Table 2.

The strut has control points defined for both the upper and lower surfaces, similar to the wing. The
control points of each surface are distributed in a mesh of 11 chordwise by 11 spanwise control points. Each
control point can be independently moved in the direction normal to the strut surface to change the thickness
and camber distribution along the strut. In addition, 11 twist variables are defined for the strut sections
(one for each chordwise section). We also enforce constraints on the leading and trailing edge control points
to avoid shear twist of the strut sections. The aircraft angle of attack is an additional design variable to
allow the optimizer to match the lift constraint.

Since structural analyses are not conducted during optimization, it is necessary to enforce artificial
constraints to take structural considerations into account and to avoid unrealistically thin airfoil designs.
For this optimization, we compute thicknesses in 144 locations along the wing and the strut, as shown in
Fig. 9. The thicknesses at these points cannot go below their corresponding initial value.

The CL constraint ensures that the optimized configuration generates the same lift as the baseline con-
figuration at 1.0 degree of angle of attack. Preliminary aerodynamic analysis of the baseline configuration
with ADflow shows that the lift coefficient value for this condition is CL = 0.4058.

4 Optimization results
The solution of the SBW optimization takes 27 hours using 1088 threads distributed among 16 Intel Xeon
Phi 7250 KNL nodes. The optimizer requires 69 CFD simulations and 40 adjoint solutions to arrive at the
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final result. The optimization history (Fig. 10) shows that the drag coefficient is reduced by 14.7%, while
maintaining the lift coefficient of the initial configuration. The assumption of frozen interpolation weights
in the reverse AD code does not compromise the optimization since the optimizer takes several unit steps,
as indicated by the consecutive flow and adjoint evaluations in Fig. 10.

The optimality conditions are not satisfied to the specified tolerance, since the optimizer stops prematurely
due to inconsistencies in the gradient caused by noise in the functions of interest. Changes in overset
connectivities create discontinuities and noise in the design space, as shown in our previous work regarding a
wing-fuselage junction optimization case [23]. This effect only becomes significant near the optimum, where
variations caused by the noise exceed the shallow slopes of the underlying function. Despite this effect, the
design has undergone significant improvement by this point of the optimization. Furthermore, during the
final iterations we only observe minor changes to the geometry and the drag value decreases by thousandths
of drag counts between iterations. Therefore, the shape can be considered optimal for practical purposes.
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Figure 10: History of the SBW optimization. The drag decreases by 33 counts for the same lift coefficient.

The optimizer reduces the drag by improving the spanwise lift distribution, eliminating shock waves, and
reducing the amount of separated flow. These correspond in turn to a reduction in induced drag, wave drag,
and viscous drag, respectively.

The baseline configuration shows a shock wave near the wing-strut intersection region that is eliminated
in the optimized design (see Fig. 11). The optimized shape reduces the flow acceleration in the gap between
the two components by decreasing the strut incidence angle. Consequently, there is a pressure increase over
the facing surfaces of the wing and the strut when compared to the baseline configuration (also shown in
Fig. 11). The optimized solution also shows smoother pressure distributions, which slows boundary layer
growth and thus decreases viscous drag.

The elimination of shocks has a positive impact on separation, as a large portion of separation observed
in the baseline design is induced by shocks (Fig. 12). The wing-strut junction also induces separation on its
trailing edge, and the optimizer manages to adjust the geometry of the intersection to reattach the flow in
this region.
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Figure 11: Comparison of shock and pressure distributions between the baseline (left) and optimized (right)
designs. The strut is shown at a different scale.

Figure 12: Separation on the trailing edge of the wing-strut junction before (top) and after (bottom) the
optimization.

This study marks a notable improvement to our previous TBW investigation [16]. The previous op-
timization using multiblock meshes could not remove junction shocks and separation as effectively as the
current approach based on overset meshes and component-based parametrization. In addition, the current
work avoids the generation of negative volume cells that hindered the optimization in the original process.
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While the previous work seemed to obtain a greater relative drag reduction, the results are not quantita-
tively comparable to this study as the previous optimization referenced a different baseline configuration, a
different flight condition, and more permissive thickness constraints.

The incidence angle of the optimized strut is reduced to the point of generating negative lift, as shown in
Fig. 13 and Fig. 14. This negative lift generation is compensated for by increased twist in the midspan part
of the wing, resulting in an overall lift distribution that is close to elliptical. These trends were similarly
observed in Euler- and RANS-based aerodynamic shape optimizations of different SBW geometries [14–
16, 25]. Parametric studies done by Ko et al. [63] also show that using a strut with negative incidence angles
and a relatively flat upper surface reduces the shock strength near the wing-strut intersection. Most of the
drag reduction occurs from the inboard region of the wing and the strut sections near the junction, as shown
in the upper right plot in Fig. 13.
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The optimization lowered the magnitude of the suction peaks on the lower surface of the wing and on the
upper surface of the strut (Fig. 15). The wing slice at 59% of the semi-span of the optimized configuration
has a subtle bump on the lower surface at approximately three quarters of the chord. The strut slice at 59%
of the semi-span shows a bump near the trailing edge of the upper surface to increase the extent of favorable
pressure gradient in this area, thus delaying separation. This trailing edge bump extends to the vertical
section of the strut (Fig. 16). The redesigned shape eliminates the flat pressure distribution regions on the
trailing edge caused by separation. The suction side of this vertical segment of the strut is on the outboard
surface, following the same trend as the rest of the strut, to avoid high-speed flow on the inner side of the
junction. According to the cross-sectional slices shown in Fig. 15 and Fig. 16, the optimization makes more
significant changes to the strut rather than the wing in the quest to reduce drag.
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5 Conclusion
In this work, we demonstrate the feasibility of RANS-based aerodynamic shape optimization of a transonic
SBW geometry using overset meshes and component-based geometry manipulation. These methodologies
avoid the mesh deformation issues seen in previous attempts and provide better shape control of the SBW
components and their junctions.

The optimized design achieves a 14.7% drag reduction compared to the baseline configuration for the
same lift. Studies of the optimized configuration show that a downward-lifting strut avoids high-speed flow
in the wing-strut gap, eliminating the shock wave seen in the baseline configuration. To compensate for
the negative lift of the strut and achieve an elliptical lift distribution overall, the load on the inboard wing
section is increased. Adjustments to the wing-strut intersection curve and the addition of a bump on the strut
trailing edge change the pressure recovery and reduce the separation. The optimization also demonstrates
that changes to the strut shape are more effective for drag reduction rather than modifications to the wing
shape.

These results highlight the fact that the use of high-fidelity analysis and optimization during the con-
ceptual design of unconventional configurations facilitates the detection and solution of issues that might
compromise their performance.
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