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Designing supersonic transport aircraft requires accounting for performance and stability
and high-speed and low-speed conditions. Previous work demonstrated that there is a trade-off
between high-speed performance and low-speed stability. Numerical optimization presents the
opportunity to obtain the best high-speed performance while enforcing stability at low speeds.
We perform RANS-based aerodynamic shape optimization with a component-based geometry
parameterization approach that enables the optimization of a complex three-surface supersonic
transport configuration. We minimize drag at a supersonic cruise condition both with and
without a constraint on subsonic pitch stability. The stability constraint enforces a 5% static
margin at a subsonic takeoff condition. We show that shape optimization increases the wing
thickness and leading edge radius to design a cranked arrow wing that is stable at subsonic
speeds at the cost of a 5.8% increase in supersonic drag.

I. Introduction
Supersonic transport (SST) aircraft must be designed with high-speed and low-speed flight regimes in mind.

Efficiency and stability across different flight conditions are often competing objectives. For example, double delta or
cranked arrow wings are known for providing a balance between supersonic and transonic performance. However, the
same wings often exhibit inadequate pitch stability at low-speed, high angle of attack conditions [1]. Designing for
subsonic stability is complicated by the leading edge vortices that are characteristic of flow over highly swept wings at
high angles of attack [2].

The three main contributors to the pitch-up of cranked arrow wings are leading edge vortex effects, outboard
flow separation, and vortex breakdown [3]. The wing planform is critical for the performance and stability of SST
designs [1, 3], but the airfoil shape also has a strong influence on the leading edge vortex. Kulfan [4, 5] observed that
greater wing thickness delays the growth of leading edge vortices and increases pitch stability. Similarly, Nelson [1]
found that blunt leading edges and increased leading edge thickness delay subsonic pitch-up at the cost of increased
supersonic wave drag. This represents a fundamental trade-off in SST design.

Computational fluid dynamics (CFD) combined with numerical optimization presents the opportunity to resolve
flow features across different flight conditions and capture the trade-offs between competing design objectives. Several
authors have demonstrated the value of applying multipoint optimization to supersonic aircraft. Cliff et al. [6] minimized
a weighted sum of the thrust required for an SST design at supersonic and transonic conditions using the Euler
equations as the aerodynamic model. Carrier [7] also used the Euler equations in minimizing the supersonic and
transonic drag for an SST where the drag at the two conditions were equally weighted. More recent work has turned
to the Reynolds-averaged Navier–Stokes (RANS) equations instead of the Euler equations. Bons et al. [8] performed
aerostructural optimization of a supersonic business jet where the objective was to maximize a weighted sum of the
supersonic and transonic range. Mangano and Martins [9] optimized the shape of a trapezoidal wing considering drag at
subsonic, transonic, and supersonic Mach numbers. Despite considering multipoint performance trade-offs, none of
these papers considered stability in the optimization problem.

A few papers have included low-speed constraints in the optimization of supersonic configurations, albeit with
lower-fidelity methods. Dudley et al. [10] performed aerodynamic and structural optimization to minimize the takeoff
gross weight of an SST subject to practical design constraints. Some of these were low-speed constraints such as
limiting the angle of attack at landing and preventing engine scrape at landing. In a follow-up paper, Crisafulli et al.
[11] augmented the vortex-lattice method used for stability derivative computation in their framework with a pitch-up
estimation method [3] to capture nonlinear pitch-up characteristics in the model. However, subsonic pitch stability was
not included as a constraint in either of these two papers. The papers also primarily looked at planform effects and
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lacked the fidelity and scalability for detailed airfoil shape parameterization. More recently, Li and Geiselhart [12, 13]
optimized an SST using a sequence of optimization problems to enforce low-boom constraints and mission constraints,
including static margin requirements at landing and takeoff (LTO). However, the LTO analysis was done using a linear
aerodynamic code. In addition, they did not explicitly consider subsonic pitch-up or the trade-off between supersonic
performance and subsonic stability.

The goal of this paper is to use RANS-based optimization to study the effect of aerodynamic shape on the subsonic
pitch stability of an SST and to quantify the supersonic drag penalty associated with enforcing a subsonic stability
constraint. We first describe the aircraft geometry and evaluate the accuracy of RANS at low-speed, high angle of attack
conditions in Sec. II. We then present the optimization formulation and optimized aircraft designs in Sec. III.

II. Validation at Subsonic Conditions

A. Aircraft geometry
The aircraft we are interested in is an SST with a cranked arrow wing, a T-tail, and a canard (Fig. 1). This

configuration was designed by the University of Washington as a baseline model to study the low-speed characteristics
of SSTs [14, 15]. A major part of this effort involves wind tunnel testing at subsonic conditions. We use the wind tunnel
data for this configuration to check whether our aerodynamic model is suitable for the low-speed, high angle of attack
flows relevant for the subsonic pitch-up of supersonic aircraft. The flight scale dimensions for the wing are listed in
Table 1. This is the scale we use for the optimizations in Sec. III. The wind tunnel model is scaled down by a factor of
22. The reference point for the pitching moment is at 25% of the mean aerodynamic chord.

Fig. 1 Coarse overset mesh of the supersonic transport configuration considered in this work

B. CFD solver and meshes
The CFD solver we use is ADflow [16], a finite volume code for multiblock and overset structured meshes. We use

ADflow to solve the compressible RANS equations with the Spalart–Allmaras (SA) turbulence model [17]. We generate
an overset mesh for the aircraft by first creating multiblock component and collar surface meshes [18] using Ansys ICEM
CFD. We then extrude the surface meshes to generate volume meshes using pyHyp [19], a hyperbolic mesh generation
code based on the work of Chan and Steger [20]. Finally, we combine the component meshes with a background mesh
to form the complete overset mesh. The background mesh consists of a Cartesian mesh in the overlapping region near
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Table 1 Flight scale wing dimensions

Quantity Value

Reference area 373.03 m2

Mean aerodynamic chord 14.565 m
Half-span 14.760 m

the aircraft, surrounded by a hyperbolic O-mesh. The farfield boundary of the O-mesh extends to 50 times the mean
aerodynamic chord away from the Cartesian region. We use a zipper mesh approach [21] to account for overlapping
regions on the surface mesh when computing integrated quantities such as drag. The total number of cells and the
number of compute cells after implicit hole cutting [22] for the two overset meshes used in the validation study are
listed in Table 2. The coarse overset mesh, shown in Fig. 1, is a uniformly coarsened version of the fine mesh.

Table 2 CFD mesh characteristics

Mesh Total cells Compute cells

Coarse 1 388 079 1 103 797
Fine 11 104 632 8 982 120

C. Comparison between RANS and experimental data
Figure 2 shows a comparison between RANS results and wind tunnel data for angles of attack from −10 deg to 25

deg. For RANS, we use a Reynolds number based on the mean aerodynamic chord of 2.4 million and a Mach number of
0.16. These are both slightly higher than the wind tunnel condition, where the Reynolds number is around 2.2 million
and the Mach number is around 0.15. To simplify the overset meshing, we exclude a small wing-fuselage fairing that is
present in the wind tunnel model.

All RANS solutions are converged to a total residual of 10−7 or tighter relative to the freestream residual. The fine
mesh provides an excellent match for the lift and drag across the entire angle of attack range. The coarse mesh is nearly
as accurate from −10 to 10 deg but is slightly less accurate at higher angles of attack. The discrepancies between the
experiment and CFD are most pronounced for the pitching moment. However, we are mostly interested in capturing the
shape of the pitching moment curve, especially around the pitch-up angle, because this determines the pitch stability
of the aircraft. The fine mesh predicts the shape of the pitching moment accurately up to 15 deg, which includes the
pitch-up onset. The coarse mesh has a similar shape as the fine mesh but underpredicts the pitch-up angle by about one
degree. Overall, the coarse mesh provides reasonable accuracy at about 3% of the computational cost of the fine mesh.
Therefore, we use the coarse mesh for all optimizations.

III. Aerodynamic Shape Optimization
The framework we use to perform aerodynamic shape optimization is MACH-Aero‡. MACH-Aero has been used

extensively for aerodynamic shape optimization of wings and full aircraft configurations [23]. We briefly describe each
component of the framework here. As described in Sec. II, we use ADflow as the CFD solver. We converge the RANS
equations to a total residual of 10−8 relative to freestream using the approximate Newton–Krylov startup strategy [24]
and then switch to an exact Newton–Krylov solver to converge to a relative residual of 10−10. The discrete adjoint
implementation in ADflow allows for efficient computation of gradients with respect to many design variables [25].

We parameterize the geometry using free-form deformation (FFD) [26], implemented in pyGeo [27]. We use a
component-based approach to deform the surface mesh, which we present in Sec. III.B. The changes to the surface mesh
are propagated through the volume mesh using an inverse distance mesh deformation algorithm [28], implemented in
IDWarp [19]. Both pyGeo and IDWarp are differentiated so that they can be used in gradient-based optimization.

‡https://github.com/mdolab/MACH-Aero
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Fig. 2 Comparison of ADflow force and moment coefficients with experimental data
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For the optimization, the analysis and gradient computation are wrapped with pyOptSparse [29], which provides a
Python interface to different optimizers. The optimizer we use is SNOPT [30], a sequential quadratic programming
algorithm designed for large-scale problems.

A. Optimization problem
We are interested in evaluating the supersonic drag penalty associated with enforcing a subsonic stability constraint.

To formulate this optimization problem, we first define a supersonic cruise condition and a subsonic takeoff condition in
Table 3. The flight conditions and their corresponding lift coefficients are based on flight envelopes and weight estimates
from previous SST studies by Boeing [31] and Lockheed Martin [32]. The target static margin, 𝐾∗

𝑛, is used to define the
subsonic stability constraint.

Table 3 Flight conditions

Mach number Altitude, m Altitude, ft Reynolds number 𝐶∗
𝐿

𝐾∗
𝑛

Supersonic 1.8 16764 55000 101.8 × 106 0.2
Subsonic 0.3 0 0 80.4 × 106 0.7 5%

We run two supersonic drag minimization problems: one without a subsonic stability constraint and one with a
subsonic stability constraint. The optimization formulation with the stability constraint is shown in Table 4. Each flight
condition has separate angle of attack, tail rotation, and canard rotation variables to trim the aircraft. For the moment
computation, we assume that the center of gravity (CG) is fixed at 25% of the mean aerodynamic chord. The wing
design variables are shared across the supersonic and subsonic conditions. For the optimization without the subsonic
stability constraint, the subsonic design variables and constraints are excluded from the optimization problem. We
further discuss the geometric design variables and constraints in Sec. III.B and the stability constraint in Sec. III.C.

Table 4 Supersonic drag minimization with subsonic static margin constraint

Quantity Lower Upper Scaling

Minimize 𝐶𝐷, supersonic 1 100

With respect to Angle of attack 2 −5◦ 20◦ 0.1
Tail rotation 2 −9◦ 9◦ 0.1
Canard rotation 2 −5.5◦ 13.5◦ 0.1
Wing twist 7 −10◦ 10◦ 0.1
Wing sectional shape 112 −2 m 2 m 1
Wing vertical displacement 1 0 m 0.1 m 1

Total number of design variables 126

Subject to 𝐶𝐿 ÷ 𝐶∗
𝐿

2 1 1 1
𝐶𝑀 2 0 0 1
𝐾𝑛 ÷ 𝐾∗

𝑛 1 1 0.1
Wing thickness ÷ Baseline wing thickness 100 1 1
Wing volume ÷ Baseline wing volume 1 1 1
No shear at wing leading and trailing edges 14

Total number of constraints 120
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B. Component-based geometry parameterization
To parameterize the geometry, we split the aircraft into five components: the fuselage, wing, canard, horizontal

stabilizer, and vertical stabilizer. We define FFD volumes for each component, shown in Fig. 3a. The black spheres are
FFD control points, and the blue spheres are reference axis control points. The reference axes are used to define design
variables that act on groups of FFD control points. The horizontal stabilizer and canard reference axes are used to
define the tail and canard rotation variables, respectively. Both rotation variables rotate the entire component about the
mid-chord. The wing reference axis is used to define the twist variables, each of which rotates one spanwise section of
the wing about the trailing edge, and the vertical displacement variable, which moves the entire wing in the 𝑧-direction.
The wing shape variables are defined by the movement of individual FFD control points in the 𝑧-direction. The twist and
shape variables are defined at all sections other than the wing root, which is located inside the fuselage. The thickness
and volume constraints ensure that the optimized wing is not unrealistically thin. The thickness constraints are applied
on a 10 × 10 grid of points across the wing planform. In addition, we apply linear constraints at the leading and trailing
edge FFD control points to prevent shear deformations. The fuselage and vertical stabilizer FFD volumes are stationary
but are needed to define and preserve the shape of their respective components.

Away from intersections, the changes to the CFD surface mesh are defined solely by the FFD. Near component
intersections, we use the surface mesh deformation method developed by Yildirim et al. [33] to maintain a valid CFD
mesh. This method relies on triangulated surface meshes (Fig. 3b) and the pySurf module of Secco et al. [34] to compute
intersections between components, perform projections, and remesh curves. Table 5 lists the number of nodes and
triangles in each triangulated surface we use. The triangulated surfaces are refined in regions of high curvature and near
component intersections.

Table 5 Triangulated surface characteristics

Component Nodes Triangles

Fuselage 240 503 478 906
Wing 96 162 191 239
Canard 58 348 116 443
Horizontal stabilizer 35 720 70 978
Vertical stabilizer 31 472 62 234

We demonstrate the effectiveness of the component-based parameterization using the tail rotation as an example.
Figure 4 shows the T-tail surface mesh at the lower and upper bounds of the tail rotation variable. We obtain a valid
mesh for rotation angles from −9 deg to +9 deg. In addition, the vertical stabilizer’s shape is preserved even after
applying large rotations to the horizontal stabilizer.

C. Subsonic stability constraint
The stability constraint enforces a static margin of at least 5% at the subsonic condition. We derive the equation for

the static margin by starting from the definition of the moment coefficient about the CG (𝐶𝑀CG ) in terms of the moment
coefficient about the neutral point (𝐶𝑀CG ):

𝐶𝑀CG = 𝐶𝑀NP + 𝐶𝐿 cos𝛼(ℎCG − ℎNP) + 𝐶𝐷 sin𝛼(ℎCG − ℎNP), (1)

where ℎCG and ℎNP are the longitudinal locations of the CG and the neutral point, respectively, normalized by the mean
aerodynamic chord. Substituting the definition of the normal force coefficient

𝐶𝑁 = 𝐶𝐿 cos𝛼 + 𝐶𝐷 sin𝛼, (2)

we have
𝐶𝑀CG = 𝐶𝑀NP + 𝐶𝑁 (ℎCG − ℎNP). (3)

Taking the derivative with respect to 𝛼 gives

𝐶𝑀𝛼
= 𝐶𝑁𝛼

(ℎCG − ℎNP). (4)
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(a) FFD volumes and reference axes

(b) Triangulated surface meshes

Fig. 3 Component-based geometry parameterization
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(a) −9◦ tail rotation (b) +9◦ deg tail rotation

Fig. 4 Lower and upper bounds for the tail rotation

Substituting the definition of the static margin

𝐾𝑛 = ℎNP − ℎCG, (5)

we can express the static margin in terms of aerodynamic forces and moments:

𝐾𝑛 = −
𝐶𝑀𝛼

𝐶𝑁𝛼

. (6)

In previous work on CFD-based aircraft optimization [35–37], the static margin has been computed as

𝐾𝑛 = −
𝐶𝑀𝛼

𝐶𝐿𝛼

(7)

This approach assumes that the angle of attack is small and that the drag is much smaller than the lift, both of which
are true for a typical cruise condition. At off-design conditions, such as a supersonic aircraft in subsonic flight, these
assumptions may be false. Replacing the lift with the normal force includes the effect of drag at high angles of attack.

For the static margin constraint, we need to compute both the stability derivatives and their gradients. Similar to
prior work [35–37], we use a finite-difference approach to compute the stability derivatives. For example, we compute
the pitching moment derivative as

𝐶𝑀𝛼
=
𝐶𝑀 |𝛼+Δ𝛼 − 𝐶𝑀 |𝛼

Δ𝛼
, (8)

where Δ𝛼 = 0.1◦ is a small perturbation in the angle of attack. This requires two flow solutions. By computing this
slope as a finite difference, we can leverage the adjoint implementation in ADflow to compute the derivatives of 𝐶𝑀𝛼

with respect to the design variables. More explicitly, these derivatives are computed as

𝑑𝐶𝑀𝛼

𝑑𝑥
=

𝑑𝐶𝑀

𝑑𝑥

���
𝛼+Δ𝛼

− 𝑑𝐶𝑀

𝑑𝑥

���
𝛼

Δ𝛼
, (9)

where 𝑥 is the vector of design variables and 𝑑𝐶𝑀

𝑑𝑥
is computed using the adjoint method. We apply the same procedure

to the lift and drag to compute the normal force coefficient and its gradients.

D. Optimized designs
We run optimizations both without the low-speed stability constraint (𝐾𝑛 unconstrained) and with the low-speed

stability constraint (𝐾𝑛 constrained). We also run a pre-optimization to trim the baseline design. The pre-optimization

8



involves minimizing supersonic drag with only the angle of attack, tail rotation, and canard rotation as design variables.
This provides a fair baseline supersonic drag value to compare the optimized results against. We run similar trim
optimizations on the baseline and 𝐾𝑛 unconstrained designs at the subsonic condition to evaluate their subsonic static
margin.

Table 6 shows the supersonic drag, subsonic static margin, and trim variables for the baseline and optimized designs.
The table also shows the feasibility (maximum constraint violation) and optimality for each optimization. The only
design variable at its bound for either supersonic drag minimization problem is the wing vertical displacement. This
variable is at its upper bound for the 𝐾𝑛 unconstrained design and its lower bound for the 𝐾𝑛 constrained design.

Table 6 Optimization results and convergence

Baseline 𝐾𝑛 unconstrained 𝐾𝑛 constrained

Feasibility 1.9 × 10−5 5.9 × 10−5

Initial optimality 5.3 × 10−2 9.0 × 10−2

Final optimality 6.7 × 10−3 1.9 × 10−2

Supersonic

Drag counts 398.0 320.4 339.1
Angle of attack 4.19◦ 8.19◦ 7.03◦

Tail rotation −5.64◦ −3.09◦ −2.28◦

Canard rotation 6.79◦ −4.46◦ −1.99◦

Subsonic

Static margin −31.4% −33.7% 5.0%
Angle of attack 13.3◦ 18.8◦ 17.3◦

Tail rotation 1.72◦ 4.02◦ 7.47◦

Canard rotation −0.42◦ −5.50◦ 10.0◦

The baseline design is unstable at the subsonic condition, which is expected because of the early pitch-up tendencies
shown in Fig. 2c. The 𝐾𝑛 unconstrained optimization decreases the drag from the baseline by 77.6 counts or 18.5%
but is unstable with a more negative static margin than the baseline. This demonstrates the need for a low-speed
stability constraint when performing supersonic shape optimization. The 𝐾𝑛 constrained design is stable at the subsonic
condition, showing that it is possible to use aerodynamic shape optimization to enforce subsonic stability for supersonic
wing design. Relative to the 𝐾𝑛 unconstrained design, there is a 5.8% drag penalty associated with adding the low-speed
stability constraint.

The optimized designs are shown in Figs. 5 and 6. The 𝐾𝑛 unconstrained design primarily uses twist to minimize
the supersonic drag. The subsonic characteristics of the 𝐾𝑛 unconstrained design are similar to the baseline because
the washout is counteracted by the increased angle of attack at the subsonic condition. The two optimized designs
have similar supersonic pressure and spanwise lift distributions. The difference in supersonic drag comes from the
increased wing thickness of the 𝐾𝑛 constrained design. The thickness is also responsible for the difference in pitch
stability. Increasing the leading edge radius and wing thickness between 50% span and 80% span weakens the inboard
leading edge vortex and improves pitch stability. This is consistent with trends reported in prior experimental and
theoretical studies [1, 4, 5]. The decrease in lift near the wing break is compensated by increased camber and twist in
the outboard section and more lift from the canard and tail. The same trends can be seen in the upper surface pressure
coefficient contours (Fig. 7). The supersonic pressure contours are similar for both optimized designs. At the subsonic
condition, the 𝐾𝑛 constrained design has a weaker inboard leading edge vortex and a stronger outboard vortex than the
𝐾𝑛 unconstrained design.

There are a few caveats to these results. First, the optimizations are not tightly converged. As a result, we cannot be
confident that the results represent optimal designs. However, the constraints are satisfied to a relatively tight tolerance
and the reduction in drag suggests that the optimizer made significant progress towards the optimum for both cases. The
lack of reduction in optimality is related to difficulties in converging the adjoint equations tightly when using the zipper
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mesh approach mentioned in Sec. II.B. This is particularly a concern for our mesh because the zippers account for a
large percentage of the surface area compared to simpler configurations. Second, the subsonic canard rotation for the
𝐾𝑛 unconstrained design hits the variable’s lower bound. This bound is set based on the largest angle that gives a valid
mesh and is not physically relevant. It is possible that without this bound, the 𝐾𝑛 unconstrained design’s subsonic static
margin is closer to stable. However, the design is unlikely to satisfy the static margin constraint because this constraint
is active for the 𝐾𝑛 constrained design. Finally, the combined angle of attack and rotation angles for the canard and tail
at subsonic conditions exceed 20 deg in some cases. This is likely pushing the limits of what RANS can accurately
resolve, especially for the pitching moment. This is a fundamental limitation of steady CFD methods.
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Fig. 5 Sectional shape and pressure distributions of baseline and optimized wing designs

IV. Conclusions
In this work, we use RANS-based aerodynamic shape optimization to study the low-speed stability of a supersonic

transport configuration. We show that RANS captures the lift, drag, and pitching moment trends of the supersonic
configuration at low-speed, high angle of attack conditions by comparing against experimental data. To parameterize
the complete aircraft geometry, we use a component-based approach that works well with intersections. We minimize
supersonic drag with and without a static margin constraint at a subsonic flight condition. The static margin computation
differs from previous work on stability-constrained optimization by accounting for the effect of drag at high angles of
attack. The baseline design and design optimized without a stability constraint are both unstable at subsonic speeds.
The optimized design with the static margin constraint is stable at the subsonic condition as desired. Pitch stability is
achieved by increasing the wing thickness and leading edge radius near the wing break. As a result, the stable design
has 5.8% higher supersonic drag than the design optimized without a stability constraint. These results demonstrate that
aerodynamic shape optimization is a valuable tool for capturing the trade-offs between supersonic performance and
subsonic stability.
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𝐾𝑛 unconstrained 𝐾𝑛 constrained

(a) Supersonic (M=1.8)
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(b) Subsonic (M=0.3)

Fig. 7 Upper surface pressure contours for optimized designs
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