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Three-surface configurations offer theoretical drag benefits over two-surface configurations,
but the literature is unclear on what is the best configuration for a supersonic aircraft. This
work uses trim-constrained drag minimization to compare the trim drag for three-surface,
canard, and conventional variants of a supersonic transport aircraft. We first use RANS-based
optimization to determine the minimum trim drag for a fixed planform geometry at a subsonic
takeoff condition and a supersonic cruise condition. The three-surface configuration has the
lowest trim drag at the supersonic condition. The canard and three-surface configurations have
comparable trim drag at the subsonic condition. We then construct a supersonic buildup model
to study the effects of variable trim surface sizing. When the trim surface spans are included as
design variables, the design for minimum supersonic drag has practically no tail and a canard
sized at 36% of the wing half-span. These results suggest that a canard configuration is best for
supersonic trim drag.

I. Introduction
Three-surface aircraft have a theoretical advantage over canard and conventional two-surface configurations because

three lifting surfaces allow for the aircraft to achieve minimum induced drag for any center of gravity location [1].
However, practical considerations have limited the use of three-surface configurations for subsonic aircraft. Kroo [2]
used a linear vortex-based method and an analytic viscous drag model to determine that three-surface designs offer no
obvious benefits over conventional configurations for subsonic aircraft. Selberg and Rokhsaz [3, 4] used a vortex lattice
method to study trim for a general aviation aircraft and found that a three-surface configuration achieves a trimmed
lift-to-drag ratio that is higher than a canard configuration but lower than a conventional configuration.

Different trim configurations have also been studied for supersonic aircraft. Lacey [5] conducted wind tunnel tests
on a fighter-type aircraft with different trim surface geometries. They found that the three-surface configuration has
lower drag at high angles of attack but that a conventional configuration is more effective at lower angles. Agnew and
Hess Jr. [6] also ran wind tunnel tests on a three-surface and conventional fighter aircraft and found that the three-surface
design was preferable for maneuverability and trim drag at Mach 0.9. In supersonic wind tunnel tests, Covell [7] found
that a conventional fighter configuration has lower trim drag than a canard configuration. They also found that a linear
aerodynamic model was unable to accurately compare canard, conventional, and tailless configurations at supersonic
speeds. Finally, the Concorde was a tailless supersonic transport (SST) configuration that moved fuel to shift the center
of gravity for trim [8]. This reduced trim drag in exchange for the added weight of the fuel transfer system.

There are two main contributions of this work. The first is studying different trim configurations for an SST rather
than a fighter-type aircraft. The second is using nonlinear aerodynamic models for trim analysis and optimization. We
determine the minimum trim drag for three-surface, canard, and conventional configurations with fixed trim surface
sizing using the Reynolds-averaged Navier–Stokes (RANS) equations in Sec. II. We then formulate a supersonic buildup
model to optimize the aircraft with trim surface sizing variables in Sec. III. The design space for this optimization
includes the option to remove either trim surface and consequently achieve the best tradeoff between parasite and
induced drag.
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II. RANS-based trim optimization

A. Aircraft geometry and flight conditions
We first use RANS-based optimization to study trim for a constant geometry. The aircraft configuration we study is

the UW-S-20A model developed by Nelson et al. [9], but without the nacelles (Fig. 1a). This aircraft is an SST with a
cranked-arrow wing, a T-tail, and a canard. We use overset structured meshes to model the geometry in our RANS solver.
One advantage of using overset meshes is that we can easily remove mesh blocks from the three-surface configuration to
create meshes for canard, conventional, and trimless versions of the aircraft (Fig. 1). Some important dimensions are
listed in Table 1. The pitching moment reference point is assumed to be fixed at 25% of the mean aerodynamic chord.

We consider two flight conditions for the RANS-based optimizations (Table 2). These flight conditions are based on
flight envelopes and weight estimates from previous SST studies [10, 11]. The lift coefficient is computed from the
takeoff weight for the subsonic condition and the midcruise weight for the supersonic condition.

Table 1 Aircraft dimensions

Quantity Value

Wing reference area (𝑆ref) 373.03 m2

Wing mean aerodynamic chord (𝑐) 14.565 m
Wing half-span 14.760 m
Canard half-span 2.327 m
Tail half-span 5.543 m

(a) Three-surface (b) Canard

(c) Conventional (d) Trimless

Fig. 1 Overset configuration meshes

Table 2 Flight conditions

Mach Altitude, m Altitude, ft Reynolds 𝐶∗
𝐿

𝛼min 𝛼max

Subsonic 0.3 0 0 101.8 × 106 0.6933 −5◦ 20◦

Supersonic 1.8 16,764 55,000 80.4 × 106 0.1665 −3◦ 5◦
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B. RANS-based optimization setup
We use the MACH-Aero framework [12] for the RANS-based optimizations. We use ADflow [13] to solve the

compressible RANS equations with the Spalart–Allmaras (SA) turbulence model [14] on overset structured meshes.
The surface mesh that represents the geometry is modified using a combination of inverse-distance surface mesh
deformation near component intersections [15] and free-form deformation [16, 17] away from the intersections. The
surface mesh changes are propagated to the volume mesh using an inverse-distance deformation method [18, 19]. To
run the optimizations, we use the SNOPT optimizer [20] through the interface provided by pyOptSparse [21]. The
gradients are computed using the adjoint method [22].

Fig. 2 The trim surfaces can rotate about their 50% chord axis

The optimization formulation for the trim-constrained drag minimization is shown in Table 3. The canard and tail
rotation design variables are defined about the 50% chord axis of the canard and horizontal stabilizer, respectively.
Figure 2 shows the FFD control points (black) and the reference axis control points (blue) that are used to define the
rotations. The trim surface rotation bounds are based on the maximum rotation that produces a valid mesh. More details
on the geometry parameterization for this SST configuration are provided by Seraj and Martins [23].

Table 3 RANS-based trim drag minimization problem

Lower Upper Scaling

Minimize 𝐶𝐷 100

With respect to Angle of attack 𝛼min 𝛼max 0.1
Canard rotation −5◦ 13◦ 0.1
Tail rotation −9◦ 9◦ 0.1

Subject to 𝐶𝐿 ÷ 𝐶∗
𝐿

1 1 1
𝐶𝑀 0 0 1

C. RANS-based optimization results
The optimizations for the three-surface, canard, and conventional configurations at subsonic and supersonic speeds

are shown in Table 4. The constraint violation for these optimizations is 2.0 × 10−6 or lower, and the optimality is
3.9 × 10−6 or lower. At the subsonic takeoff condition, the three-surface and canard configurations perform comparably.
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The conventional configuration has 11.2% higher drag than the three-surface configuration. This is consistent with the
experimental studies by Lacey [5] that showed that canards are more effective at subsonic speeds and high angles of
attack. At the supersonic cruise condition, the conventional configuration has 9.4% higher drag than the three-surface
configuration. The supersonic canard case is infeasible because of the upper bound on the canard rotation. We show in
Sec. III.C that trimming with just the canard is feasible with larger rotations but incurs a large drag penalty. These results
show that for the given trim surface sizing, the three-surface design performs better than the canard and conventional
designs.

Table 4 Trim optimization results

Three-surface Canard Conventional

Subsonic RANS

Drag counts 1576 1569 1752
Angle of attack 12.4◦ 12.2◦ 13.8◦

Canard rotation 3.05◦ 6.24◦ –
Tail rotation 0.42◦ – −4.95◦

Supersonic RANS

Drag counts 330.1 – 361.2
Angle of attack 3.14◦ – 3.60◦

Canard rotation 7.62◦ – –
Tail rotation −4.36◦ – −8.87◦

Supersonic Buildup

Drag counts 329.9 450.9 368.2
Angle of attack 3.21◦ 2.68◦ 3.59◦

Canard rotation 8.13◦ 20.1◦ –
Tail rotation −4.70◦ – −8.40◦

III. Buildup-based trim optimization

A. Supersonic buildup model
One disadvantage of optimizations that rely on mesh deformation is that the design space is limited to geometries

that produce a valid mesh. To avoid this limitation, we construct a buildup model that uses a combination of RANS data
and analytic functions. We start with running RANS on the trimless configuration at angles of attack from -6 to 6 deg.
We then construct a quartic least-squares fit on the lift, drag, and moment curves. The trim surfaces and the interactions
between components are modeled analytically based primarily on the approach presented by Raymer [24]. However,
we use RANS simulations to inform some aspects of the analytic equations. We simulate the canard (Fig. 3a) and the
horizontal stabilizer (Fig. 3b) at angles of attack from 0 to 50 deg at 5 deg increments. This gives us data to ensure that
the analytic equations correctly model the nonlinear aerodynamics and that the model is applicable for trim surfaces
with different aspect ratios.

1. Trim surface lift
We model the trim surface lift as a cubic function:

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼=0𝛼 −
𝐶𝐿𝛼=0

3𝛼2
𝐿max

𝛼3, (1)
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(a) Canard (154,368 cells) (b) Horizontal stabilizer (211,136 cells)

Fig. 3 Trim surface meshes

where 𝐶𝐿𝛼=0 is the lift curve slope at zero angle of attack, and the coefficient for the cubic term is set such that the lift is
maximized at 𝛼𝐿max . We set 𝛼𝐿max to 40 deg based on the RANS simulations. The trim surfaces are approximately
symmetric, so we assume 𝐶𝐿0 = 0. The ideal lift curve slope for a supersonic lifting surface is [24, Eq. 12.12]

𝐶𝐿𝛼
=

4
√
𝑀2 − 1

. (2)

We apply a slight correction to the lift slope based on the aspect ratio:

𝐶𝐿𝛼=0 =
4

(1 + 𝐴/8)
√
𝑀2 − 1

. (3)

This nonlinear lift model results in good agreement with the RANS simulations (Fig. 4) for the canard (𝐴 = 0.93) and
the horizontal stabilizer (𝐴 = 1.49). This model is also easy to differentiate to get the lift curve slope used in the drag
and downwash computations. The nonlinear lift curve slope is

𝐶𝐿𝛼
= 𝐶𝐿𝛼=0 −

𝐶𝐿𝛼=0

𝛼2
𝐿max

𝛼2. (4)

2. Trim surface drag
The trim surface drag consists of skin friction drag, wave drag, and induced drag. We compute the turbulent skin

friction as [24, Eq. 12.27]

𝐶 𝑓 =
0.455

(log10 𝑅)2.58 (1 + 0.144𝑀2)0.65 . (5)

The wave drag is [24, pp. 448-449]

𝐶𝐷wave =
𝐸WD
𝑆comp

(
1 − 0.2(𝑀 − 1.2)0.57

(
1 −

𝜋Λ0.77
LE–deg

100

))
(𝐷/𝑞)SH , (6)

where 𝐸WD is a wave drag efficiency factor, ΛLE–deg is the leading-edge sweep in degrees, and (𝐷/𝑞)SH is the drag for
an equivalent Sears–Haack body. The Sears–Haack drag is computed as [24, Eq. 12.44]

(𝐷/𝑞)SH =
9𝜋
2

(
𝐴max
ℓ

)2
, (7)
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Fig. 4 Analytic lift compared to RANS

where 𝐴max is the maximum cross-sectional area and ℓ is the body length. We use the frontal area of the trim surface as
the maximum cross-sectional area and the distance from the root leading edge to the tip trailing edge as the body length.
We use 𝐸WD = 1.1 to match the zero-lift drag from RANS. The zero-lift drag is the sum of the skin friction drag and
wave drag:

𝐶𝐷0 = 𝐶 𝑓

𝑆wet
𝑆comp

+ 𝐶𝐷wave , (8)

where the skin friction drag scales with the wetted area 𝑆wet. We compute the induced drag with the leading-edge
suction method [24, Eq. 12.56]:

𝐶𝐷𝑖
=
𝐶2
𝐿

𝐶𝐿𝛼

. (9)

The total drag is
𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷𝑖

. (10)

The drag buildup described above works well for low angles of attack (Fig. 5b), but it does not model the increase in
drag that occurs once the lifting surface begins to stall at higher angles of attack. To account for stall effects, we use the
model developed by Tangler and Ostowari [25]. This model was originally created for wind turbine design, but it has
also been applied to subsonic aircraft design [26]. We show that the model is also useful for supersonic aircraft. The
poststall drag is given by

𝐶𝐷 = 𝐵1 sin𝛼 + 𝐵2 cos𝛼, (11)

where
𝐵1 = 𝐶𝐷max (12)

and
𝐵2 = 𝐶𝐷𝑠

− 𝐵1
sin𝛼𝑠
cos𝛼𝑠

. (13)

This model requires setting values for 𝐶𝐷max and 𝛼𝑠 , the stall angle of attack. 𝐶𝐷𝑠
is the drag at the stall angle of attack

computed using the prestall model. We find that using 𝐶𝐷max = 2 and a stall angle of attack of 22.5 deg results in
good agreement between the drag buildup and RANS at high angles of attack (Fig. 5a). The poststall drag is only
weakly dependent on the aspect ratio for the geometries we study, so an aspect ratio correction is not included in the
poststall model. We use the Kreisselmeier–Steinhauser function [27] to smoothly transition from the prestall model to
the poststall model. This approach was also used by Chauhan and Martins [26].
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Fig. 5 Analytic drag compared to RANS

3. Downwash
Accounting for downwash is critical for accurate buildup results. To simplify the downwash computation, we assume

that the trimless part of the aircraft is entirely downstream of the canard and entirely upstream of the horizontal stabilizer.
We account for the canard downwash on the trimless configuration and the trimless downwash on the horizontal stabilizer.
The downwash derivative for an upstream component is computed as [24, Eq. 16.21b](

𝜕𝜖

𝜕𝛼

)
upstream

=

(
1.62𝐶𝐿𝛼

𝜋𝐴

)
upstream

. (14)

A component’s total angle of attack is then computed as [24, Eq. 16.24]

𝛼comp =
(
𝛼 + 𝑖upstream

) (
1 −

(
𝜕𝜖

𝜕𝛼

)
upstream

)
+ 𝑖comp − 𝑖upstream, (15)

where 𝑖comp is the component’s incidence angle and 𝑖upstream is the upstream component’s incidence angle.

4. Total forces and pitching moment
Finally, we combine the forces and moments from the trim surfaces and the trimless configuration. The lift is

computed by adding all the component lift forces normalized using the wing reference area:

𝐶𝐿 = 𝐶𝐿trimless +
∑︁
comp

𝐶𝐿comp

𝑆comp

𝑆ref
. (16)

The drag is computed in the same manner. The total moment is

𝐶𝑀 = 𝐶𝑀trimless +
∑︁
comp

(
𝐶𝑁comp

𝑆comp

𝑆ref

Δ𝑥comp

𝑐
+ 𝐶𝐴comp

𝑆comp

𝑆ref

Δ𝑧comp

𝑐

)
, (17)

where the normal force coefficient is

𝐶𝑁comp = 𝐶𝐿comp cos𝛼 + 𝐶𝐷comp sin𝛼, (18)

the axial force coefficient is
𝐶𝐴comp = −𝐶𝐿comp sin𝛼 + 𝐶𝐷comp cos𝛼, (19)

Δ𝑥comp is the 𝑥-component of the vector from the moment reference point to the component’s aerodynamic center,
Δ𝑧comp is the 𝑧-component of the vector from the moment reference point to the component’s aerodynamic center. We
neglect the moments on the trim surfaces because these are much smaller than the trim surface forces multiplied by the
moment arms.
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5. Model verification
We verify the buildup model by comparing the buildup results to RANS. We first compare the buildup to RANS on

the three-surface configuration at angles of attack from -6 to 6 deg (Fig. 6). The buildup drag matches RANS well but
slightly underpredicts drag at higher angles of attack and negative angles of attack. The buildup lift and moment match
RANS well at positive angles of attack but are only slightly better than the trimless configuration at negative angles of
attack. The trim condition for the aircraft occurs at a low positive angle of attack, so we expect the buildup to perform
well despite the discrepancies at negative angles.

Next, we look at the incremental changes in the aerodynamic coefficients for tail rotations (Fig. 8) and canard
rotations (Fig. 7) at zero angle of attack. The buildup does not precisely match the RANS increments, but the trends are
correct. In particular, the buildup has a negative lift increment for a positive canard deflection (Fig. 7b), which is the
result of including the canard downwash effect on the trimless configuration. The tail rotation increments match RANS
more closely than the canard rotation increments. This suggests that the canard’s interaction with the fuselage and wing
is more complex than interactions involving the tail.
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Fig. 6 Angle of attack sweep

B. Buildup-based optimization setup
We wrap the buildup model in OpenMDAO [28] to facilitate optimization. As with the RANS-based optimizations,

we use SNOPT through pyOptSparse as the optimizer. The gradients are computed using the complex-step method [29].
We consider optimizations with and without trim surface sizing. The optimization formulation with trim surface
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variables is shown in Table 5. We only run buildup-based optimizations for the supersonic condition because the model
is not applicable to subsonic flow. Unlike the RANS optimizations, the rotation variables are not bounded by mesh
deformation limits. Instead, we bound them to the range where we expect the buildup model to be reasonably accurate.
The lower bound for the trim surface span variables is zero. This means that the optimizer has the option of removing
either trim surface. Aside from speed, this is the main advantage of using the buildup model in an optimization instead
of RANS. Removing a trim surface or doubling its span would not be possible with a mesh deformation approach.

Table 5 Buildup-based trim surface sizing optimization problem

Lower Upper Scaling

Minimize 𝐶𝐷 10

With respect to Angle of attack −6◦ 6◦ 1
Canard rotation −25◦ 25◦ 1
Canard half-span 0 m 10 m 1
Tail rotation −25◦ 25◦ 1
Tail half-span 0 m 10 m 1

Subject to 𝐶𝐿 0.1665 0.1665 1
𝐶𝑀 0 0 1

C. Buildup-based optimization results
We first use the buildup model to run the same trim-constrained drag minimizations as we did for RANS. These

results are presented in Table 4 for ease of comparison with the RANS results. The trimmed buildup drag for the
three-surface and conventional configurations match RANS to within 2%. The optimized trim design variables match to
within 7%. This provides further verification of the buildup model. The canard configuration optimization is feasible
without the mesh-induced upper bound on the canard rotation. The canard configuration has a 37% drag penalty over
the three-surface configuration because the canard is stalled to satisfy the trim constraints.

The speed of the buildup model allows us to explore the design space multimodality of the three-surface trim
optimization. We run optimizations from 100 random starting points. 96 out of the 100 optimizations converge. We
consider the buildup-based optimizations converged when they reach feasibility and optimality values of 10−8 or lower.
These tolerances are much easier to achieve with an analytic model than the RANS equations. All 96 converged
optimizations converge to the same design. Figure 9 shows the initial and optimized design variables for the first 20
converged optimizations. This strongly suggests that the optimization problem is unimodal. The unimodality of the
three-surface optimization is an important result for aerodynamic shape optimization studies. For shape optimizations,
we typically compare the trimmed optimized result with the trimmed baseline configuration [23, 30]. If the trim
optimization is unimodal, we can start from any untrimmed state to get the lowest trim drag for the baseline design. This
allows for a fair comparison with the trimmed shape optimized design.

Next, we run the trim optimization with span variables. Similar to the previous trim optimization, we run 100
optimizations from different starting points. Unlike the optimization with fixed sizing, this optimization is multimodal.
Table 6 shows the best optimized result. The optimized planform has almost no horizontal stabilizer and a canard
that is more than twice the span of the baseline (Fig. 10). The canard has a lower lift penalty for a positive moment
increment than the tail. Increasing the canard’s size allows for trim at a lower angle of attack, which reduces the drag by
10.4% compared to the baseline. One concern with canard designs is that they are more likely to be statically unstable
in pitch [31]. We include the static margin for the baseline and optimized designs in Table 6. The static margin is
computed as [23]

𝐾𝑛 = −
𝐶𝑀𝛼

𝐶𝑁𝛼

, (20)

where the derivatives are computed using the complex-step gradients from the optimization. The static margin for the
optimized design is lower than the baseline, but the design is still stable.
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Table 6 Trim surface sizing optimization results

Baseline Best minimum

Drag counts 329.9 295.5
Static margin 23.3% 6.9%
Angle of attack 3.21◦ 2.37◦

Canard rotation 8.13◦ 7.85◦

Canard half-span 2.327 m 5.280 m
Tail rotation −4.70◦ 3.60◦

Tail half-span 5.543 m 0.067 m

IV. Conclusions
This work uses nonlinear aerodynamic models and numerical optimization to determine the minimum trim drag

configuration for a supersonic transport aircraft. We determine the minimum trim drag for three-surface, canard,
and conventional configurations with fixed trim surface sizing using RANS-based optimizations. The three-surface
configuration has the lowest trim drag at a supersonic cruise condition. The second best option is the conventional
configuration, which has 9.4% higher drag than the three-surface configuration. The canard and three-surface
configurations have comparable drag at a subsonic takeoff condition, and the conventional configuration has 11.2%
higher drag than the three-surface configuration.

To overcome the mesh-related limitations of the RANS-based optimizations, we formulate a supersonic buildup
model. The model is accurate enough to approximate the RANS-based trim optimization results. We also show that the
three-surface optimization with fixed sizing is unimodal. We then use the supersonic buildup model to optimize the
aircraft with variable trim surface sizing. The design space for this optimization includes the option to remove either
trim surface, which would not be possible with an optimization involving mesh deformation. When considering trim
surface sizing, the design for minimum supersonic drag has practically no tail and a canard sized at 36% of the wing
half-span. These results suggest that a canard configuration can minimize supersonic drag. Further work is required to
determine if a canard configuration is still advantageous when also considering subsonic performance and stability.
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