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Abstract

Aircraft aerodynamic design often involves evaluating flow conditions that span low subsonic to
transonic or even supersonic Mach numbers. Compressible flow solvers are a natural choice for such
design problems, but these solvers suffer from reduced accuracy and efficiency at low Mach numbers.
In addition, simulations with supersonic conditions can be challenging to converge because of large
gradients in the flow field. This paper presents three contributions to address these issues in the
context of an approximate Newton–Krylov solver for the Reynolds-averaged Navier–Stokes equations.
First, we propose a method for scaling the artificial dissipation terms in the Jameson–Schmidt–Turkel
scheme to improve its accuracy at low Mach numbers while retaining the simplicity of the original
scalar dissipation formulation. Second, we show that characteristic time-stepping combined with an
approximate Newton method can accelerate convergence for low Mach number flows by reducing
the stiffness in the linear system for each Newton iteration. Third, we introduce a dissipation-based
continuation method for flows with shocks that improves robustness and accelerates convergence
without sacrificing accuracy. These methods can make compressible flow solvers more accurate and
efficient across low and high Mach number regimes.

1 Introduction
Aircraft aerodynamic design often requires evaluating performance over a wide range of flow

conditions. For example, the flight envelope of a supersonic transport aircraft can span Mach numbers
from 0.25 to 2.0 [1]. A conventional transonic aircraft will fly through Mach numbers from 0.2 to 0.85
in a typical mission [2]. In addition, certain applications produce flow fields with a range of Mach
numbers at a single operating condition. Helicopter rotors experience nearly incompressible flow at
blade roots and compressible flow at the tips [3]. Nacelles in crosswind can experience supersonic
flow around the inlet lips despite low subsonic flow outside the nacelle [4]. The Mach number range
in applications such as these motivates the need for CFD solvers that are accurate and efficient across
a wide range of Mach numbers.

In theory, compressible flow solvers represent the actual physics across all Mach numbers, making
them a natural choice for aerodynamic design. In practice, these solvers commonly suffer from
reduced accuracy and speed at low Mach numbers. Modifying compressible flow solvers to resolve
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these issues is usually called low-speed preconditioning. Low-speed preconditioning has been studied in
depth by several authors for both explicit and implicit time-stepping schemes. Turkel [5] introduced
a class of preconditioning matrices for low-speed flows based on analysis of the Euler equations.
This approach modifies the time-stepping terms to equalize the advective and acoustic wave speeds,
accelerating convergence. The same preconditioners can improve accuracy at low Mach numbers if
the artificial dissipation in the scheme is based on preconditioned fluxes [6]. This approach has also
been applied to viscous flows [7, 8, 4]. van Leer et al. [9] proposed a preconditioner for all Mach
numbers that is also based on the idea of minimizing the spread in wave speeds. They interpreted
this approach as using different time steps along different characteristic directions, which led to the
name “characteristic time-stepping”. The authors demonstrated the preconditioner’s effectiveness on
the Euler equations at Mach numbers from 0.01 to 1.8 and on viscous flow at Mach 7.95. Lee [10]
showed that preconditioning approaches based on the Euler equations work well for viscous flows in
most practical cases.

Some work has also been done on low-speed preconditioning for Newton-based solvers. Newton-
based solvers are fully implicit and offer more flexibility in addressing the accuracy and speed
issues independently without introducing unwelcome stability restrictions. To speed up convergence
with Newton–Krylov solvers, Knoll et al. [11] considered multiplicative Schwarz preconditioning,
and Weston et al. [12] used approximate block factorizations. Both of these papers take an algebraic
approach to preconditioning. In contrast, Mary et al. [13] applied characteristic-based preconditioning
to an approximate Newton solver. This work was limited to a maximum Reynolds number of 800
and primarily considered accuracy. These limitations suggest an unexplored potential for improved
performance with Newton-based solvers using characteristic preconditioning methods.

In addition, high-speed flows have not been explored as extensively as low-speed cases. Kaushik
et al. [14] and Olawsky et al. [15] found that Newton-based solvers can run into difficulties converging
supersonic flows with second-order schemes compared to more dissipative first-order schemes. They
resolved this by starting the solution with a first-order scheme before switching to a second-order
scheme closer to convergence. This approach lacks reliability because it is not always clear when to
switch to a second-order scheme for a given case. A related approach for improving convergence for
flows with shocks is to increase the artificial dissipation in the discretization. For upwind schemes,
this can be achieved by limiting the minimum eigenvalue of the flux Jacobian, commonly referred to as
an entropy fix. For example, changing the entropy fix to be more dissipative is an option in the widely
used FUN3D code [16]. The amount of dissipation in upwind schemes can also be increased by using
a more dissipative flux limiter [17]. The equivalent for central schemes is increasing the artificial
dissipation constants, as done by Öhrman [18] and Aprovitola et al. [19], for example. Increasing
dissipation improves robustness in exchange for reduced accuracy. We desire an automated approach
that increases robustness without sacrificing accuracy.

In this work, we introduce three methods to improve the efficiency and accuracy of Newton-based
compressible flow solvers across low and high Mach number regimes. In Sec. 3, we describe a simple
method for improving low-speed accuracy by scaling the artificial dissipation of a scalar dissipation
scheme. This method preserves the simplicity of the original scheme and is easy to implement. We
then formulate a characteristic time-stepping approach for an approximate Newton solver in Sec. 4.
Characteristic time-stepping improves nonlinear convergence rates by reducing the stiffness of the
linear system at each nonlinear iteration. Lastly, we present a dissipation-based continuation method
in Sec. 5 that addresses nonlinear convergence difficulties that arise from high Mach number flows.
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This method leverages the idea that more dissipative methods are easier to converge by starting with
high artificial dissipation and smoothly reducing the dissipation to the desired level as the solution
converges.

2 Baseline RANS solver
The CFD solver in this work is ADflow [20], a second-order finite volume code for multiblock

and overset structured meshes. We solve the steady, compressible Reynolds-averaged Navier–Stokes
(RANS) with the Spalart–Allmaras (SA) turbulence model [21]. The flow is assumed to be fully
turbulent.

The Navier–Stokes equations can be written as

d
d𝑡

∫
𝑉

𝑄d𝑉 +
∮
𝜕𝑉

®𝐹𝑐 · ®𝑛d𝐴 −
∮
𝜕𝑉

®𝐹𝑑 · ®𝑛d𝐴 = 0, (1)

where 𝑄 = [𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝐸]𝑇 represents the conservative variables, ®𝐹𝑐 is the convective flux, and
®𝐹𝑑 is the diffusive flux. This system is augmented by the SA equation, which adds the turbulent
contribution to the diffusive flux. Discretizing in space with a cell-centered finite volume method,
the equation for a cell 𝑖 is

d𝑄𝑖

d𝑡
𝑉𝑖 +

∑
𝑓

�̂�𝑐Δ𝐴 𝑓 −
∑
𝑓

�̂�𝑑Δ𝐴 𝑓 = 0, (2)

where the discretized fluxes, �̂�𝑐 and �̂�𝑑, are summed over the faces of the cell. We use the Jameson–
Schmidt–Turkel (JST) scheme [22, 23] to discretize the convective flux and a central scheme with
Green–Gauss gradients for the diffusive flux.

2.1 Artificial dissipation formulation
JST is a central scheme that combines second and fourth difference artificial dissipation terms

for stability. We now describe the artificial dissipation formulation in the 𝐼 mesh direction. The
formulation for the 𝐽 and 𝐾 directions follow similarly. The second-difference dissipation coefficient
at a face between cell 𝑖 and 𝑖 + 1 is given by

𝜖(2)
𝑖+ 1

2
= �2Υ𝑖+ 1

2
Λ̂𝐼

𝑖+ 1
2
, (3)

and the fourth-difference coefficient is given by

𝜖(4)
𝑖+ 1

2
= max

(
0, �4Λ̂

𝐼

𝑖+ 1
2
− 𝑐4𝜖

(2)
𝑖+ 1

2

)
. (4)

By default, we use �2 = 0.25, �4 = 0.0156, 𝑐4 = 1. Υ𝑖+1/2 is the shock sensor at the face, which ensures
that second-difference dissipation is only applied near shocks and fourth-difference dissipation is
only applied away from shocks. The shock sensor at the face is computed as the maximum of the
neighboring cell sensor values:

Υ𝑖+ 1
2
= max (Υ𝑖 ,Υ𝑖+1) . (5)

For viscous flows, the shock sensor value in each cell is based on the local change in entropy, 𝑠:

Υ𝑖 =
|𝑠𝑖+1 − 2𝑠 + 𝑠𝑖−1 |
|𝑠𝑖+1 + 2𝑠 + 𝑠𝑖−1 |

. (6)
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Λ̂𝐼
𝑖+1/2 is the spectral radius of the flux Jacobian in the 𝐼 direction at the face and is computed as the

average of the neighboring cell radii:

Λ̂𝐼

𝑖+ 1
2
=

1
2

(
Λ̂𝐼
𝑖 + Λ̂𝐼

𝑖+1

)
. (7)

To compute the spectral radius in the 𝐼 direction, we first compute the isotropic spectral radius, Λ, in
each direction. The isotropic spectral radius in the 𝐼 direction is

Λ𝐼 = ®𝑈 · ®𝑛𝐼 + 𝑐 | ®𝑛𝐼 |, (8)

where ®𝑈 = [𝑢, 𝑣, 𝑤]𝑇 is the local velocity vector, 𝑐 is the local speed of sound, and ®𝑛𝐼 is the cell’s
average face area normal in the 𝐼 direction. Similarly, for the 𝐽 and 𝐾 directions, we have

Λ𝐽 = ®𝑈 · ®𝑛𝐽 + 𝑐 | ®𝑛𝐽 |, (9)

Λ𝐾 = ®𝑈 · ®𝑛𝐾 + 𝑐 | ®𝑛𝐾 |. (10)

We then compute a scaled spectral radius that is appropriate for high aspect ratio cells as suggested
by Martinelli [24]:

Λ̂𝐼 = Λ𝐼

(
1 +

(
Λ𝐽

Λ𝐼

)0.67

+
(
Λ𝐾

Λ𝐼

)0.67
)
. (11)

The artificial dissipation terms are proportional to the spectral radius, so appropriately scaling the
spectral radius is critical for solver convergence and solution accuracy.

2.2 Solver algorithm
To converge the semi-discrete form (Eq. 2) to a steady solution, we define the residual in each cell,

𝑅𝑖 , as the time-derivative term and drive it to zero:

𝑅𝑖 =
d𝑄𝑖

d𝑡
𝑉𝑖 =

∑
𝑓

�̂�𝑑Δ𝐴 𝑓 −
∑
𝑓

�̂�𝑐Δ𝐴 𝑓 = 0. (12)

The baseline nonlinear solver algorithm in this work is the approximate Newton–Krylov (ANK)
method with pseudo-transient continuation implemented in ADflow [25]. The solver is primarily
designed for robustness and speed at transonic flow conditions. The solution update at each iteration
of the ANK solver, Δ𝑄(𝑛), is obtained by solving the linear system[ (

𝑇−1) (𝑛) + (
𝜕𝑅

𝜕𝑄

) (𝑛)]
Δ𝑄(𝑛) = −𝑅(𝑄(𝑛)), (13)

where 𝑅 is the residual vector, 𝑄(𝑛) is the state vector, and 𝑇 is the time-step matrix. 𝑇 is a diagonal
matrix, where the diagonal terms for each cell are the time step, Δ𝑡𝑖 , that results in the desired global
CFL number. The global CFL number is initially small and is increased as the solution converges.
The SA turbulence equation is solved separately after each ANK update for the flow equations. A
complete description of the ANK algorithm is given by Yildirim et al. [25].
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2.3 Accuracy and cost comparisons
We compare the methods presented in this paper to the baseline solver in terms of accuracy

and cost. Unless stated otherwise, all solutions are converged to a total residual of 10−10 relative to
the freestream residual. To provide a hardware-independent measure of cost, we report total CPU
times in TauBench work units [26]. We run all computations on NASA’s Aitken supercomputer using
Cascade Lake nodes, where one work unit equals 3.9078 processor seconds. We determine this by
running TauBench ten times with the command mpiexec -np 1 ./TauBench -n 250000 -s 10 and
computing the average run time.

3 Scaling artificial dissipation to improve accuracy at low Mach
numbers

Artificial dissipation is essential for nonlinear convergence but can compromise accuracy. The
JST scalar dissipation scheme is generally more dissipative than second-order upwind schemes [27].
Central schemes that are less dissipative than scalar dissipation include matrix dissipation [27] and
the convective-upstream-split-pressure scheme [28]. However, these central and upwind schemes are
primarily designed for transonic flows and run into accuracy issues at low Mach numbers because
of improperly scaled artificial dissipation [6]. One common approach to scale the dissipation is
to multiply the flux Jacobian by a local preconditioning matrix. For JST, this modifies the spectral
radius and, consequently, the dissipation. Using a local preconditioning matrix can also accelerate
convergence, which we discuss in Sec. 4. To improve low-speed accuracy, we opt to modify the spectral
radius directly. The advantage of this approach over prior ones is that it requires minimal changes to
the JST scalar dissipation formulation.

In the low Mach number limit, the advective contribution to the spectral radius (Eq. 8) is 𝑂(1),
whereas the acoustic contribution is 𝑂(1/𝑀) [29, 6]. Rieper [30] showed that artificial dissipation
must be independent of the Mach number for accuracy in the incompressible limit. To scale the
artificial dissipation for low Mach numbers, we introduce the acoustic scaling factor � in the isotropic
spectral radius:

Λ𝐼 = ®𝑈 · ®𝑛𝐼 + �𝑐 | ®𝑛𝐼 |. (14)

Using this formulation, we can select values for � that reduce or eliminate the dependence of artificial
dissipation on the Mach number. Similar dissipation scaling approaches have been proposed in the
context of upwind schemes [31] and kinetic energy preserving schemes [32].

To study the effect of � on low-speed accuracy, we consider a NACA 0012 airfoil at a Reynolds
number of 106, 3◦ angle of attack, and Mach numbers from 0.01 to 0.4. We use an O-mesh with 296
cells around the airfoil and 128 cells in the offwall direction, for a total of 37888 cells (Fig. 1). The
initial offwall spacing is 10−6 chord lengths, and the farfield is 100 chord lengths away from the airfoil,
which is consistent with the Drag Prediction Workshop guidelines [33].

To evaluate accuracy at different values of �, we compare the RANS results with predictions using
XFOIL [34], a 2D panel method coupled with an integral boundary layer model. We use 300 panels
for the inviscid discretization in the XFOIL analyses. Increasing the number of panels to 360 gives
the same coefficient values to 4 significant digits. We force transition at the 0.3% chord location to
match the fully turbulent RANS simulations. This is the smallest positive value we could use for the
trip location without encountering numerical difficulties.

5



(a) Nearfield (b) Farfield

Figure 1: NACA 0012 O-mesh with 296 × 128 cells

Fig. 2a compares the drag for the baseline (� = 1), no acoustic contribution (� = 0), and scaling
the acoustic contribution by the freestream Mach number (� = 𝑀∞). With no scaling, drag diverges
as the Mach number is reduced. The drag overprediction at low Mach numbers for the baseline is
caused by a nonphysical suction peak on the trailing edge surface (Fig. 3). These nonphysical pressure
fluctuations are a direct result of improperly scaled dissipation, as shown by Guillard and Viozat [35].
Chen et al. [36] also found similar trailing edge pressure spikes for low-speed inviscid flow. Scaling
the acoustic contribution removes the trailing edge artifact and results in more accurate drag values.
In addition, the change in drag flattens out as the Mach number is reduced. Scaling by the freestream
Mach number yields the most accurate drag predictions compared to XFOIL.
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Figure 2: Scaling artificial dissipation improves accuracy

The baseline errors in the lift at low Mach numbers are not as significant as for drag (Fig. 2b),
but the lift still diverges as the Mach number approaches zero. Reducing artificial dissipation avoids
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(a) � = 1 (b) � = 10−2

Figure 3: Reducing artificial dissipation removes the spurious pressure spikes at the trailing edge (Mach 0.01)

divergence. The value of � is not critical for lift prediction because the differences are primarily caused
by discretization errors. We run a mesh refinement study at Mach 0.1 to demonstrate this effect. In
addition to the 296 × 128 mesh, we use a 592 × 256 mesh and a 148 × 64 mesh for the study. Figure 4
shows the drag and lift for these three meshes, as well as the Richardson extrapolation [37, 38] using
the two finest meshes. The Richardson extrapolation estimates the values we would obtain on an
infinitely fine mesh. The extrapolated drag values depend on �. The extrapolated drag for � = 1 is
7.5% higher than for � = 0 and 5% higher than for � = 𝑀∞. This means that adequately scaling the
dissipation is essential for drag prediction, even for fine meshes. On the other hand, the extrapolated
lift values are within 0.5% of each other. The differences in the lift with � are significant only for the
148 × 64 mesh. However, such a coarse mesh is outside the asymptotic range [38] in terms of mesh
size and should not be used in general. The mesh refinement study also shows that drag for � < 1 is
less sensitive to mesh size than baseline. As a result, scaling the artificial dissipation can indirectly
speed up analyses by allowing for coarser meshes at the same accuracy as the baseline.

Based on these results, we recommend using � = 𝑀∞ for cases where a freestream Mach number
exists. For other cases, � should equal the dominant or average Mach number. An alternative
approach would be to use local values for � instead of using the same value in all cells. For example,
we could use the local Mach number instead of the freestream Mach number in each cell. For the
NACA 0012 case, this results in similar accuracy and convergence to a global value of � = 0. This
is because the local Mach number near the airfoil is close to zero, and the cells closest to the airfoil
dictate the overall behavior of the solver. However, local values may be more applicable for cases
where a freestream Mach number is not defined. The proposed scaling approach with global or local
� is easy to implement and improves the accuracy of compressible solvers at low Mach numbers.
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Figure 4: Mesh refinement at Mach 0.1

4 Accelerating convergence at low Mach numbers with charac-
teristic time-stepping

In addition to lower accuracy, compressible flow solvers face slower convergence at low Mach
numbers. For the NACA 0012 case from Sec. 3 with the 296 × 128 mesh and � = 1, the solution
for Mach 0.01 is three times slower than Mach 0.4 (Fig. 5). The slower convergence results from
the difference in magnitude between the advective and acoustic wave speeds. This results in a more
restrictive upper bound on the time step for explicit solvers. For Newton-based solvers, this is reflected
in the stiffness of the linear system that is solved at each nonlinear iteration.
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Work units

10−10
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10−6

10−4

10−2

100

Relative
convergence

Mach 0.4 Mach 0.1

Mach 0.01

Figure 5: Cost increases as Mach number decreases (NACA 0012)

The baseline ANK solver defaults are tuned for compressible flow. However, we use settings that
are beneficial for low Mach number flows for all cases with freestream Mach numbers of 0.4 or lower.
The main changes are using more linear solver iterations and a stronger preconditioner for the linear
system. Solving the linear system more tightly for higher Mach numbers and flows with shocks is
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not as beneficial for improving nonlinear convergence.
We use a local preconditioning or characteristic time-stepping (CTS) approach to accelerate con-

vergence at low Mach numbers further. This approach involves modifying the time-stepping terms
to equalize the advective and acoustic wave speeds. We refer to this approach as characteristic
time-stepping to emphasize that we are not modifying the artificial dissipation using the same pre-
conditioner. To apply CTS to the ANK solver, we multiply the time-step matrix by the preconditioning
matrix 𝑃. The linear system with the ANK step (Eq. 13) requires the inverse of the time-step matrix,
so it is more convenient to work directly with the inverse of the preconditioner, 𝑃−1:[ (

𝑃−1𝑇−1) (𝑛) + (
𝜕𝑅

𝜕𝑄

) (𝑛)]
Δ𝑄(𝑛) = −𝑅(𝑄(𝑛)). (15)

We make one change to adapt the preconditioner for use with pseudo-transient continuation. When
the CFL number is low, the linear system is not stiff, and the baseline solver regularly outperforms
CTS. A similar lack of stiffness was noted by Turkel and Vatsa [39] for small physical time steps in
a dual time-stepping context. To take advantage of the baseline solver in this situation, we use a
blended preconditioner based on the CFL number:

𝑃−1
blend =

(
CFL

CFLmax

)
𝑃−1 +

(
1 − CFL

CFLmax

)
𝐼. (16)

With this blending, the solver initially acts like the baseline and reaches the fully preconditioned
method when the CFL number reaches its maximum value.

The inverse preconditioner, 𝑃−1, is a block diagonal matrix. Each diagonal block corresponds to
one cell, and we denote the preconditioner for cell 𝑖 as 𝑃−1

𝑖
. Several different preconditioning matrices

can be used in this formulation. We consider the Turkel preconditioner [5], denoted here as 𝑃T, and
the van Leer–Lee–Roe (VLR) preconditioner [9], denoted as 𝑃VLR.

4.1 Turkel preconditioner
It is convenient to write the Turkel preconditioner in terms of the Euler symmetrizing variables,

�̃� = [𝑝/(𝜌𝑐), 𝑢, 𝑣, 𝑤, 𝑝 − 𝑐2𝜌]𝑇 . (17)

With these variables, the preconditioner for cell 𝑖 is

�̃�−1
T,𝑖 =



1
𝑀2

T
0 0 0 0

𝛼𝑢

𝑐𝑀2
T

1 0 0 0

𝛼𝑣

𝑐𝑀2
T

0 1 0 0

𝛼𝑤

𝑐𝑀2
T

0 0 1 0

0 0 0 0 1



, (18)
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where we use 𝑀T instead of the usual symbol 𝛽 to avoid confusion with the 𝛽 introduced for the VLR
preconditioner in Sec. 4.2. As in prior work, we define 𝑀T as a truncated form of the local Mach
number:

𝑀2
T = min

(
1,max(𝑀2 , 𝜙𝑀2

∞)
)
. (19)

The lower bound on 𝑀2
T prevents the matrix from becoming ill-conditioned. Using 𝜙 > 0 bounds 𝑀2

T
away from zero in cells where the local Mach number is nearly zero. The ill-conditioning is mainly
an issue at stagnation points. We find that 𝜙 = 10−4 provides the best performance while avoiding
convergence issues. Larger values of 𝜙 do not show speedup compared to the baseline, whereas
smaller values fail to resolve the stagnation point issue.

The upper bound on 𝑀2
T, combined with defining 𝛼 as

𝛼 = 1 −
(
𝑀2

T
)10

, (20)

eliminates preconditioning for locally supersonic flow. For 𝑀 ≥ 1, 𝑀2
T = 1 and 𝛼 = 0, which

is equivalent to no preconditioning. (𝑀2
T)10 quickly approaches 0 for subsonic Mach numbers.

Consequently, 𝛼 ≈ 1 for Mach numbers less than 0.8. This results in better conditioning than
𝛼 = 0. Prior time-stepping approaches typically used the preconditioner with 𝛼 = 0 for its improved
robustness despite not providing the optimal conditioning in the low Mach number limit. The
difference in robustness has been attributed to 𝛼 = 1 having lower artificial dissipation than 𝛼 = 0 [6].
However, we do not use the same scaling for the dissipation as for the time step, so we avoid this
robustness issue.

Finally, we transform the matrix to conservatives variables through

𝑃−1
T,𝑖 = 𝑆�̃�

−1
T,𝑖𝑆

−1 , (21)

where 𝑆 is the transformation matrix from symmetrizing to conservative variables:

𝑆 =



𝜌

𝑐
0 0 0 − 1

𝑐2

𝜌𝑢

𝑐
𝜌 0 0 − 𝑢

𝑐2

𝜌𝑣

𝑐
0 𝜌 0 − 𝑣

𝑐2

𝜌𝑤

𝑐
0 0 𝜌 −𝑤

𝑐2

𝑐𝜌

(
𝑀2

2
+ 1

𝛾 − 1

)
𝜌𝑢 𝜌𝑣 𝜌𝑤 −𝑀

2

2



. (22)
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4.2 van Leer-Lee-Roe (VLR) preconditioner
The VLR preconditioner is usually expressed in terms of the Euler symmetrizing variables and in

a flow-aligned coordinate frame:

¯̃𝑃−1
VLR,𝑖 =



𝛽2 + 𝜏

𝑀2
VLR𝜏

1
𝑀

0 0 0

1
𝑀

1 0 0 0

0 0
1
𝜏

0 0

0 0 0
1
𝜏

0

0 0 0 0 1



, (23)

where

𝛽 =


√

1 −𝑀2
VLR , 𝑀 < 1√

𝑀2
VLR − 1, 𝑀 ≥ 1

, 𝜏 =


√

1 −𝑀2
VLR , 𝑀 < 1√

1 − 1/𝑀2
VLR + 𝜖, 𝑀 ≥ 1

. (24)

We define 𝑀2
VLR like 𝑀2

T for the Turkel preconditioner but without any restrictions for supersonic
flow:

𝑀2
VLR = max(𝑀2 , 𝜙𝑀2

∞). (25)

We use 𝜙 = 10−4, the same value we use with the Turkel preconditioner. We also set 𝜖 = 10−4 when
defining 𝜏 (Eq. 24) to avoid dividing by zero for sonic flow. We transform the preconditioner first to
Cartesian coordinates with the rotation matrix 𝑍 and then to conservatives variables with the state
transformation matrix 𝑆 (Eq. 22):

𝑃−1
VLR,𝑖 = 𝑆𝑍

¯̃𝑃−1
VLR,𝑖𝑍

𝑇𝑆−1. (26)

The rotation matrix [40] is

𝑍 =


1 0 0 0 0
0 cos 𝛼 cos� − sin� − sin 𝛼 cos� 0
0 cos 𝛼 sin� cos� − sin 𝛼 sin� 0
0 sin 𝛼 0 cos 𝛼 0
0 0 0 0 1


, (27)

where

sin� =
𝑣√

𝑢2 + 𝑣2
, sin 𝛼 =

𝑤√
𝑢2 + 𝑣2 + 𝑤2

,

cos� =
𝑢√

𝑢2 + 𝑣2
, cos 𝛼 =

√
𝑢2 + 𝑣2

√
𝑢2 + 𝑣2 + 𝑤2

.
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4.3 The importance of dissipation scaling
When introducing the VLR preconditioner, van Leer et al. [9] used an upwind scheme and

explicit time-stepping. They found that applying preconditioning to only the time-stepping terms
resulted in severe restrictions on the time step. To avoid these restrictions, it was necessary to use a
preconditioned form of the dissipation matrix in the Roe flux. However, they were unclear on whether
this necessity extends to central schemes such as scalar dissipation. We show that dissipation scaling
is also necessary for scalar dissipation schemes and Newton-based solvers.

We first apply CTS to the NACA 0012 case at Mach 0.01. For this section, we only show results with
the Turkel preconditioner. However, we see similar trends with VLR. We find that the performance
strongly depends on the choice of � (Fig. 6). Using � = 𝑀∞ results in faster convergence than the
baseline, whereas CTS is slower than the baseline for � = 1 and � = 0. For � = 1, CTS takes more than
twice as long as the baseline to converge and exhibits noisy convergence below a relative residual of
10−7. Convergence with CTS is noisier than the baseline, even for cases where CTS is faster. This is
related to the preconditioner becoming ill-conditioned at stagnation points. The noise is worse for
lower freestream Mach numbers (Fig. 7). In addition, using larger values of 𝜙 reduces the noise but
results in slower convergence. The noise is most significant for � = 1 because of the nonphysical
stagnation regions shown in Fig. 3a. We conclude that applying local preconditioning to the time
step is problematic when the flow solution is locally nonphysical. The slowdown with CTS is less
severe for � = 0 than � = 1 but still indicates that the solver is not working as intended. As mentioned
before, removing too much dissipation can compromise solver robustness. In this case, the solver still
converges but performs poorly.

0 100 200 300 400 500 600

Work units

10−10

10−8

10−6

10−4

10−2

100

Relative
convergence

ζ = 1

ζ = 1 Turkel

ζ = 0

ζ = 0 Turkel

ζ = 10−2

ζ = 10−2 Turkel

Figure 6: CTS reduces cost for � = 10−2 (NACA 0012 at Mach 0.01)

We can look at linear convergence to see how CTS achieves speedup for � = 𝑀∞. The linear
system for each ANK step is solved using the generalized minimum residual (GMRES) method [41].
The target linear residual is 0.05. We also set the maximum number of GMRES iterations to 100. If
the iteration limit is reached before the linear residual target is met, the solver will continue with the
partially converged step. We use the linear residual as an indicator of the linear system stiffness. For
� = 𝑀∞, CTS reduces the linear residuals such that they are all less than 0.1 (Fig. 8a). This results in
faster nonlinear convergence. However, the same is not true for � = 0 (Fig. 8b). Despite reducing the
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Figure 7: CTS convergence is noisier at lower Mach numbers (NACA 0012, � = 𝑀∞, Turkel)

linear residuals, nonlinear convergence is not improved with CTS. As a result, we use � = 𝑀∞ for all
baseline and CTS cases with freestream Mach numbers of 0.4 or lower in Sec. 4.4 and Sec. 4.5.
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Figure 8: CTS improves linear convergence, but this does not guarantee improved nonlinear convergence (NACA 0012 at
Mach 0.01)

4.4 NACA 0012 Mach number sweep
We now compare Turkel and VLR preconditioning with the baseline for a range of Mach numbers.

Both preconditioners converge faster than the baseline for all Mach numbers we tried between 0.01
to 0.4 (Fig. 9a). The most significant speedup results are for Mach 0.1 and lower, where Turkel is
41%-64% faster than baseline. VLR is consistently faster than Turkel and achieves 49%-71% speedup
compared to the baseline in this regime. There is also a considerable speedup for Mach 0.4, but we
do not expect to see the same speedup if the baseline solver is tuned for compressible flow.

We also compare CTS and baseline for Mach numbers between 0.6 to 1.4. We use � = 1 for
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these cases because we are no longer in the low Mach number regime. We also tune the solver for
compressible flow. These higher Mach number cases converge faster if we switch to a Newton–Krylov
(NK) solver after converging to a relative residual of 10−5 with ANK. The NK solver has no time-step
matrix and solves the flow and turbulence equations simultaneously in the same Newton system. The
lack of the time-step matrix means that CTS has no effect. However, this switch ensures a fair cost
comparison in which the baseline solver is not restricted to less effective methods. The performance
of Turkel and VLR is similar to the baseline at higher Mach numbers (Fig. 9b). This is the expected
behavior for the Turkel preconditioner because we turn off preconditioning for locally supersonic
flow. VLR is designed to be an all-speed preconditioner but performs similarly to baseline for higher
Mach numbers. This is because the difference in wave speeds and the resulting linear system stiffness
is not an issue for Mach numbers around 1. We could try Mach numbers much higher than 1, but this
runs into other challenges. We discuss these challenges and propose a solution in Sec. 5.
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Figure 9: CTS reduces cost for low Mach numbers (NACA 0012)

4.5 Delta wing
There are also low Mach number cases for which CTS does not result in any speedup. We

demonstrate this on a delta wing with an aspect ratio of two at a Mach number of 0.083, Reynolds
number of 5.9 × 105, and angle of attack of 5◦ (Fig. 10). The geometry and flow conditions are taken
from experimental work by Jarrah and Ashley [42]. We use an overset mesh with 1.9 million cells
(Fig. 10a). More details on the mesh are given by Seraj and Martins [43]. For this case, stagnation
point flow is restricted to a small region near the wing apex (Fig. 10b). Despite the low freestream
Mach number, the flow field does not have enough cells with nearly zero local Mach number to make
the global linear system stiff. As a result, CTS produces nearly identical convergence behavior as the
baseline (Fig. 11). This also explains why the linear residuals are lower than the NACA 0012 baseline
case. We show only Turkel results for clarity, but VLR also gives nearly identical results.
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(a) Overset mesh with 1.9 million cells (b) Pressure contours at Mach 0.083, 𝛼 = 5◦

Figure 10: Delta wing geometry from Jarrah and Ashley [42]
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Figure 11: CTS is nearly identical to baseline for the delta wing
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5 Dissipation-based continuation for flows with shocks
Flows with shocks pose different challenges for solvers than the low Mach number flows we have

discussed. Shocks can move within the domain as the solution converges, causing significant changes
in cells’ states. To improve robustness, the ANK solver employs a physicality check that limits the
update step size such that the density and energy do not change by more than 20% in any cell. A
critical outcome of this approach is that the density and energy cannot become negative. Despite this
added robustness, ANK can still perform poorly or fail to converge when the step sizes become small.

We demonstrate the effect of step size on convergence using transonic and supersonic flow over
a NACA 0012 airfoil. At Mach 3.0, the step sizes are severely limited compared to Mach 0.75, which
slows down convergence (Fig. 12). For the NACA 0012 cases in this section, we use the 296× 128 mesh
from Sec. 3. The Reynolds number is 107, and the angle of attack is 3◦ unless stated otherwise. As with
the high Mach number cases in Sec. 4.4, we use the NK solver during the final stages of convergence
for all cases in this section. We switch to the NK solver after converging to a relative residual of 10−8

with ANK. We could have converged these cases using only ANK. However, switching to NK results
in faster convergence and represents typical settings for the baseline solver.
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Figure 12: Limited step sizes slow down convergence for supersonic flows (NACA 0012)

One approach to accelerating convergence is to loosen the physicality check to accept larger
changes in the states. However, this reduces the robustness of the solver and can often lead to stalled
convergence. Another approach is to increase the second-difference artificial dissipation constant, �2.
This improves convergence by reducing the spatial gradient in the states but has the disadvantage
of reducing solution accuracy. To accelerate convergence while preserving accuracy, we propose a
dissipation-based continuation (DBC) method where �2 starts high and is continuously reduced as
the solution converges.

DBC was previously explored by Hicken et al. [44, 45]. The DBC approach presented here differs
from this prior work in that we do not use it as a general globalization strategy. We retain the shock
sensor (Eq. 6) for the second-difference dissipation, so DBC is only applied near shocks. In addition,
we use DBC in combination with pseudo-transient continuation for globalization. A related but less
automated approach is to start the solution with a first-order scheme and switch to a second-order
scheme at some point during the solution [14, 15].
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5.1 DBC formulation
We write the DBC formulation as

�(𝑛)
2 = �2 + 𝑓

(𝑛)
𝑐 �𝑐2 , (28)

where �(𝑛)
2 is the dissipation constant at nonlinear iteration 𝑛, �2 is the desired final dissipation

constant, �𝑐2 is the initial value of the additional dissipation, and 𝑓
(𝑛)
𝑐 is the continuation parameter at

iteration 𝑛. We require that the continuation parameter starts at 1 and approaches 0 as the solution
converges. We choose to compute the continuation parameter using a generalized sigmoid function:

𝑓
(𝑛)
𝑐 =

1

1 + 𝑒−𝜎
(
log10

(
�(𝑛)rel

)
+�

) , (29)

where 𝜎 is the sharpness parameter, � is the midpoint parameter, and �(𝑛)rel is the relative convergence
at iteration 𝑛. The parameters 𝜎 and � determine the shape of the sigmoid. Larger values of 𝜎 will
result in a steeper drop in dissipation. We call � the midpoint parameter because the additional
dissipation is equal to 0.5�𝑐2 at a relative residual of 10−�. We use 𝜎 = 3 and � = 3, which results in the
continuation function shown in Fig. 13. When the solution is converged, the additional dissipation is
small enough to recover the solution of the original problem. The shape parameters generally do not
need to be tuned for each case. However, the appropriate value for �𝑐2 depends on the Mach number.
We find that �𝑐2 = 0.2𝑀∞ works well, and we use this value for all cases presented here.
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Figure 13: The additional dissipation decreases smoothly as the flow converges

5.2 NACA 0012
We first compare the baseline solver and DBC for the NACA 0012 case at Mach numbers from

0.75 to 3.0 at a 3◦ angle of attack (Fig. 14a). DBC is between 3% and 13% faster than baseline for Mach
numbers of 2.0 and above. Similarly, DBC is between 4% and 8% faster than baseline at Mach 2.0 and
angles of attack from 0◦ to 6◦ (Fig. 14b). DBC increases the number of near-unit steps, which improves
convergence (Fig. 15). The converged lift and drag values with DBC match the baseline values to 8
significant digits.
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Figure 14: DBC offers slight speedup for the NACA 0012 case
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Figure 15: DBC improves convergence by increasing step sizes (NACA 0012 at Mach 2.5)
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5.3 Supersonic transport configuration
The advantages of DBC are more pronounced when applied to a more complex case. We now

consider a supersonic transport (SST) configuration with a cranked arrow wing, T-tail, and canard
(Fig. 16). We consider flow at Mach numbers of 1.8 and 0.95, representing realistic supersonic and
transonic cruise conditions for the next generation of SSTs [1]. Both cases have a 4◦ angle of attack.
DBC converges both cases, whereas the baseline solver does not converge either (Fig. 17). We also
compare DBC to the baseline solver with �2 increased from the default value of 0.25 to the initial DBC
value of 0.25+ 0.2𝑀∞. For Mach 1.8, increasing �2 converges faster than DBC. However, this solution
is also less accurate because of the increased dissipation near shocks. For Mach 0.95, the solver still
stalls with the higher �2, albeit after about three more orders of convergence.

In some cases, robustness is more valuable than faster convergence. The SST mesh used here is
the same as that used by Seraj and Martins [46] for aerodynamic shape optimization studies. Reliably
converging the flow at different design points is essential for a well-behaved optimization [47]. DBC
offers more robustness than the baseline solver for complex geometries at high Mach numbers, making
it more suitable for many-query scenarios such as parameter sweeps or design optimization.

Figure 16: SST overset mesh with pressure contours at Mach 1.8

6 Conclusions
Using compressible flow solvers for low Mach number flows typically results in poor accuracy

and speed. In addition, high Mach number flows can be challenging to converge reliably without
increasing the amount of dissipation in the spatial discretization. We present three contributions to
address these challenges.

First, we propose a simple modification to the Jameson–Schmidt–Turkel scheme to make the
artificial dissipation appropriate for low Mach number flows. We show that scaling down the acoustic
contribution of the spectral radius improves accuracy and reduces sensitivity to mesh size. We
recommend using a scaling factor equal to the freestream Mach number. Second, we demonstrate
the effectiveness of a characteristic time-stepping method for approximate Newton–Krylov solvers.
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Figure 17: DBC converges the SST cases without sacrificing accuracy

This approach reduces the stiffness of the linear system at low Mach numbers by modifying the time-
step matrix. We show that the artificial dissipation must be adequately scaled to achieve speedup
with characteristic time-stepping. In addition, cases with small regions of stagnation point flow do
not benefit from characteristic time-stepping. Third, we present a dissipation-based continuation
method for flows with shocks. The continuation approach introduces additional dissipation near
shocks during the initial stages of the solution and smoothly reduces the dissipation as the solution
converges. This approach is faster and more robust than the baseline solver, particularly for more
complex geometries. These contributions enable more accurate and efficient flow solvers across low
and high Mach numbers, making CFD more dependable for applications involving a wide range of
flow conditions, such as aircraft design.
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