
This is a preprint of the following article, which is available at: http://mdolab.engin.umich.edu

M. Shahabsafa, A. Mohammad-Nezhad, T. Terlaky, L. Zuluaga, S. He, J. R. R. A. Martins,

John. Hwang, A novel approach to discrete truss design problems using mixed integer neigh-

borhood search. Structural and Multidisciplinary Optimization, (In press).

The original article may differ from this preprint and is available at:

https://link.springer.com/article/10.1007/s00158-018-2099-8.

A novel approach to discrete truss design
problems using mixed integer neighborhood

searchs

Mohammad Shahabsafa1, Ali Mohammad-Nezhad1, Tamás Terlaky1,
Luis Zuluaga1, Sicheng He2, Joaquim R. R. A. Martins2, and John

Hwang3

1Department of Industrial and Systems Engineering, Lehigh University,
Bethlehem, PA

2University of Michigan, Department of Aerospace Engineering, Ann
Arbor, MI 48109

3Department of Mechanical and Aerospace Engineering, University of
California, San Diego, CA 92093, USA

Abstract

Discrete truss sizing problems are very challenging to solve due to their combinatorial,
nonlinear, non-convex nature. Consequently, truss sizing problems become unsolvable
as the size of the truss grows. To address this issue, we consider various mathematical
formulations for the truss design problem with the objective of minimizing weight,
while the cross-sectional areas of the bars take only discrete values. Euler buckling
constraints, Hooke’s law, and bounds for stress and displacements are also considered.
We propose mixed integer linear optimization (MILO) reformulations of the non-convex
mixed integer models. The resulting MILO models are not solvable with existing MILO
solvers as the size of the problem grows. Our novel methodology provides high quality
solutions for large-scale real truss sizing problems, as demonstrated through extensive
numerical experiments.
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1 Introduction
Truss design problems focus on the optimal selection of geometry, topology and sizing
of a truss structure (Bendsøe et al., 1994). Dorn et al. (1964) was the first to apply
numerical optimization to the truss design problem. They used the ground structure
approach, where the optimal structure is a subset of a set of bars defined prior to
solving the problem. They considered the single-load minimum weight truss design
problem. Achtziger et al. (1992) considered the truss design problem and developed
linear and quadratic optimization models using displacement variables only, with the
goal of minimizing compliance. Bendsøe and Ben-Tal (1993) considered the problem
of minimizing the compliance for a given volume of the material in a truss, where the
mathematical model was formulated in terms of the nodal displacements and bar cross-
sectional areas. They developed a steepest descent algorithm to solve the problem.

Consider a truss design problem with the objective to minimize the total weight
of the structure, and assume that the cross-sectional areas of the bars are continuous
decision variables. If we only impose Hooke’s law, force balance equations, and bounds
on the stress as the constraints, then all the bars are fully stressed in the optimal
solution, and the model can be reformulated as a linear optimization problem. However,
adding the Euler buckling constraints makes the problem non-convex and thus harder
to solve. Achtziger (1999a) proposed an optimization model for the minimum weight
truss design problem taking into account yield stress and Euler buckling constraints,
but not considering the kinematic compatibility and the stress-strain relation. He then
developed a numerical approach to solve this model (Achtziger, 1999b).

One of the frequent restrictions in practice is that the cross-sectional areas of the
bars cannot take an arbitrary value; instead they only take values from a predefined
finite set. The class of discrete truss design problems is motivated by manufacturing
constraints in a practical setting. The areas of the truss elements are discrete be-
cause the bars are manufactured in fixed sizes. These restrictions also appear in other
structural design problems, such as the design of shell element structures when dealing
with laminated composites. Achtziger and Stolpe (2007a,b,c) considered the minimum
compliance truss design problem with bounds on the volume of the truss, where the
cross-sectional areas of the bars only take values from a discrete set. They proposed a
mixed integer nonlinear optimization model and used a branch-and-bound algorithm
to find the global optimum of the problem. They solved continuous relaxations of the
problem to obtain lower bounds for the optimal objective value. However, they did not
consider the bounds on the stress and Euler buckling constraints in the design prob-
lem. Stolpe (2007) considered the minimum compliance problem with constraints on
the displacements and total volume of the structure. He proposed mixed integer linear
optimization (MILO) and mixed integer quadratic optimization reformulations using
the techniques presented by Petersen (1971) and by Glover (1975, 1984). Rasmussen
and Stolpe (2008) used a branch-and-cut approach to solve the MILO formulation of
the minimum weight truss design problem, taking into account the stress and displace-
ment constraints. However, they did not consider the buckling constraints in the model.
They solved a 2D L-shaped truss problem with 54 bars and 108 binary variables, and
a 3D cantilever truss with 40 bars and 160 binary variables to global optimality. Mela
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(2014) investigated the minimum weight truss design problem, where he assumed that
the cross-sectional areas of the bars are discrete. He formulated and solved a MILO
model taking into account the Euler buckling and kinematic stability constraints. Mela
(2014) solved a 2D truss tower with 209 bars, 110 of which were overlapping members.
Additionally, he solved a 2D L-shaped truss with 160 bars, 23 of which were overlap-
ping. Stolpe (2004) suggested a mixed integer non-convex mathematical model for the
minimum weight truss design problem with displacements, stress, and cross-sectional
areas as variables, considering bounds on stress and cross-sectional areas, as well as
Euler buckling constraints. Then, he used a branch-and-bound framework to obtain
the global optimum of the truss problem instances with a maximum of 25 bars. The
MILO formulations of a truss structure can be generalized to other structures, e.g.,
Mellaert et al. (2017) develop MILO formulations for frame structures with various
engineering constraints.

Several meta-heuristic methods have been used to solve truss design optimization
problems. Genetic algorithms are one of the most common meta-heuristics historically
used to solve these problems (Rajeev and Krishnamoorthy, 1992; Wu and Chow, 1995;
Hajela and Lee, 1995; Kaveh and Kalatjari, 2004). Ant colony optimization (Bland,
2001; Camp and Bichon, 2004a; Kaveh et al., 2008) and particle swarm optimization
methods (Li et al., 2009; Zeng and Li, 2012) have also been widely used to solve truss
design problems.

Other methods including simulated annealing (Kripka, 2004), artificial bee colony
optimization (Sonmez, 2011; Stolpe, 2011), mine blast algorithm (Sadollah et al., 2012,
2015), colliding bodies optimization (Kaveh and Mahdavi, 2014; Kaveh and Ghazaan,
2015)), and harmony search (SeokLee and Geem, 2004) have also been used. Stolpe
(2016) provides a review on truss design problems with discrete cross-sectional ar-
eas. He presented various models and different methods, including global optimization
methods, heuristics, and meta-heuristics to solve discrete truss design problems. In the
conclusions, he also stated the need for more publicly available benchmarking problems,
which we address herein by contributing three new scalable problems.

Mladenović and Hansen (1997) developed the variable neighborhood search (VNS)
algorithm to solve discrete optimization problems. In the VNS algorithm, the problem
is solved iteratively over the neighborhood structures. At each iteration, local search
methods are used to find the optimum in the neighborhood. Several general-purpose
and problem-specific variants of the VNS algorithm have been developed (Hansen and
Mladenović, 2003; Lazić, 2010; Hanafi, 2016). Svanberg and Werme (2005) used a
neighborhood search method to solve the topology optimization problem. However,
they consider a limited neighborhood, where “two different designs are neighbors if
they differ in only one single element”. Thus, the complexity of solving the associated
subproblems is O (n), where n is the number of elements in the structure. In another
article, Svanberg and Werme (2007) consider a M -neighborhood, where the number of
the design variables that can simultaneously change is limited to M at each iteration
(M = 1, 2, 4). The complexity of the associated subproblem on a M -neighborhood is
O
(
nM
)

for M = 1, 2, 4.
The subproblems of the neighborhood search MILO (NS-MILO) that we propose

here are defined over exponentially large neighborhoods, which in turn decreases the
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likelihood of getting stuck in a local optimum. As our experiments illustrate, the trade-
off between solving more complex subproblems and the time needed to obtain near-
optimal solutions for large-scale truss design problems is advantageous. Additionally,
we do not solve the subproblems to optimality in the NS-MILO approach, but rather,
we stop the solution process of the subproblems as soon as a solution better than the
current best solution is found. This is one of the reasons that enables the NS-MILO
approach to scale well as the size of the problem increases.

The minimum weight discrete truss design problem considering the Euler buckling
constraints, Hooke’s law, bounds for the stress and displacements has only been solved
for small-scale problems. The main contributions of the work presented herein are the
enhancement of the mathematical models for truss design problems, and an efficient
solution methodology to approximately solve large-scale discrete truss design problems
with more than 12,000 binary variables. We focus on applying our NS-MILO approach
to truss sizing problems and do not consider truss topology problems.

The remainder of this paper is organized as follows. In Section 2, we review various
truss design problem models assuming that the cross-sectional areas of the bars are
continuous. Then, we propose two alternative MILO models for the design problem,
where the cross-sectional areas of the bars are discrete. In Section 3, we propose
a set of cuts to strengthen the MILO model of the discrete design problem, and in
Section 4, we propose a novel solution methodology that enables us to generate high
quality solutions to large-scale discrete truss design problems significantly faster. In
Section 5, we demonstrate the efficiency of the proposed method through numerical
results, followed by the conclusions in Section 6.

2 Preliminary models
In this section, we first assume that the cross-sectional areas of the bars are continu-
ous, and propose a variety of non-convex models for the truss design problem. Then,
we refine the models to consider the case where the cross-sectional areas of the bars
are discrete. We propose two alternative MILO models for the discrete truss design
problem, which are used in Section 4 to solve the problem.

In a truss structure, some nodes are fixed at a point, while the others are free.
The external force on the nodes results in a deformation that induces the internal
force that balances the external force on the free nodes. We consider a design problem
where the topology is fixed and the total weight of the truss is minimized. The decision
variables are the cross-sectional areas (design variables), as well as internal forces, nodal
displacements, and the bars’ stresses (state variables).

2.1 Continuous cross-sectional areas

In this section, we assume that the cross-sectional areas of the bars are continuous
decision variables. In general, the truss design problem can be formulated as a nonlinear
non-convex optimization problem (Stolpe, 2004). Next, we present three equivalent
mathematical models for the continuous truss design problem.
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Let m be the number of bars in the truss, I = {1, . . . ,m}, and n be the number of
degrees of freedom, which is

n = (# of nodes−# of fixed nodes)× dim. of the space.

Let x ∈ Rm denote the cross-sectional areas of the bars, and q ∈ Rm the vector of
the internal forces on the bars. The stress in bar i ∈ I is

σi =


qi

xi
if xi > 0,

0 otherwise.

(1)

The vector of external forces exerted on the nodes is denoted by f ∈ Rn. The equi-
librium between the internal forces and the external forces applied to the free nodes is
maintained as a result of the force balance equation (De Klerk et al., 1995),

Rq = f , (2)

where R ∈ Rn×m is the topology matrix associated with the design problem. The ith

column of R, denoted by ri, is the vector representing the topology of the ith bar in
the truss for all i ∈ I.

Let u ∈ Rn denote the displacement vector of the nodes. Additionally, let l ∈ Rm

and ∆l ∈ Rm denote the length of the bars and elongation of the bars, respectively.
The elongation of the bars depends on the displacement vector u as follows

∆l = RTu. (3)

Let Ei, for i ∈ I, denote the Young’s modulus of bar i. We can restate the internal
force qi as a function of cross-sectional area xi and elongation ∆li. This relationship is
governed by Hooke’s law

qi = Ei
∆li
li
xi, (4)

for all i ∈ I.
Let matrix Ki ∈ Rn×n, for i ∈ I, be the contribution of the bar i ∈ I to the global

stiffness matrix, defined as

Ki =
Ei

li
rir

T
i ,

where Ki is positive semidefinite. We may further assume that the truss structure
is stable, and hence K(x) is positive definite, denoted as K(x) � 0. As mentioned
below, this property is enforced by considering positive lower bounds on the bars’
cross-sectional areas. From Equations (2), (3), and (4), we can derive the following
relationship

K(x)u = f , (5)
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where K(x) ∈ Rn×n is the stiffness matrix of the truss obtained by assembling the bar
stiffness matrices as follows

K(x) =
m∑
i=1

xiKi. (6)

Lower and upper bounds are enforced for the bar stresses. Let σmin, σmax ∈ Rm

be the given lower and upper bounds on the bar stress, respectively. The bounds σmin

and σmax are actually bounds on the compression and tension of the bars, respectively.
Therefore, we have σmax > 0 and σmin < 0. Lower and upper bounds umin and
umax are considered on the nodal displacements of the structure as well. Moreover,
we consider lower and upper bounds on the cross-sectional areas of the bars, namely,
xmin, xmax ∈ Rm. We consider the truss sizing problem, where xmin

i > 0 for all i ∈ I.
Furthermore, we consider the Euler buckling constraints, which are defined as

σi ≥ σEi , i ∈ I,
where σEi is the Euler buckling stress for bar i ∈ I. We assume that both ends of all
the bars are pinned. Then, the Euler buckling stress for bar i ∈ I with a circular cross
section is

σEi = −
π2Ei

4
(
li
τi

)2, (7)

where τi is the radius of bar i ∈ I. If we define γi = πEi/4l
2
i , then σEi = −γixi, and

the Euler buckling constraints can be written as

σi + γixi ≥ 0, i ∈ I. (8)

Using Equation (1), we can also write the Euler buckling constraints as

qi + γix
2
i ≥ 0, i ∈ I. (9)

Constraint (8) can be generalized to the cases where the discrete choice of the bar sizes
corresponds to similar cross-sectional shapes.

For example, suppose we have a discrete choice set composed of similar rectangles:
hi/bi = c, for i ∈ I, where bi and hi denote the width and height for the ith choice,
respectively, and c is a constant. Then the Euler buckling constraints are written as

σi + γ′ixi ≥ 0, γ′i =
cπ2E

12l2i
, i ∈ I. (10)

Notice that neither Hooke’s law nor the Euler buckling constraints (9) are convex.
This results in the following non-convex quadratic optimization formulation of the truss
design problem:

min ρlTx
s.t. Rq = f ,

qi − Ei

li
(rTi u)xi = 0, i ∈ I,

qi + γix
2
i ≥ 0, i ∈ I,

umin ≤ u ≤ umax,
σmin
i xi ≤ qi ≤ σmax

i xi, i ∈ I,
xmin
i ≤ xi ≤ xmax

i , i ∈ I,

(P1)

where ρ is the density of the bar material. We assume without loss of generality that
all bars have the same density.
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Model (P1) hasm non-convex equalities, andm non-convex inequalities. Each of the
m non-convex equalities, has n bilinear terms. However, the Hooke’s law constraint—
the first constraint in (P1)—can be used to derive a new formulation in terms of the
cross-sectional areas x ∈ Rm and the nodal displacements u ∈ Rn as

min ρlTx
s.t. K(x)u = f ,

Ei

li
(rTi u) = σi, i ∈ I,

σi + γixi ≥ 0, i ∈ I,
umin ≤ u ≤ umax,
σmin
i ≤ σi ≤ σmax

i , i ∈ I,
xmin
i ≤ xi ≤ xmax

i , i ∈ I,

(P2)

where all the nonlinearity of the problem is encapsulated in n non-convex equalities,
that is the K(x)u = f constraints, which include mn bilinear terms. However, we
can decrease the number of bilinear terms by adding the internal forces q ∈ Rm and
Equation (1) back to the model. By doing so, problem (P1) can be reformulated as

min ρlTx
s.t. Rq = f ,

σi −
Ei

li
rTi u = 0, i ∈ I,

qi − σixi = 0, i ∈ I,
σi + γixi ≥ 0, i ∈ I,
umin ≤ u ≤ umax,
σmin
i ≤ σi ≤ σmax

i i ∈ I,
xmin
i ≤ xi ≤ xmax

i i ∈ I.

(P3)

This model has m non-convex equalities, each of which has only one bilinear term. As
a result, this is simpler than models (P1) and (P2) (e.g., Bendsoe and Sigmund (2013)
compare models with different decision variables). We utilize model (P3) in Section 2.2
to derive the mathematical optimization model for the truss where the cross-sectional
areas are discrete.

2.2 Discrete cross-sectional area

In problems (P1), (P2), and (P3), we assume that the cross-sectional areas are con-
tinuous decision variables. In reality, however, the cross-sectional areas are frequently
chosen from a discrete set, corresponding to standard pre-manufactured bars (Acht-
ziger and Stolpe, 2006, 2007a; Cerveira et al., 2009). Thus, xi for i ∈ I takes values
from the finite set

Si = {si1, si2, . . . , sipi}, (11)

where 0 < si1 < si2 < . . . < sipi . Let δik := si,k+1 − sik, and Pi = {1, . . . , pi}. We
propose two discrete modeling approaches for the discrete set (11), which are referred
to as the basic discrete model and the incremental discrete model.
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Basic discrete model: The cross-sectional area of bar i is defined as

xi =
pi∑
k=1

sikzik, i ∈ I,
pi∑
k=1

zik = 1, i ∈ I, k ∈ Pi,

zik ∈ {0, 1}, i ∈ I, k ∈ Pi.

(12)

Incremental discrete model: The cross-sectional area of bar i is defined as

xi = si1 +
pi−1∑
k=1

δikzik, i ∈ I,

zik ≥ zi,k+1, i ∈ I, k = 1, . . . , pi − 2,
zik ∈ {0, 1} i ∈ I, k = 1, . . . , pi − 1.

(13)

In the basic model, binary variables represent the choice from the discrete set of
the cross-sectional areas, while in the incremental model, binary variables represent
the increments in the cross-sectional areas of the bars. If zik = 1 in the basic discrete
model, then xi = sik, and zij = 0 for j 6= k. However, if zik = 1 in the incremental
discrete model, then xi ≥ sik, and zij = 1 for j < k. In Section 5.2, we compare the
basic and incremental models and see that the incremental model is a better modeling
approach when solving the discrete truss design problem.

Next, we explain the derivation of the MILO formulation for problem (P3) con-
sidering the discrete models (12) and (13). This idea can be used to reformulate
problems (P1) and (P2). We start by substituting the basic discrete model (12) in the
constraint qi − σixi = 0 for all i ∈ I. Then we have

qi −
pi∑
k=1

sikzikσi = 0, i ∈ I, (14)

where for all i and k we have the multiplication of a binary variable and a bounded
continuous variable, i.e., σizik. Using the idea introduced by Petersen (1971) and
by Glover (1975, 1984), we can linearize the constraint (14) by introducing auxiliary
variables ψik = σizik and by adding the following constraints:

zikσ
min
i ≤ ψik ≤ zikσ

max
i ,

σi − σmax
i (1− zik) ≤ ψik ≤ σi − σmin

i (1− zik),
for all i ∈ I, k = 1, . . . , pi. Then, using the basic discrete model (12), problem (P3)
can be reformulated with decision variables x ∈ Rm, z ∈ R

∑
i pi , u ∈ Rn, q ∈ Rm,
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σ ∈ Rm, and ψ ∈ R
∑

i pi , to obtain the following MILO problem:

min
∑
i∈I
ρlixi

s.t. Rq = f ,

xi −
pi∑
k=1

sikzik = 0, i ∈ I

σi −
Ei

li
rTi u = 0, i ∈ I,

qi −
pi∑
k=1

sikψik = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,
σmin
i ≤ σi ≤ σmax

i , i ∈ I,
umin ≤ u ≤ umax,
zikσ

min
i ≤ ψik ≤ zikσ

max
i , i ∈ I, k ∈ Pi,

σi − σmax
i (1− zik) ≤ ψik ≤ σi − σmin

i (1− zik), i ∈ I, k ∈ Pi,
pi∑
k=1

zik = 1, i ∈ I,

zik ∈ {0, 1}, i ∈ I, k ∈ Pi.

(15)

In a similar manner, we can consider the incremental discrete model (13) and reformu-
late problem (P3) as the following MILO model:

min
∑
i∈I
ρlixi

s.t. Rq = f ,

xi − si1 −
pi−1∑
k=1

δikzik = 0, i ∈ I,

σi −
Ei

li
rTi u = 0, i ∈ I,

qi − si1σi −
pi−1∑
k=1

δikψik = 0, i ∈ I,

σi + γixi ≥ 0, i ∈ I,
σmin
i ≤ σi ≤ σmax

i , i ∈ I,
umin ≤ u ≤ umax,
zikσ

min
i ≤ ψik ≤ zikσ

max
i , i ∈ I, k ∈ P i,

σi − σmax
i (1− zik) ≤ ψik ≤ σi − σmin

i (1− zik), i ∈ I, k ∈ P i,

zik ≥ zi,k+1, i ∈ I, k ∈ Pi,
zik ∈ {0, 1}, i ∈ I, k ∈ P i,

(16)

where P i = {1, 2, . . . , pi − 1} and Pi = {1, 2, . . . , pi − 2}. Note that the incremental
model has one less binary variable for each bar.

3 Reformulating the MILO models
In this section, we propose a set of cuts that can be used to obtain better MILO
formulations for models (15) and (16) in terms of solution time. In particular, these
cuts can replace the Euler buckling constraints (8). Next, we derive the cuts for
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model (16). The derivation of the cuts for model (15) can be done in a similar fashion.
Considering the discrete model (13), the Euler buckling constraints can be rewritten

as

σi + γi

si1 +

pi−1∑
k=1

δikzik

 ≥ 0, i ∈ I. (17)

For each bar i ∈ I, the Euler buckling constraint enforces an inequality on zik for
k = 1, . . . , pi−1. We replace the Euler buckling constraint (17) by pi constraints, each
of which is formulated using only one binary variable.

Theorem 1. The following set of constraints is equivalent to the Euler buckling con-
straint (17) for incremental discrete model (13).

σi + γisij(1− zij)− σmin
i zij ≥ 0, j = 1, . . . , pi − 1,

σi + γisi,pizi,pi−1 − σmin
i (1− zi,pi−1) ≥ 0.

(18)

Proof. Suppose xi = sik for k = 1 . . . , pi−1 and i = 1, . . . ,m. Then the Euler buckling
constraint (17) reduces to

σi + γisik ≥ 0. (19)

From the incremental discrete model (13) we know that zi1 = . . . = zi,k−1 = 1, and
zik = zi,k+1 = . . . = zi,pi−1 = 0. Additionally, the set of constraints (18) is equivalent
to

σi + γisij ≥ 0, j = k, . . . , pi − 1,
σi − σmin

i ≥ 0.
(20)

By the inequalities σi − σmin
i ≥ 0, the constraints above can be written as

σi ≥ max
j=k,...,pi−2

{−γisij}. (21)

This constraint can be written as σi ≥ −γisik, which is equivalent to the Euler buckling
constraint (19). Now, suppose that xi = sipi for i = 1, . . . ,m. In this case, zi1 = . . . =
zi,pi−1 = 1, and the set of constraints (18) is equivalent to

σi − σmin
i ≥ 0,

σi + γisi,pi ≥ 0,

which is equivalent to the Euler buckling constraint (17).

In Section 5.3, we demonstrate that replacing the Euler buckling constraints with
constraints (18) in truss instances with large discrete sets can, in most cases, decrease
the solution time by more than 20% on average.

The reason to replace the Euler buckling constraint by pi constraints is that it helps
to decompose the Euler buckling constraints for the binary variables zik, k = 1 . . . , pi−
1. As it can be seen from constraint (17), the original Euler buckling constraint is
written in terms of all the pi − 1 binary variables corresponding to bar i, while in the
reformulation (18), each constraint is in terms of only one binary variable. That is the
reason that the reformulation would be more effective if pi is large.
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4 Solution methodologies
We now present a methodology for solving discrete truss design problems (15) and (16).
For ease of presentation in what follows, we refer to these problems as the original
problems, with full discrete sets.

By way of experimentation, it turns out that MILO solvers are not able to solve to
optimality even small-sized 3D instances of the truss design problem (Stolpe, 2016). In
Table 1, results for the optimization of 3D cantilever trusses (see Section 5.1.4) using
GuRoBi 7.0.2 are presented to demonstrate that they are indeed hard to solve. Note
that the relative optimality gap threshold is 0.1%, and the size of the discrete set of
cross-sectional areas for all the bars is 41. The solver is terminated after 24 hours of
CPU time if it is not solved to optimality by then.

Table 1: Solutions of 3D-truss sizing instances obtained directly using GuRoBi.

# bars # bin. var. Time(s) Weight (kg) Opt. Gap
20 800 247.55 9.75 0.07%
40 1600 86400.02 21.24 25.76%
60 2400 86400.03 24.82 30.03%
80 3200 86400.04 31.22 32.43%

100 4000 86400.05 32.04 34.36%

To address the numerical performance issues highlighted in Table 1, we present a
new solution methodology, referred as neighborhood search MILO (NS-MILO). The
NS-MILO approach solves subproblems which are defined over the feasible set of the
original problem.

In existing neighborhood search algorithms used to solve the truss design problems
(see e.g., Mladenović and Hansen (1997); Hansen and Mladenović (2003); Svanberg
and Werme (2005, 2007); Lazić (2010); Hanafi (2016)), the subproblems are defined
on a small neighborhood of the incumbent solution so that those subproblems are
polynomially solvable. This, in turn, may result in small local improvements, since the
subproblems explore a very small neighborhood for a better solution. However, the
neighborhoods of the subproblems in the NS-MILO approach are significantly larger,
such that the number of the feasible solutions of the subproblems grows exponentially
as the number of the bars increases. Therefore, the subproblems become NP-hard,
i.e., the time needed to solve them to global optimality grows exponentially as the
size of the problem grows. This approach enables us to explore a significantly larger
neighborhood for a better solution, which decreases the likelihood of getting stuck in
a local optimum.

In existing neighborhood search algorithms (see e.g., Mladenović and Hansen (1997);
Hansen and Mladenović (2003); Svanberg and Werme (2005, 2007); Lazić (2010); Hanafi
(2016)), the simple subproblems are solved to optimality, while in the NS-MILO ap-
proach, we do not solve the NP-hard subproblems to global optimality, since proving
optimality of the subproblems does not necessarily help us in solving the original prob-
lem. Instead, we stop solving the subproblems as soon as a better solution than the
current best solution is found, and define the next subproblem in the neighborhood
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of the improved solution. Nowadays, MILO solvers, such as GuRoBi(2016), have ex-
tremely powerful methods to improve the best integer feasible solution found, which
helps to significantly reduce the time needed to improve the integer feasible solution
of the subproblems of the NS-MILO approach.

The fact that the NS-MILO approach explores significantly larger neighborhoods
and does not prove global optimality for the subproblems makes it possible to provide
high-quality solutions to large-scale truss design problems.

If we continued to increase the size of the neighborhood of the MILO subproblems
in the NS-MILO approach, and solve the last MILO subproblem—which would be
identical to the original problem—to optimality, the NS-MILO approach would provide
an optimal solution for the truss design problem.

The NS-MILO methodology is based on sequentially solving MILO subproblems
where the feasible set of each subproblem is a subset of the feasible set of the original
MILO problem. The set of the discrete values of each bar at each subproblem is a
subset of the full discrete set of that bar. In fact, the discrete values are chosen from
the neighborhood of a given feasible solution. Hence, each subproblem is easier to solve,
due to its reduced size, than the original problem. The MILO subproblems are denoted
by MILOk(x). Specifically, MILOk(x) is the MILO formulation of a subproblem of the
discrete truss design problem, where the cardinality of the discrete set for each bar is at
most k, and the discrete set is generated from the assignment of the bar cross-sectional
areas x ∈ Rn. Note that the complexity of solving a MILOk subproblem is O(mk). Let
Ŝi be the discrete set of bar i ∈ I in subproblem MILOk(x). We solve three different
kinds of MILO subproblems:

1. MILO2(x), for x ∈ Rn, is the MILO formulation of the discrete design problem,
where the size of the discrete set of cross-sectional areas for each bar is equal to
two. The set Ŝi for a MILO2(x) is defined by

Ŝi :=


{si1, si2}, if xi < si1,

{sik, si,k+1}, if sik ≤ xi < si,k+1,

{si,pi−1, sipi}, if xi ≥ sipi .

2. MILO3(x) for xi ∈ Si, i ∈ I, is the MILO formulation of the discrete design
problem where the size of the discrete set for each bar is at most three. Suppose
that xi = sik. Then the set Ŝi for a MILO2(x) is defined by

Ŝi :=


{si1, si2}, if k = 1,

{si,k−1, si,k, si,k+1}, if 2 ≤ k ≤ pi − 1,

{si,pi−1, si,pi}, if k = pi.

3. MILO5(x) for xi ∈ Si, i ∈ I, is the MILO formulation of the discrete design
problem where the size of the discrete set for each bar is at most five. Suppose
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that xi = sik. Then the set Ŝi for a MILO5(x) is defined as follows

Ŝi =



{si1, si2, si3}, if k = 1,

{si1, si2, si3, si4}, if k = 2,

{si,k−2, si,k−1, si,k, si,k+1, si,k+2}, if 3 ≤ k ≤ pi − 2,

{si,pi−2, si,pi−1, si,pi , si,pi+1}, if k = pi − 1,

{si,pi−2, si,pi−1, si,pi}, if k = pi.

Suppose that the original discrete set of the bar i ∈ I is defined by the finite set (11).
We start the NS-MILO approach by obtaining a high-quality feasible solution for the
continuous model (P3) using a nonlinear optimization (NLO) solver. The solution
provided by the NLO solver is a KKT point of model (P3) and is denoted by x0. Then
we solve a sequence of MILO2 subproblems. We solve MILO2(αx

0) with α = 1 using a
MILO solver considering a predefined limit on the solution time. If an integer feasible
solution is not found within the time limit, we increase α by 0.05, and again solve
MILO2(αx

0). We continue solving MILO2(αx
0) until an integer feasible solution is

found.
Next, we generate MILO3(x̂), where x̂ is the best integer feasible solution obtained

from MILO2(αx
0). Using a MILO solver, we run the MILO solver on MILO3(x̂) until

a better solution than the current best solution is found. The improved solution to
MILO3(x̂) is assigned to x̂. As soon as a better solution is found, we stop the solver,
and use the improved solution x̂ to generate the next MILO3 subproblem. We continue
running the MILO solver on MILO3(x̂) until the objective function does not improve.

Afterwards, we generate MILO5(x̂), and similarly run the MILO solver on MILO5(x̂)
until a better solution than the current best solution is found. We stop the solver as
soon as the better solution is found, and use the improved solution to generate the next
MILO5 subproblem. We continue running the MILO solvers on the actual MILO5(x̂)
until the objective function does not improve.

Note that MILO3 and MILO5 subproblems are not solved to optimality, since MILO
solvers spend a significant portion of time improving the lower bound of the objective
value and proving the optimality of the best integer solution obtained. Note that
proving that a solution is optimal for the subproblem does not help in solving the
original discrete problem. Therefore, we stop the solver as soon as a better feasible
solution is found, and use that solution to generate the next subproblem.

The approach described above to generate and solve MILO subproblems sequen-
tially is in fact a moving-neighborhood search, where we search for better integer feasi-
ble solutions in the neighborhood of the best solution found so far. This neighborhood
search approach to solve the truss design problem is summarized in Algorithm 1. In this
algorithm, Solve(P ) returns the optimal solution of subproblem P , while FindSol(P )
returns a better solution as soon as it finds one, or returns the solution that was pre-
viously found. If FindSol(P ) returns the previously found solution, it indicates that
either that solution is optimal for the subproblem, or the time limit of solving subprob-
lem P is reached. In (x̂, η̂) := Solve(P ) and (x̂, η̂) := FindSol(P ), x̂ is the solution
that is returned and η̂ is the weight of the solution x̂.
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Algorithm 1 The NS-MILO approach

1: x0 := a solution of the continuous model
2: α := 1
3: repeat
4: x := αx0

5: (x̂, η̂) := Solve(MILO2(x))
6: α := α+ 0.05
7: until MILO2(x) is feasible
8: repeat
9: ηcurr := η̂
10: (x̂, η̂) := FindSol(MILO3(x̂))
11: until η̂ = ηcurr
12: repeat
13: ηcurr := η̂
14: (x̂, η̂) := FindSol(MILO5(x̂))
15: until η̂ = ηcurr
16: return x̂

Solving MILOk subproblems can be done for bigger values of k (k = 7, 9, . . .). How-
ever, in our experiments, considering these subproblems did not help to significantly
improve the solution, when one considers the time that was spent on solving those
larger neighborhood subproblems.

5 Numerical results
In this section, we solve two well-known instances from the literature: the 10-bar truss
and the 72-bar truss problems (Haftka and Gürdal, 2012) to compare the NS-MILO
approach with other algorithms used in the literature to solve these instances. In
addition, we introduce three different scalable truss design problems: 2D cantilever
truss, 3D cantilever truss, and truss models of an airplane wing with the goal to
demonstrate how the NS-MILO approach scales as the size of the problem grows.
These three new problems are available online 1.

The numerical results are run on a machine with Dual Intel Xeon® CPU E5-2630 @
2.20 GHz (20 cores) and 64 GB of RAM. We use the NLO solver IPOPT 3.14 (Wächter
and Biegler, 2006) to obtain a KKT point of the continuous truss sizing problem.
Additionally, GuRoBi 7.0.2 (2016) is used to solve the MILO models. GuRoBi has
the capability of using multiple threads in solving a MILO problem with the branch
and bound algorithm. The optimality gap threshold is set to 0.1%, i.e., when the gap
between the best found solution and the lower bound is less than 0.1%, GuRoBi stops
and returns the best solution found up to that point. We set GuRoBi to use 16 threads
when attempting to solve the problems and subproblems in this section.

1https://github.com/shahabsafa/truss-data.git
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5.1 Truss Problems

Here we solve two classical truss problems and the three scalable truss sizing problems
that are used to evaluate the models and the solution methodology.

5.1.1 The 10-bar truss

The 10-bar problem (Haftka and Gürdal, 2012) shown in Figure 1 is frequently used
as a benchmark example. The external force P on nodes 2 and 4 is equal to 444,800 N
(105 lb), and the material properties are listed in Table 2. Additionally, the displace-
ment bound on the y-direction of the nodes 1 and 2 is ±2.0 in. The discrete set of
potential cross-sectional areas is listed in the appendix.

Table 2: Aluminum alloy material properties used for 10-bar and 72-bar problems.

Property Value

ρ 0.1 lbm/in3

E 107 psi
σY 25000 psi

360 in.

Y

360 in.

360 in.

43

1 2

65

7 8 9 10

(2)(4)(6)

(1)(5) (3)

P P

X

Figure 1: The 10-bar truss.

5.1.2 The 72-bar truss

The 72-bar truss problem (Haftka and Gürdal, 2012) shown in Figure 2 is another
common benchmark. The bar material properties are listed in Table 2. Additionally,
the displacement bound on the x and y direction of the nodes 1, 2, 3, and 4 is ±0.25 in.
We have two load cases. In the load case one, the external force is only exerted on
node 1, with value fx = 5000 lbf, fy = 5000 lbf, and fz = −5000 lbf. In the load case
two, the external force is exerted on the z direction of the nodes 1, 2, 3, and 4 with
value fz = −5000 lbf. The discrete set S is defined in the appendix
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Figure 2: The 72-bar truss.

5.1.3 Scalable 2D cantilever problem

The 2D cantilever problem is made scalable by varying the number of blocks, where
each block has five bars. A 2D cantilever instance with 3 blocks is illustrated in
Figure 3.

50 cm50 cm50 cm

50 cm50 cm50 cm

Y

X

50 cm

Figure 3: The 2D cantilever problem instance with 3 blocks.

The material properties are listed in Table 3. The yield stress corresponds to the
yield strength of an aluminum alloy with a 50% safety margin. The external force is
generated randomly at each node from a given interval using a uniform distribution.
Let f0 = 1.25×105/nb N, where nb is the number of the blocks of the cantilever problem.
For all the top nodes, the y coordinate of the force randomly takes values in the interval
[−f0, 0], and the x coordinate of the force takes value in the interval [−f0/10, f0/10].
For the top nodes, the y and x force coordinates take value in the intervals [−f0/10, 0]
and [−f0/100, f0/100], respectively. Hence, the dominant coordinate of the force at
each node is the y direction with a negative sign. The average of the force on the
bottom nodes is 10 times bigger than that of the top nodes. The bars can take 41
different cross-sectional areas, which are listed in the appendix.
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Table 3: Aluminum alloy material properties used for the 2D and 3D cantilever prob-
lems.

Property Value

ρ 2.7 kg/m3

E 69 GPa
σY 172.36 MPa

The displacement bounds are considered for the two nodes of the tip of the can-
tilever problem in the x and y directions, and are presented in Table 4. Note that the
displacement bounds varies with the number of the blocks nb.

Table 4: Displacement bounds for the 2D cantilever problem.

nb Bounds (cm) nb Bounds (cm) nb Bounds (cm)
1 0.1 8 6.4 36 129.6
2 0.4 12 14.4 40 160.0
3 0.9 16 25.6 44 193.6
4 1.6 20 40.0 48 230.4
5 2.5 24 57.6 52 270.4
6 3.6 28 78.4 56 313.6
7 4.9 32 102.4 60 360.0

5.1.4 The 3D cantilever truss problem

The 3D cantilever scalable problem is an extension of the 2D cantilever problem. Now
each block is a cube, and all the diagonals of each face are has five bars. Additionally,
two of the main diagonals of each cube are connected with bars. This adds up to 20
bars per block. The 3D cantilever instance with 3 blocks is illustrated in Figure 4.

Z

Y

X

50 cm

Figure 4: 3D cantilever instance with 3 blocks.

The material properties are listed in Table 3. Similar to the 2D cantilever problem,
the force is generated randomly at each node from a given interval using a uniform
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distribution. Let f0 = 1.2 × 106/` N, where ` is the number of the blocks of the can-
tilever instance. For all the bottom nodes, the y coordinate of the force randomly takes
values in the interval [−f0, 0], and the x and z force coordinates randomly take values
in the interval [−f0/10, f0/10]. For the bottom nodes, the y, x, and z force coordinates
take values in the intervals [−f0/10, 0], [−f0/100, f0/100], and [−f0/100, f0/100] re-
spectively. Hence, the dominant coordinate of the force at each node is the y direction
with a negative sign. The average of the force on the bottom nodes is 10 times bigger
than that of the top nodes. Additionally, the bars can take 41 different cross-sectional
areas in the range [0.25− 85] cm2, which are listed in the appendix.

The displacement bounds are considered for the four nodes at the tip of the can-
tilever instance on the x, y, and z direction, and is presented in Table 5. Similar to the
2D cantilever instances, the displacement bounds varies with the number of the blocks
nb.

Table 5: Displacement bounds of the 3D cantilevers.

nb Bounds (cm) nb Bounds (cm) nb Bounds (cm)
1 0.3 6 3.6 11 12.1
2 0.4 7 4.9 12 14.4
3 0.9 8 6.4 13 16.9
4 1.6 9 8.1 14 19.6
5 2.5 10 10.0 15 22.5

5.1.5 Wing truss problem

We now consider a 3D wing modeled with bars. The truss layout is generated based on
the undeformed common research model (uCRM) geometry (Brooks et al., 2018), and
is shown in Figure 5. For the aerodynamic load, we assume an elliptical distribution in
the spanwise direction and a uniform distribution in the chordwise direction. The total
load of one wing is set to be one half of the maximum takeoff weight of the uCRM. For
simplicity, we also assume that the aerodynamic load is not affect by the structural
deformation, i.e., the aeroelastic effect is neglected in this study. The bars can take 40
different cross-sectional areas in the range [0.25 − 1200] cm2, which are listed in the
appendix.

The material properties are listed in Table 6. While it would be possible to consider
bounds on the displacements, we do not do that here, because in practical aircraft and
wing design, stress and buckling constraints are sufficient to achieve feasible designs
from the structural point of view.
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Table 6: Aluminum alloy material properties for the wing problem.

Property Value

ρ 2.7 kg/m3

E 69 GPa
σY 270 MPa

Figure 5: Wing truss problem instance with 315 bars.

5.2 Basic versus incremental model

Although the number of binary variables of the incremental model is not significantly
less than that of the basic model, the incremental model is solved significantly faster
than the basic model. In Figure 6, the objective function improvement of the basic and
incremental models is plotted for the 2D cantilever instance with 5 blocks. As we can
see, the incremental model stops at t = 64.11 seconds, while the basic model stops at
t = 256.64 s. Additionally, the incremental model finds the optimal solution at t = 31
s, while the basic model finds the optimal solution about 7 times slower at t = 221
s. Therefore, the incremental model is faster in proving optimality, and it finds the
optimal solution significantly faster than the basic model.

In Table 7, the 2D and 3D cantilever trusses that are solved to global optimality in
24 hours with either the basic or incremental model are reported. As the incremental
model is faster than the basic model, we use the incremental model through the rest
of the paper.

The intuition behind the better performance of the incremental discrete model is
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Figure 6: Comparison of the basic model and the incremental model for the 2D can-
tilever problem instance with 5 blocks.

that 1) In the incremental discrete model, fixing one of the binary variables to either
zero or one, automatically fixes the value of a high number of binary variables thanks
to inequality constraints (13); 2) This same set of inequality constraints (13) involving
the binary variables can be effectively used by MILO solvers to generate extra cuts
that help in the solution of the MILO model.

Table 7: Solution times (s) and weights (kg) for the basic and incremental models.

nb m
Basic model Incremental model

bin. var weight time bin var weight time

2D

1 5 205 2.55 0.93 200 2.55 0.89
2 10 410 5.68 27.92 400 5.68 4.33
3 15 615 6.87 240.42 600 6.87 24.17
4 20 820 9.64 3883.97 800 9.64 174.54
5 25 1025 9.18 256.64 1000 9.18 64.11
6 30 1230 13.76 86400.00 1200 13.76 9891.51

3D 1 20 820 9.75 37275.40 800 9.75 247.55

5.3 Strengthening the Euler buckling constraints

Next, we numerically examine the effect of replacing the Euler buckling constraint
introduced in (8) with constraints (18) introduced in Theorem 1.

Table 8: Impact of introducing the buckling constraints (18) on the solution time (s).

nb m
Euler Const. (8) Constr. (18) t2

t1weight (kg) t1 weight (kg) t2

2D

1 5 2.55 0.89 2.55 0.56 0.63
2 10 5.68 4.33 5.68 3.16 0.73
3 15 6.87 24.17 6.87 21.36 0.88
4 20 9.64 174.54 9.64 190.51 1.09
5 25 9.18 64.11 9.18 110.07 1.71
6 30 13.76 9891.51 13.76 8891.16 0.90

3D 1 20 9.75 247.55 9.75 201.47 0.81

20



The impact of replacing the Euler buckling constraints (8) with constraints (18)
is demonstrated in Table 8, where t1, and t2 denote the solution time of the model
with constraints (8), and the solution time of the model with constraints (18), respec-
tively. As we can see in Table 8, replacing the Euler buckling constraints (8) with
constraints (18), reduces the solution time in 5 out of 7 instances. Specifically, for the
largest 2D cantilever truss and the 3D cantilever truss with 20 bars, the solution time
decreases by 10% and 19% respectively.

Replacing the Euler buckling constraints (8) with constraints (18) is useful for the
truss design problems where we have a large discrete set for the cross-sectional areas.
However, if the size of the discrete set is less than 5, the replacement does not help.

5.4 The NS-MILO approach

In this section, we compare the NS-MILO approach to solve discrete truss design
problems with simply solving the original MILO problem directly with GuRoBi. We
refer to the latter as the full-MILO approach. In all the experiments, the incremental
model is used. The maximum solution time of the full-MILO approach is set to 24
hrs for all the instances that are solved in this section. The solution time limits for
MILO2, MILO3, and MILO5 subproblems are 300, 1500, and 2500 seconds respectively,
except for the wing instances with more than 250 bars, where the solution time limits for
MILO2, MILO3, and MILO5 subproblems are 300, 3000, and 6000 seconds respectively.
That means that our experiments compare the quality of the solution of full-MILO
approach after 24 hrs (if an optimal solution was not obtained earlier) with the NS-
MILO approach solution with the time settings mentioned above. To evaluate the
NS-MILO approach, we solve the well-known 10-bar and 72-bar instances (Haftka and
Gürdal, 2012) and compare the solution of the NS-MILO with that of other approaches
in Tables 9, 10, 11, and 12. Additionally, we solve the 2D and 3D cantilever instances
with 20 to 300 bars, and the wing instances with 81 to 315 bars to see how NS-MILO
scales as the size of the problem grows. Results of the 2D and 3D cantilever instances
are presented in Tables 13 and 14 respectively, and results of the wing instances are
presented in Table 15. In Tables 13, 14, and 15, m, wf , and tf denote the number of
bars, the weight of the solution of the full-MILO approach, and the time to obtain the
solution of the full-MILO approach, respectively. Parameters ns, wn, and tn denote the
number of MILO subproblems, the weight of the solution, and the solution time of the
NS-MILO approach, respectively. Additionally, in Tables 13 and 14 nb is the number
of blocks of the cantilever instances, and in Table 15, wc, and tc denote the weight of
the solution of the continuous design problem, and the time to obtain that solution,
respectively.

5.4.1 10-bar truss

As we can see in Table 9, the solution of the continuous model matches that of Haftka
and Gürdal (2012), and the solution of the discrete model is identical to that of Cai and
Thierauf (1993), Mahfouz (1999), Camp and Bichon (2004b), Camp (2007), Barbosa
et al. (2008), Sonmez (2011), and Camp and Farshchin (2014). The full-MILO approach
has solved the problem to global optimality, thus the solution of the full-MILO approach
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is the global optimal solution. As the solution of the NS-MILO is equal to that of the
full-MILO, we can conclude that the solution of the NS-MILO is the global optimal
solution of the problem for the 10-bar instance without the Euler buckling constraints.

Table 9: Cross-sectional areas (in2) and the weights (lbm) for the 10-bar truss problem
solutions without Euler buckling constraints.

Vars.
Continuous Discrete

Haftka
and
Gürdal
(2012)

Model (P3) Full-MILO NS-MILO

1 30.52 30.52 33.50 33.50
2 0.10 0.10 1.62 1.62
3 23.20 23.20 22.90 22.90
4 15.22 15.22 14.20 14.20
5 0.10 0.10 1.62 1.62
6 0.55 0.55 1.62 1.62
7 7.46 7.46 7.97 7.97
8 21.04 21.04 22.90 22.90
9 21.53 21.53 22.00 22.00
10 0.10 0.10 1.62 1.62
W 5060.85 5060.60 5490.74 5490.74

Table 10: Cross-sectional areas (in2) and the weight (lbm) of the solution of the 10-bar
truss with Euler buckling constraints.

Vars.
Continuous Discrete

Petrovic
et al.
(2017)

Model (P3) Full-MILO NS-MILO

1 11.56 17.68 18.80 18.80
2 8.17 0.10 1.62 1.62
3 65.90 57.09 52.50 52.50
4 24.38 40.62 42.50 42.50
5 0.11 0.10 1.62 1.62
6 9.46 0.10 1.80 1.62
7 26.27 7.42 4.80 4.97
8 41.50 69.16 80.00 80.00
9 4.31 12.55 14.20 14.20

10 54.64 0.10 1.62 1.62
W 10492.80 8707.56 9400.97 9403.15

In Table 10 the solution of the continuous and discrete truss sizing problem with
Euler buckling constraints is presented for the 10-bar instance. Petrovic et al. (2017)
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stated that “there is no research found which gives buckling constrained results for 10
bar trusses ”. However, they considered only the continuous truss design problem with
Euler buckling constraints for the 10-bar instance. Although there are some articles
that consider buckling constraints (Wu and Chow, 1995; Rajeev and Krishnamoorthy,
1997; Rahami et al., 2008; Ho-Huu et al., 2016), they do not consider the buckling
constraints in the form (8) or (9). In fact, the solutions provided by these authors do
not satisfy the buckling constraints in the form (8) or (9). The full-MILO approach
finds the global optimal solution in this small instance. Thus, to check the NS-MILO
approach, it is enough to compare the solution of the NS-MILO with that of the full-
MILO approach. As we can see in Table 10, the weight of the solution of the NS-MILO
approach is within 0.1% of that of the global optimal solution obtained from the full-
MILO approach.

5.4.2 72-bar truss

A solution to the 72-bar instance that satisfies Euler buckling constraints has not been
reported in the literature. Thus to benchmark the NS-MILO approach for this instance,
we show in Table 11 results of the 72-bar instance without Euler buckling constraints.
As we can see, the weight of the solution of the continuous model (P3) matches that
of the solution by Haftka and Gürdal (2012) with 0.1% precision. Additionally, the
solution of the discrete model using the NS-MILO approach has the same weight as
that by Kaveh and Ghazaan (2015), Sadollah et al. (2015), and Ho-Huu et al. (2016).
Note that we let the full-MILO approach run for 120 hrs for the 72-bar instance without
Euler buckling constraints, and the optimality gap is still 32.61% when the full-MILO
approach stops. Furthermore, the solution of the 72-bar instance with Euler buckling
constraints is presented in Table 12.
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Table 11: Cross-sectional areas (in2) and the weights (lbm) for the 72-bar truss problem
solutions without Euler buckling constraints.

Vars.
Continuous Discrete

Haftka
and
Gürdal
(2012)

Model
Wu and
Chow
(1995)

Kaveh
and Ta-
latahari
(2009)

Sadollah
et al.
(2012)

Kaveh
and
Ghaz-
aan
(2015)

Sadollah
et al.
(2015)

Ho-Huu
et al.
(2016)

Full-MILO NS-MILO

1-4 0.157 0.156 0.196 0.196 1.800 0.196 0.196 0.196 0.196 0.196
5-12 0.536 0.546 0.602 0.563 0.602 0.563 0.563 0.563 0.563 0.563
13-16 0.410 0.410 0.307 0.442 0.111 0.391 0.391 0.391 0.442 0.391
17-18 0.569 0.570 0.766 0.563 0.111 0.563 0.563 0.563 0.602 0.563
19-22 0.507 0.524 0.391 0.563 1.266 0.563 0.563 0.563 0.785 0.563
23-30 0.520 0.517 0.391 0.563 0.563 0.563 0.563 0.563 0.563 0.563
31-34 0.100 0.100 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111
35-36 0.100 0.100 0.111 0.250 0.111 0.111 0.111 0.111 0.111 0.111
37-40 1.280 1.268 1.800 1.228 0.442 1.228 1.228 1.228 1.000 1.228
41-48 0.515 0.512 0.602 0.563 0.442 0.442 0.442 0.563 0.563 0.563
49-52 0.100 0.100 0.141 0.111 0.111 0.111 0.111 0.111 0.111 0.111
53-54 0.100 0.100 0.307 0.111 0.111 0.111 0.111 0.111 0.111 0.111
55-58 1.897 1.886 1.563 1.800 0.196 1.990 1.990 1.990 1.990 1.990
59-66 0.516 0.512 0.766 0.442 0.563 0.563 0.563 0.442 0.442 0.442
67-70 0.100 0.100 0.141 0.141 0.442 0.111 0.111 0.111 0.111 0.111
71-72 0.100 0.100 0.111 0.111 0.602 0.111 0.111 0.111 0.111 0.111
W
(lbm)

379.66 379.61 427.20 393.38 390.73 389.33 389.33 389.33 392.96 389.33

Table 12: Cross-sectional areas (in2) and the weights (lbm) for the 72-bar truss problem
solutions with Euler buckling constraints.

Vars. Continuous
Discrete

Full-MILO NS-MILO
1–4 1.470 1.457 1.457
5–12 2.283 2.380 2.380
13–
16

1.649 1.990 1.620

17–
18

2.774 2.630 2.880

19–
22

1.498 1.563 1.563

23–
30

1.776 1.800 1.800

31–
34

0.100 0.196 0.196

35–
36

0.330 0.785 0.442

37–
40

1.518 1.563 1.620

41–
48

1.933 1.990 1.990

49–
52

0.482 0.391 0.442

53–
54

0.825 0.602 0.766

55–
58

2.084 1.990 1.800

59–
66

1.906 1.990 1.990

67–
70

0.321 0.391 0.442

71–
72

0.100 0.111 0.111

W 1264.750 1316.148 1302.500
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Table 13: Weights (kg) and the solution times (s) for the 2D cantilever problem in-
stances using the NS-MILO approach.

nb m
Full-MILO NS-MILO

tf/tnwf tf gap(%) ns wn tn
4 20 9.64 155.44 0.00 7 9.64 0.56 277.57
8 40 21.42 86400.00 3.13 5 21.36 8.83 9784.82

12 60 33.52 86400.16 6.54 8 33.53 541.09 159.67
16 80 49.51 86400.21 10.25 6 49.39 287.82 159.68
20 100 68.85 86400.28 12.72 11 68.88 2390.69 36.14
24 120 80.93 86400.15 13.20 10 80.92 2543.93 33.96
28 140 110.78 86400.14 13.49 13 110.83 3035.35 28.46
32 160 152.81 86400.07 13.64 14 152.78 5287.82 16.34
36 180 179.96 86400.14 13.98 15 179.81 2712.94 31.85
40 200 219.12 86400.17 13.31 8 219.25 1691.19 51.09
44 220 274.88 86400.17 13.54 11 275.51 4273.62 20.22
48 240 324.42 86400.19 13.56 18 324.88 5027.54 17.18
52 260 382.51 86400.14 12.97 15 382.77 6414.20 13.47
56 280 437.11 86400.22 12.95 15 437.20 5741.47 15.05
60 300 452.46 86400.11 12.63 20 452.70 6588.58 13.11

5.4.3 2D and 3D cantilever trusses

Among the 2D and 3D cantilever problem instances, only the 2D and 3D instances with
20 bars are solved to proven optimality within the 24 hr time limit of the full-MILO
approach as it can be seen in Tables 13 and 14. Comparing the solutions obtained
from the full-MILO approach for the instances that are solved to optimality with those
of the NS-MILO approach indicates that the NS-MILO approach has found the global
optimal solution.

From the results shown in Tables 13 and 14, it is clear that the NS-MILO approach
to solve the 2D and 3D cantilever instances is significantly faster (at least 10 times)
than the full-MILO approach. In all the 2D truss instances, the difference between the
solution of the full-MILO and NS-MILO approach is less than 0.1%. Therefore, we
can say that the NS-MILO approach is able to find equally good solutions significantly
faster for the 2D cantilever instances than the full-MILO approach.

In all the 15 3D cantilever trusses, the weight of the solution obtained from the
NS-MILO approach is equal to or lower than the weight of the solution obtained from
the full-MILO approach. For instance, the weight of the solution of the full-MILO
approach for the 3D instances with 300 bars is 69% more than that of the solution of
the NS-MILO approach.

5.4.4 Wing truss problem

None of the discrete problems of the wing trusses were solved to optimality in 24 hrs
using the full-MILO approach, as it can be seen in Table 15. We let the wing instances
run longer than 24 hrs, however, for the wing instance with 81 bars, after 48 hrs, more
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Table 14: Weights (kg) and the solution times (s) for the 3D cantilever problem in-
stances using the NS-MILO approach.

nb m
Full-MILO NS-MILO

wf/wnwf tf gap(%) ns wn tn
1 20 9.75 247.55 0.07 4 9.75 0.51 1.00
2 40 21.24 86400.02 25.76 10 21.18 1559.91 1.00
3 60 24.82 86400.02 30.03 7 24.75 2542.68 1.00
4 80 31.22 86400.03 32.43 5 31.18 4500.35 1.00
5 100 32.04 86400.04 34.36 15 31.43 4637.38 1.02
6 120 59.34 86400.05 36.52 30 59.22 4300.05 1.00
7 140 85.50 86400.06 42.52 5 78.46 4593.84 1.09
8 160 99.64 86400.03 42.21 15 89.55 5668.90 1.11
9 180 123.99 86400.05 40.95 14 113.33 5026.34 1.09

10 200 158.74 86400.06 49.10 8 122.31 4518.66 1.30
11 220 227.43 86400.03 58.14 8 144.21 3939.17 1.58
12 240 255.32 86400.04 55.61 7 172.02 4981.69 1.48
13 260 244.69 86400.12 50.02 16 183.73 6321.59 1.33
14 280 375.48 86400.07 60.04 7 222.61 5254.40 1.69
15 300 408.42 86400.05 58.73 30 246.14 10337.08 1.66

than 64 GB of memory was used by the solver to store the nodes of the branch and
bound tree, which renders the full-MILO approach inefficient for times beyond 48 hrs.
This is because once the memory limit is reached, MILO solvers use the hard drive
to store the branch and bound tree information, which results in an extremely slow
process for the solver, due to the time spent on writing and accessing the hard drive.

Comparing the best solution of the full-MILO approach with the NS-MILO ap-
proach for the wing instances in Table 15, we can see that the best solution obtained
by the full-MILO approach is far from being optimal. Even though we stopped the
full-MILO approach after one day, still the NS-MILO approach is significantly faster
than the full-MILO approach. Note that the weight of the best solution obtained from
the full-MILO approach is 12%-291% more than that of the NS-MILO approach for
the wing instances.

As mentioned earlier, IPOPT is used to solve the continuous truss design problem.
The weight of the continuous model solution is listed in Table 15. We also solved the
wing instances with the software package SNOPT (Gill et al., 2005), which converged
to the same solutions for the continuous model as those of IPOPT. We may entertain
the idea that the solutions are the global optimal solutions of the continuous model,
since IPOPT and SNOPT use the interior point method and sequential quadratic pro-
gramming, respectively. If the solution of the continuous model is the global optimum
of the problem, then its weight provides a lower bound for the optimal solution of the
discrete truss design problem. The gap between the weight of the continuous model
solution and the weight of the NS-MILO solution is, most of the time, less than 12%
for the wing instances.
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Table 15: Weight (kg) and the solution time (s) for the wing problem instances using
the NS-MILO approach.

# of bars Full-MILO Continuous model NS-MILO
tf/tn wn/wc wf/wnwf tf wc tc ns wn tn

81 19166.90 86400.02 16454.83 8.78 42 17147.00 230.06 375.55 1.04 1.12
99 16361.55 86400.02 13208.30 11.18 41 14106.27 189.40 456.18 1.07 1.16

117 14732.28 86400.02 11797.77 33.70 59 12994.64 2398.43 36.02 1.10 1.13
135 14791.77 86400.02 10845.89 22.99 28 11941.59 1794.42 48.15 1.10 1.23
153 16384.05 86400.03 10145.42 274.17 64 11090.73 7518.98 11.49 1.09 1.48
171 15045.04 86400.01 9508.32 92.78 49 10426.03 6570.13 13.15 1.10 1.44
207 20527.61 86400.12 8656.48 166.32 81 9657.39 11249.02 7.68 1.12 2.13
225 21615.53 86400.04 8320.28 332.60 54 9270.02 9350.30 9.24 1.11 2.33
243 18696.90 86400.13 8170.89 246.15 23 9127.25 6705.11 12.89 1.12 2.05
261 25324.62 86400.27 7923.76 298.48 99 8708.22 26799.14 3.22 1.10 2.91
279 16821.70 86400.05 7833.36 874.01 68 8756.50 25899.99 3.34 1.12 1.92
297 23051.34 86400.03 7699.78 887.11 67 8470.54 31538.54 2.74 1.10 2.72
315 21016.83 86400.24 7590.09 1100.64 62 10555.56 20431.61 4.23 1.39 1.99

The objective function improvement of the full-MILO and NS-MILO approach for
the wing instance with 315 bars is plotted in Figure 7. As we can see, the full-MILO
approach improves the objective function slowly, and after 24 hrs, the weight of the
best solution found is about double the weight of the NS-MILO approach solution. On
the other hand, the NS-MILO approach took 1.82 hrs to find a feasible solution. The
reason is that the first 25 MILO2 subproblems were not able to find a feasible solution
in the time limit of the MILO2 subproblems, and the first feasible solution to a MILO2

subproblem was found at 1.82 hrs. The weight of the initial solution of the NS-MILO
approach is 210,953.22 kg. The objective function improved quickly and the NS-MILO
stopped at 5.67 hrs with a solution that has a weight of 10,555.56 kg. The weight of the
solution of the NS-MILO approach is 50% lower than that of the full-MILO approach,
and is obtained in 23.6% of the time it takes for full-MILO.

In Figure 8, the solution times of the NS-MILO approach for 2D cantilever, 3D
cantilever, and wing instances are plotted. As we can see in this figure, the solution
time of the 3D cantilevers is more than that of the 2D cantilever problem for the
instances with more than 170 bars, and the solution time of the wing instances is
significantly more than that of the 3D cantilever instances. This reflects the increasing
complexity of the three test sets. Additionally, we can see in Figure 8 and Tables 13, 14,
and 15 that the number of subproblems and the overall solution time increases only
moderately as the problem size increases.
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Figure 7: Comparison of the convergence of the full-MILO and NS-MILO approaches
for the wing problem instance with 315 bars.
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Figure 8: Solution time for the NS-MILO approach versus the number of bars in the
truss.

To obtain a better physical intuition, we plot the dimensionless stress, σi/|σY |, and
dimensionless buckling constraints, max(−σi/γixi, 0) (stress in bars under tension is
substituted with zero for simplicity) for the solution of the wing instance with 315 bars
obtained the from NS-MILO approach in Figure 9. The stress constraints are more
active for the horizontal bars close to the root of the wing (the fixed end). This is
because those bars are mainly responsible for taking the large bending moment around
the root. As for the buckling constraints, they are more critical for the upper surface
bars because these bars are under compression.

6 Conclusions
We presented various optimization models for the continuous and discrete truss design
problems that include the Euler buckling constraints, Hooke’s law, and bounds for
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a) Dimensionless stress distribution.
b) Dimensionless buckling constraint distribu-
tion.

Figure 9: Stress and buckling constraint distribution for the wing problem instance
with 315 bars.

stress and displacements are also considered. We also proposed the NS-MILO method-
ology to generate high quality solutions for those problems, in which a sequence of
MILO subproblems in a moving neighborhood search framework are solved. The new
methodology enables us to produce high quality solutions for previously unsolvable
truss design problems. Numerical results indicate that the NS-MILO approach is sig-
nificantly faster than simply using a MILO solver to solve the original truss design
problems. Additionally, for all the generated wing problem instances, the best solution
found is significantly better than the solution obtained from attempting to solve di-
rectly the original problems. The weight of the solution of the wing problem instances
using the NS-MILO approach is up to 66% less than that of the full-MILO approach
and is obtained 2.7—456 times faster.
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Appendix
The discrete set set of the cross-sectional areas for the various problems are listed
below.

10-bar truss
S = {1.62, 1.8, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 2.93,

3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88,
4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.22,
7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90,
18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.5, 35,
37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60,
62.5, 65, 67.5, 70, 72.5, 75, 77.5, 80, 82.5, 85,
87.5, 90 }(in2).

72-bar truss
S = { 0.111, 0.141, 0.196, 0.250, 0.307, 0.391, 0.442,

0.563, 0.602, 0.766, .785, .994, 1, 1.228, 1.266,
1.457, 1.563, 1.62, 1.8, 1.99, 2.13, 2.38, 2.62,
2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,
3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.8, 4.97, 5.12, 5.74, 7.22, 7.97, 8.53, 9.3,
10.85, 11.5, 13.5, 13.9, 14.2, 15.5, 16, 16.9,
18.8, 19.9, 22, 22.9, 24.5, 26.5, 28, 30, 33.5 }(in2).

2D cantilever truss problem
S = { 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14,

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5,
65, 70, 75, 80, 85}(cm2).

3D cantilever truss problem
S = { .25, .5, .75, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14,

16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5,
65, 70, 75, 80, 85}(cm2).
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Wing truss problem
S = { .25, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,

55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150,
200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 850, 900, 950, 1000, 1050,
1100, 1150, 1200}(cm2).
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