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Abstract

Kinematic stability is an often overlooked, but crucial aspect when mathematical op-
timization models are developed for truss topology design and sizing optimization
(TTDSO) problems. In this paper, we propose a novel mixed integer linear opti-
mization (MILO) model for the TTDSO problem with discrete cross-sectional areas
and Euler buckling constraints. Random perturbations of external forces are used
to obtain kinematically stable structures. We prove that, by considering appropriate
perturbed external forces, the resulting structure is kinematically stable with proba-
bility one. Furthermore, we show that necessary conditions for kinematic stability can
be used to speed up the solution of discrete TTDSO problems. Using the proposed
TTDSO model, the MILO solver provides optimal or near optimal solutions for trusses
with up to 990 bars.

1 Introduction
The truss design problem is an important problem in the field of structural design
optimization (Haftka and Gürdal, 2012). In the past, various formulations and solution
methodologies for truss design problems have been developed (see, e.g., Arora and
Wang, 2005; Rozvany, 2009; Stolpe, 2016). Dorn et al. (1964) considered a ground
structure framework for the truss design problem and used numerical optimization to
solve the problem. In a ground structure framework, the set of potential bars of a
truss structure is given and the optimal cross-sectional areas of the bars are to be
determined.
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Two objectives are commonly used in truss design problems. A wide range of mathe-
matical models for truss design problems consider the structure’s compliance minimiza-
tion as the objective (Ben-Tal and Bendsøe, 1993; Bendsøe et al., 1994; Stolpe, 2007).
In turn, several second-order cone optimization and semi-definite optimization models
have been suggested to address compliance minimization for TTDSO problems (Kanno,
2016; Kanno and Fujita, 2018; Ben-Tal and Bendsøe, 1993). Kanno (2018), for exam-
ple, proposed a robust mixed integer semi-definite optimization (MISDO) model for the
minimum-compliance truss topology design and sizing optimization problem with un-
certainty of the external loads and developed a heuristic method to solve the proposed
MISDO model.

Another frequently used objective in truss design problems is weight minimiza-
tion (Stolpe and Svanberg, 2004; Stolpe, 2004; Van Mellaert et al., 2015; Shahabsafa
et al., 2018). Minimizing the structure’s weight which ultimately reduces the fuel burn
rate is commonly considered in aerospace engineering design problems (Brooks et al.,
2017; Jasa et al., 2018; Chauhan and Martins, 2018; Kennedy, 2016; Aage et al., 2017).

Besides the objective function, we can also categorize the problems by the design
variable types. There are two types of truss design problems: continuous and discrete
design problems. In continuous problems, all the design variables including the cross-
sectional areas of the bars are continuous; while discrete problems involve discrete
design variables. Zegard and Paulino (2014, 2015) have developed a ground struc-
ture method to solve large-scale truss topology optimization problems. They focus on
continuous truss topology optimization problems and do not take into account Euler
buckling constraints. Further, kinematic stability is not considered in their mathemat-
ical optimization model. The resulting structure is instead post-processed to enforce
kinematic stability.

Discrete problems have three major categories: truss topology design (TTD),
truss sizing optimization (TSO), and truss topology design and sizing optimization
(TTDSO). We focus on MILO modeling approaches, which lead to a global optimal
solution of the discrete truss design problems. Due to the rapid improvement of MILO
solution methodologies, we can solve large-scale problems to optimality in a reason-
able time as demonstrated in Section 5. Stolpe (2007) suggested a MILO model for
compliance minimization of a TTD problem. In TSO, the topology is given and the
bar cross-sectional areas of the optimal bars are to be determined. Van Mellaert et al.
(2015) proposed a MILO model for TSO problems considering resistance and joint
geometry constraints. Shahabsafa et al. (2018) presented several MILO models for
TSO problems considering Hooke’s law, yield stress and Euler buckling constraints.
However, in TTDSO, the topology and sizing of a truss are simultaneously considered.
Stolpe (2015) considered a mixed integer nonlinear optimization model for the TTDSO
problem in which the structure maximum compliance is considered as a constraint of
the model. Stolpe (2016) presented a comprehensive survey of discrete truss design
problems.

A variety of solution methodologies are used to solve TTDSO problems. It should
be noted that that we do not consider heuristic and meta-heuristic methods that are
frequently used to solve the TTDSO problems (see, e.g., Stolpe (2016)). Nor we con-
sider SIMP-type methods (Bendsøe, 1989; Zhou and Rozvany, 1991), which are used
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to solve finite element based structures where each element either exists or does not.
Our goal is to efficiently obtain global optimal solutions for TTDSO problems with a
finite number of possible cross-sectional areas. Thus, we focus on global optimization
approaches for the complex TTDSO problem.

It is assumed in TSO problems that the given ground structure is kinematically
stable; while kinematic stability of the solution in TTD and TTDSO needs to be
enforced. Enforcing kinematic stability in a truss structure makes the problem sig-
nificantly harder to solve and thus, it is often overlooked when tackling truss design
problems. It should be noted that, in the article, we have not taken the inertia load
into consideration, and thus, we focus on static stability.

One way to enforce the kinematic stability of a truss structure is to develop a semi-
definite optimization (SDO) model and add a constraint on the minimum eigenvalue of
the stiffness matrix to the model. Achtziger and Kočvara (2007) developed a bilinear
SDO model for the discrete TTDSO problem with the objective of maximizing the
smallest natural frequency of the structure. They proposed an algorithm for finding a
high quality solution. Their resulting structures are kinematically stable. Hashimoto
and Kanno (2015) proposed a SDO model for the continuous TTDSO problems and
by imposing a constraint on the minimum eigenvalue of the stiffness matrix, they
proved that the resulting structure will be kinematically stable. However, they did not
consider discrete cross-sectional areas. Note that only small-scaled MISDO problems
can currently be solved to global optimality (Gally et al., 2018).

An alternative way is to enforce kinematic stability in a MILO framework which is
significantly easier to solve than attempting to solve MISDO problems. Faustino et al.
(2006) proposed a MILO model for the TTDSO problem. They considered structure
kinematic stability by using Grubler’s criterion (Ghosh and Mallik, 2002), which is
a necessary but not sufficient condition for having a kinematically stable structure.
Faustino et al. (2006), additionally, proposed a perturbation of the external forces to
obtain kinematically stable structures, and without formal statement, they argued intu-
itively that the perturbation should result in a kinematically stable structure. However,
they did not rigorously prove that the perturbation guarantees kinematic stability of
the structure. Kanno and Guo (2010) considered an iterative external force perturba-
tion method to obtain a kinematically stable structure for the TTDSO problem with
discrete cross-sectional areas. However, their method does not guarantee kinematic
stability of the structure. Mela (2014) developed a MILO model for minimum weight
discrete TTDSO problems considering Euler buckling and displacement constraints.
Mela (2014) also considered the kinematic stability of the structure and the issue of
overlapping bars in TTDSO problems. To enforce kinematic stability of the struc-
tures, Mela (2014) used the external force perturbation approach which was originally
proposed by Faustino et al. (2006). Mela (2014) observed that the perturbation pro-
vided stable structures for all the cases he considered, but did not prove that the
approach always provides a kinematically stable structure.

Guaranteed kinematic stability of the structure is a fundamentally important prob-
lem that has remained an open question in the MILO modeling framework. In this
paper, we focus on the minimum-weight discrete TTDSO problem. We propose a novel
MILO model for discrete TTDSO problems. Our model considers force balance equa-
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tions, Hooke’s law, yield stress, Euler buckling constraints, and bounds on the nodal
displacements. We also propose a modeling approach that enables us to formally prove
the kinematic stability of the structure, and we rigorously prove that the solution of
our novel model is kinematically stable. Furthermore, we show that the necessary
conditions for kinematic stability can be used to speed-up the solution of TTDSO
problems.

The paper is structured as follows. In Section 2, we provide a comprehensive review
of the TTDSO problem. In Section 3, we propose a novel mathematical model for the
discrete TTDSO problem. In Section 4, we propose a method to enforce the kinematic
stability of the structure and prove that, with probability one, the resulting optimal
structure is kinematically stable. In Section 5, we present a family of Michell structure
problems as our test-set library, and we demonstrate that the proposed mathematical
model can be solved significantly faster than other proposed discrete TTDSO models.
Finally, our conclusions are presented in Section 6.

2 Problem description
A truss design problem is concerned with the optimal selection of the geometry, topol-
ogy, and sizing of a truss structure (Haftka and Gürdal, 2012). In this article, we
focus on topology and sizing optimization of a truss. Consider a truss structure in a
d-dimensional space (d = 2, 3). Let m and n denote the number of the bars and the
degrees of freedom of the ground structure, respectively. For ease of presentation, we
assume that each node of the ground structure is either fixed in all directions or pinned.
Let I = {1, . . . ,m} be the index set of the bars of the ground structure and let J de-
note the index set of the pinned nodes of the ground structure. Vector x ∈ Rm

+ denotes
the cross-sectional areas of the bars, where Rm

+ is the set of m-dimensional non-negative
vectors. A truss structure is specified when the bars and their cross-sectional areas are
determined. As a result, the cross-sectional areas are the main design variables of the
problem.

Let R ∈ Rn×m be the topology matrix of the truss. Vector ri ∈ Rn, for i ∈ I, is the
i-th column of the matrix R and is equal to the topology of the i-th bar (Haftka and
Gürdal, 2012). The force balance equations on the nodes of the truss are given by

Rq = f, (1)

where q ∈ Rm is the vector of the internal forces acting on the bars, and f ∈ Rn is the
vector of the external forces exerted on the nodes. Stress on bar i, for i ∈ I, is defined
as

σi =


qi

xi
, if xi > 0,

0, otherwise.

(2)

The nodal displacements and the elongation of the bars are denoted by u ∈ Rn and
∆l ∈ Rm. The relationship between the nodal displacement and the elongation of the
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bars is as follows:

∆l = RTu. (3)

We define λi = Ei/li, for i ∈ I, where Ei and li are the Young’s modulus and
the length of bar i ∈ I. We consider Hooke’s law, which is enforced by considering
constraints (1), (2), and (3) along with the following set of constraints (Zienkiewicz
and Taylor, 2005):

σi = λi∆li, i ∈ I. (4)

From equations (1), (2), (3), and (4), it follows that

K(x)u = f,

where K(x) =
∑m

i=1 λixirir
T
i is the stiffness matrix of the structure, and ri, for i ∈ I,

is the i-th column of the topology matrix R.
Let σmin ∈ Rm and σmax ∈ Rm be the lower and upper bounds on the stress of

the bars, where σmin < 0 < σmax. The stress on bars should satisfy the following
constraints

σmin ≤ σ ≤ σmax.

We assume that bars’ cross-sections are circular. Thus, by letting γi = πEi/4l
2
i , for

i ∈ I, the Euler buckling constraints can be formulated as

σi + γixi ≥ 0, i ∈ I, xi 6= 0. (5)

For a discussion on the value of γi, i ∈ I, for more general cross-sectional ar-
eas of bars see, e.g., Shahabsafa et al. (2018). Note that we do not consider global
buckling of the structure. Instead, we follow the typical modeling choice of imposing
local buckling constraints (see, e.g., Stolpe, 2004; Mela, 2014; Bons and Martins, 2020;
Kennedy and Martins, 2014)

Let L denote the index set of the coordinates of the pinned nodes of the ground
structure. Note that |L| = |J |d = n. The nodal displacement bound constraints are
given by

umin
` ≤ u` ≤ umax

` , ` ∈ L. (6)

3 Mathematical optimization model
In this section, we propose a mathematical optimization model for the discrete TTDSO
problem, where bars take zero or discrete-valued cross-sectional areas. In other words,
in the TTDSO, we allow the bars to vanish in the final structure. This model is an
extension of the model proposed by Shahabsafa et al. (2018) for discrete truss sizing
optimization problems.

Define S as the set of candidate nonzero cross-sectional areas of bars:

S = {s1, s2, . . . , sv},
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where 0 < s1 < s2 < . . . < sv and v is the cardinality of set S. Without loss of
generality, we may assume that the number of candidate sizes is the same for all the
bars. Furthermore, for ease of presentation, we assume that all the bars have the same
set S of potential cross-sectional areas. We use K = {1, . . . , v} to denote the set of
indices corresponding to the discrete set S. The cross-sectional area of bar i, for i ∈ I,
takes values from the set {0} ∪ S in the discrete TTDSO problem. We define a binary
decision variable yi, for i ∈ I, as

yi =

{
1, if xi > 0,

0, otherwise.
(7)

If yi = 1, then bar i gets a nonzero cross-sectional area, and if yi = 0, then bar i has
a zero cross-sectional area and disappears from the structure. Let σik, for i ∈ I and
k ∈ K, be defined as

σik =

{
λi∆li, if xi = sk,

0, otherwise.
(8)

Variable σik represents the stress on bar i if its cross-sectional area is equal to sk;
otherwise, σik is zero. Thus, we have that

σi =
∑
k∈K

σik, i ∈ I.

Additionally, we define σd
i as

σd
i =

{
λi∆li, if xi = 0,

0, otherwise.
(9)

Variable σd
i , for i ∈ I, is a dummy variable that is equal to zero if bar i takes a nonzero

cross-sectional area. However, if xi = 0, then σd
i takes a nonzero value. Then, from

equations (8) and (9), we have that

λi∆li =
∑
k∈K

σik + σd
i , i ∈ I. (10)

Sved and Ginos (1968) showed that when a bar has a zero cross-sectional area, the
Euler buckling and yield stress constraints must become inactive for that bar. As in
equation (10), all variables σik, for k ∈ K, can be equal to zero by introducing variable
σd
i . Thus, introducing dummy stress variables σd

i , for i ∈ I, ensures that the Euler
buckling and yield stress constraints become inactive if the cross-sectional area of a
bar is zero.

To enforce that xi ∈ {0} ∪ S, for all i ∈ I, we use the incremental model proposed
by Shahabsafa et al. (2018, Section 2.2). Let K̄ = {1, . . . , v− 1} and δk = sk+1− sk for
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k ∈ K̄. In the incremental model of the discrete TTDSO problem, the cross-sectional
areas of the bars are given as:

xi = s1yi +
∑
k∈K̄

δkzik, i ∈ I,

yi ≥ zi1, i ∈ I,
zi,k−1 ≥ zik, i ∈ I, k ∈ K̄ \ {1},
yi ∈ {0, 1}, i ∈ I,
zik ∈ {0, 1}, i ∈ I, k ∈ K̄.

(11)

If yi = 1 and zi1 = 0, then xi = s1. If zi,k−1 = 1 and zik = 0, then xi = sk. If zi,v−1 = 1,
then xi = sv. It should be noted that for a truss structure including m bars and v
available discrete values for cross-sectional areas, there are m× v binary variables.

The following set of constraints are needed to enforce yield stress and Euler buckling
constraints

max
(
−γis1, σ

min
i

)
(yi − zi1) ≤ σi1 ≤ σmax

i (yi − zi1) , i ∈ I,
max

(
−γisk, σmin

i

) (
zi,k−1 − zik

)
≤ σik ≤ σmax

i

(
zi,k−1 − zik

)
,

k ∈ K̄ \ {1}, i ∈ I,
max

(
−γisv, σmin

i

)
zi,v−1 ≤ σiv ≤ σmax

i zi,v−1, i ∈ I,
(1− yi)σd

i ≤ σd
i ≤ (1− yi)σd

i , i ∈ I.

(12)

From constraints (12), it follows that if yi = 0, then σik = 0, for all k ∈ K, and
σd
i ≤ σd

i ≤ σd
i , where

σd
i = λi

 ∑
`|ri`<0

ri`u
max
` +

∑
`|ri`>0

ri`u
min
`

 ,

σd
i = λi

 ∑
`|ri`<0

ri`u
min
` +

∑
`|ri`>0

ri`u
max
`

 .

(13)

Equation (13) is obtained from (3), (4), and (6). If yi = 1, which implies that xi > 0,
then σd

i = 0. In addition, if zi,k̄−1 = 1 and zik̄ = 0, then σik = 0, for all k 6= k̄ and
max(−γisk̄, σmin

i ) ≤ σik̄ ≤ σmax
i .

Next, we propose sets of constraints to avoid crossing bars. Let set Ap be the
collection of pairs of bars that cross each other. The following set of constraints, which
are presented by Mela (2014), prevents crossing bars:

yi1 + yi2 ≤ 1 ∀(i1, i2) ∈ Ap (14)

The number of constraints (14) increases rapidly as the ground structure becomes
more dense. Let Ai, for i ∈ I, be the set of the bars that cross bar i. Following is an
alternative formulation of the bar-crossing elimination constraints:∑

ī∈Ai

yī ≤ |Ai|(1− yi) i ∈ I. (15)
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Note that we have at most m constraints in (15) in contrast to (14) where the number
of constraints increases quadratically as m grows. Adding either constraints (14) or
constraints (15) is sufficient to prevent crossing bars. However, adding both sets helps
to provide a tighter formulation which ultimately helps to reduce solution time.

Not only crossing bars, but also overlapping bars need to be avoided in a TTDSO
problem.

Definition 3.1 (Overlapping set). An overlapping set is a set of bars such that each
pair of the bars from that given set overlap (Mela, 2014).

Definition 3.2 (Maximal overlapping set). A maximal overlapping set is an overlap-
ping set that is not a subset of another overlapping set.

Definition 3.3 (Base element of a maximal overlapping set). The smallest bar of an
overlapping set is called the base element of that overlapping set.

To ensure that the truss structure does not have any overlapping bars, it is enough
to ensure that from each maximal overlapping set at most one bar is active in the
structure. Let IB be the index set of all the base elements of the overlapping sets,
and let Ci, for i ∈ IB, be the maximal overlapping set corresponding to base element
i. The following set of constraints ensure that we do not have any overlapping bars in
the structure: ∑

ī∈Ci

yī ≤ 1, i ∈ IB. (16)

Note that we have at most m bar-overlapping elimination constraints (16).
The incremental model for the TTDSO problem is then formulated as follows:
An alternative to model (17) for the discrete TTDSO problem is obtained by con-

sidering, instead of the incremental model (11) for the discrete cross-sectional areas, a
basic choice of binary variables (as in Shahabsafa et al. (2018)). The model is presented
in the Appendix.

LetN`, for ` ∈ L, be the set of the bars of the ground structure that are connected to
the node corresponding to the `-th coordinate of the displacement vector. The following
constraints enforce that if no bar is connected to a node, then the displacement of that
node is zero:

umin
`

∑
i∈N`

yi ≤ u` ≤ umax
`

∑
i∈N`

yi, ` ∈ L. (18)

Adding constraint (18) to the MILO model (17) increases the solution time of the
problem. If constraint (18) is not added, the displacements of the nodes with no bars
connected to them may be nonzero. However, the optimal cross-sectional areas of the
problem do not change, that is, the optimal structure still satisfies all the constraints
of the problem even if constraint (18) is not added. Thus, in what follows, instead of
adding constraint (18) to the model, as a post-processing step, we set the displacements
of the nodes with no bars connected to them to zero. Model (17) can be extended, as
done by Mela (2014), to account for multi-scenario discrete TTDSO problems.
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min
∑
i∈I

ρlixi,

s.t. Rq = f,
RTu = ∆l,

xi − s1yi −
∑
k∈K̄

δkzik = 0, i ∈ I,

λi∆li −
∑
k∈K

σik − σd
i = 0, i ∈ I,

qi −
∑
k∈K

skσik = 0, i ∈ I,

max
(
−γis1, σ

min
i

)
(yi − zi1) ≤ σi1 ≤ σmax

i (yi − zi1) , i ∈ I,
max

(
−γisk, σmin

i

) (
zi,k−1 − zik

)
≤ σik ≤ σmax

i

(
zi,k−1 − zik

)
, i ∈ I, k ∈ K̄ \ {1},

max
(
−γisv, σmin

i

)
zi,v−1 ≤ σiv ≤ σmax

i zi,v−1, i ∈ I,
(1− yi)σd

i ≤ σd
i ≤ (1− yi)σd

i , i ∈ I,
umin
` ≤ u` ≤ umax

` , ` ∈ L,
yi1 + yi2 ≤ 1, (i1, i2) ∈ Ap,∑
ī∈Ai

yī ≤ |Ai|(1− yi), i ∈ I,∑
ī∈Ci

yī ≤ 1, i ∈ IB,

zi1 ≤ yi, i ∈ I,
zik ≤ zi,k−1, i ∈ I, k ∈ K̄ \ {1},
yi ∈ {0, 1}, i ∈ I,
zik ∈ {0, 1}, i ∈ I, k ∈ K̄.

(17)
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Model (17) differs from the model proposed by Mela (2014) in three aspects: first,
the model proposed by Mela (2014) introduces a binary variable for each possible cross-
sectional area of a bar, but in model (17) binary variables represent the increments
in the cross-sectional areas of the bars. Second, in contrast to the model proposed
by Mela (2014), we do not need to introduce binary variables for the nodes of the truss
structure in model (17). Third, variables σd

i , for i ∈ I, are introduced to ensure that
yield stress and Euler buckling constraints are not enforced when a bar vanishes from
the structure. In Section 5, we demonstrate that model (17) is solved significantly
faster than the model proposed by Mela (2014).

4 Kinematic stability of truss structures
In this section, we first state the necessary conditions for a truss structure to be kine-
matically stable. Then, we propose a modeling methodology which ensures kinematic
stability of the structure. While our method is new, it is similar in its spirit to the
methods proposed by Faustino et al. (2006) and Mela (2014). Most importantly, we
prove that, with probability one, the truss structures obtained by our method are kine-
matically stable. In what follows, we refer to the truss corresponding to cross-sectional
areas given by x ∈ Rm as structure x. We need the following definitions to present the
results.

Definition 4.1 (Active bars). An active bar of structure x is a bar whose cross-
sectional area is greater than zero. The index set of the active bars of structure x is
denoted by Ix.

Definition 4.2 (Active nodes). An active node in structure x is a pinned node, which
is connected to at least one active bar. The index set of the active nodes of structure
x is denoted by J x.

Definition 4.3 (Active coordinates). The set of active coordinates in structure x is
the set of the coordinates corresponding to active nodes in structure x. The index set
of the active coordinates of structure x is denoted by Lx.

In what follows, vectors and matrices are defined in the reduced space of the active
nodes and active bars. Let mx and nx denote the number of active bars and the degrees
of freedom of active nodes of structure x, respectively, i.e., mx = |Ix| and nx = |J x|×d.

Definition 4.4 (Reduced topology matrix). The reduced topology matrix of structure
x, denoted by Rx ∈ Rnx×mx

, is the submatrix of the topology matrix corresponding to
active nodes and active bars.

Definition 4.5 (Reduced stiffness matrix). The reduced stiffness matrix of structure
x, denoted by Kx(x) ∈ Rnx×nx

, is the submatrix of the stiffness matrix corresponding
to the set of active nodes J x:

Kx(x) =
∑
i∈Ix

xiλir
x
i (rxi )T , (19)
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where rxi ∈ Rnx
is the topology vector corresponding to the i-th bar (i.e. i-th column

of topology matrix Rx) in the lower dimensional space of the active nodes of structure
x.

The reduced nodal displacements and reduced external force vector of structure x,
respectively denoted by ux and fx, are the vectors of the nodal displacements and
external forces in the lower-dimensional space of the active nodes.

Definition 4.6 (Kinematic stability). A truss structure with cross-sectional area x ∈
Rm is kinematically stable if (Rx)T ux = 0 implies ux = 0 (Hajela and Lin, 1992; Ra-
jasekaran and Sankarasubramanian, 2001).

Remark. Given that matrix Kx(x) is positive semi-definite, the kinematic stability
condition of Definition 4.6 is equivalent to each of the following conditions:

• rank(Rx) = nx

• det(Kx(x)) > 0; hence, Kx(x) is positive definite.

If structure x is not stable, then it is called an unstable structure.

4.1 Necessary conditions for kinematic stability

We first state the necessary conditions for the kinematic stability of a truss structure.
Then, we derive a set of constraints based on those necessary conditions that are used to
strengthen formulation (17) to reduce the solution time of discrete TTDSO problems.
To derive the necessary conditions, we need the following definition:

Definition 4.7 (Orientation vector). The orientation vector of a bar with respect to
one of its end nodes is the unit vector, which starts from that node pointing to the
other node.

Suppose the coordinate system is specified. The coordinates of the topology vector
ri, for i ∈ I, corresponding to one of the end nodes of bar i are equal to the negative
of the orientation vector of bar i with respect to that end node. The coordinates of
the topology vector ri corresponding to the nodes that are not connected to bar i are
zero.

Proposition 1. If a truss structure is stable, for any active node, the orientation
vectors connected to that node span Rd.

Proof. Suppose that we have a stable structure x. We prove the result by contradiction.
We assume that there exists an active node in the structure whose set of orientation
vectors, corresponding to the active bars connected to that node, do not span Rd.

Let R̄ ∈ Rd×mx
be the sub-matrix formed by taking the rows of matrix Rx cor-

responding to the degrees of freedom of that node. The nonzero columns of matrix
R̄ are multiples of the respective orientation vectors of the active bars connected to
that node. Since the set of the orientation vectors does not span the space, we have
rank(R̄) < d, which implies that matrix Rx is not full row rank. Hence, we conclude
that rank(Rx) < nx. This contradicts the kinematic stability condition, as noted in
Remark 4.
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Corollary 1. In a two-dimensional space, an active node in a stable structure has to
be connected to at least two bars that are not on one line.

Corollary 2. In a three-dimensional space, an active node in a stable structure has
to be connected to at least three bars that are not in one plane.

Let the sets Bj and Bxj , for j ∈ J , be the set of bar indices connected to node j
in the ground structure and in structure x, respectively. From Proposition 1, we know
that the number of active bars connected to a node should be more than or equal to
the dimension of the space. The following constraints ensure this necessary condition:

yid ≤
∑
h∈Bj

yh, i ∈ Bj, j ∈ J . (20)

Constraints (20) provide a lower bound on the number of the bars that are connected
to an active node to assist with the kinematic stability of the structure. It should be
noted that constraints on the number of bars connected to a node have already been
mentioned in the literature (see, e.g., Ohsaki and Katoh (2005) and Mela (2014)).
However, those constraints are not linked to the dimension of the truss.

Definition 4.8 (Maximal non-spanning set). A maximal non-spanning set is a subset
of bars that are connected to a node such that:

(i) the set of orientation vectors corresponding to those bars does not span the space,

(ii) if we add to the set any of the bars not in the set that are connected to that
node, then the resulting set of orientation vectors span the space.

Let set Qj contain all the maximal non-spanning sets corresponding to node j that
have at least a cardinality of d. In other words, given any node j ∈ J , if Bxj = Q̄j and
Q̄j ∈ Qj, then structure x is not stable. Additionally, if we add any bars from the set
Bj \ Q̄j to set Q̄j, then the resulting set of orientation vector spans the space.

From Proposition 1, we know that, for all Q̄j ∈ Qj, if
∑

i∈Q̄j
yi ≥ 1, then we must

have
∑

i∈Bj\Q̄j
yi ≥ 1. This condition is enforced by adding the following constraints

to the MILO model (17):∑
i∈Q̄j

yi ≤ |Q̄j|
∑

i∈Bj\Q̄j

yi, Q̄j ∈ Qj, j ∈ J . (21)

Figure 1 shows a simple instance in a three-dimensional space where five bars are
connected to node j. In that case, set Qj is defined as:

Qj =
{
{1, 2, 3, 4}, {1, 5, 6}

}
.

It should be noted that in this example set Qj contains all the maximal non-spanning
sets with at least three bars.
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Figure 1: A simple instance of bars connected to a given node j with d = 3.

It should be noted that chains are special cases of non-spanning sets; thus by adding
constraints (20) and (21), we eliminate chains in the resulting structures. The special
case of constraints (21) to eliminate chains was proposed by Mela (2014). Furthermore,
hinges (Rozvany, 1996) are special cases of non-spanning sets which are similarly elim-
inated by constraints (20) and (21).

4.2 Enforcing kinematic stability by external force perturbation

In this section, we propose a method that enforces all the solutions of the discrete
TTDSO problem to be kinematically stable structures. The method is similar to the
ones proposed by Faustino et al. (2006) and Mela (2014) in that it is based on perturbing
the external forces of the truss. Faustino et al. (2006) developed an optimization model
based on a perturbation of the external forces and provided the intuition of why their
proposed perturbation results in a stable structure. However, they did not specify the
characteristics of their proposed random perturbation, which are necessary to ensure
kinematically stable trusses. Mela (2014) employed a predefined perturbation, which
resembles the perturbation proposed by Faustino et al. (2006). Mela (2014) observed
that for all the considered discrete TTDSO problem instances, solving the perturbation
model gave a kinematically stable structure. Neither Faustino et al. (2006) nor Mela
(2014) proved that their proposed perturbation methodology is guaranteed to eliminate
unstable structures. Here, we modify the perturbation methodology proposed by the
two articles cited above and rigorously prove that the truss structures obtained by our
perturbation method are kinematically stable.

Let N x
` , for ` ∈ L, be the set of the bars of structure x with nonzero cross-sectional

areas that are connected to the node corresponding to the `-th coordinate of the ex-
ternal force. We assume that the perturbation vector of the external forces, denoted
by p ∈ Rn, is randomly generated as follows:

p` =
∑
i∈N`

p`iyi, ` ∈ L, (22)

where p`i, for ` ∈ L, i ∈ I, are independent random variables with normal distribution
with mean zero and variance ε2. Here, ε is a small positive real number. If ε is a
large number, then the perturbation of the external forces may potentially change the
optimal solution of the problem. On the other hand, if ε is too small, it may lead to
numerical instability when solving the problem. It should be noted that, as defined by
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equation (22), the random vector p is a function of the decision variable y ∈ Rm which
enables us to have the perturbation only for the active nodes. Let px, for structure
x ∈ Rm, be the reduced perturbation vector in the lower dimensional space of the
active nodes.

Proposition 2. The reduced vector px, for a given x ∈ Rm, has an nx-variate normal
distribution.

Proof. Let x ∈ Rm be given. From the set of constraints (7), we know that yi = 0, for
i ∈ I, if xi = 0. So we rewrite the perturbation vector p for the given x as

p` =


∑
i∈Nx

`

p`i if ` ∈ Lx,

0 otherwise,

` ∈ L. (23)

We know that |Lx| = nx; thus, the perturbation vector p for given x has nx nonzero
coordinates, each of which is a sum of independent normally distributed random vari-
ables. Thus, for ` ∈ Lx, p` has a normal distribution with mean zero and variance
|N x

` |ε2. Additionally, the coordinates of the vector px are independent of each other.
Thus, vector px has a multivariate normal distribution.

The perturbed external force f̄ ∈ Rn is defined as:

f̄ = f + p. (24)

We prove that if the perturbed external force f̄ is considered, with probability one, any
feasible solution of model (17) is stable. Let f̄x, for structure x ∈ Rm, be the reduced
vector of the perturbed external force f̄ in the lower-dimensional space of the active
nodes.

Lemma 1. Let structure x ∈ Rm be unstable. The probability that the system of
equations Kx(x)ux = f̄x has a solution for ux ∈ Rnx

is zero.

Proof. Let x ∈ Rm be given. We compute the probability that the following set of
equations holds for structure x:

Kx(x)ux = f̄x = fx + px. (25)

From this set of equations, we have fx + px ∈ col
(
Kx(x)

)
, where col(Kx(x)) is the

column space of matrix Kx(x). Thus, px ∈ col
(
Kx(x)

)
− {fx}.

Since structure x is kinematically unstable, from Definition 4.6, it follows that
det(Kx(x)) = 0. Therefore, dim

(
col(Kx(x))

)
< nx, and thus,

dim
(
col(Kx(x))− {fx}

)
< nx.

From Proposition 2, the random vector px has an nx-variate normal distribution.
Therefore, we conclude that the probability that px ∈ col

(
Kx(x)− {fx}

)
, i.e., that px

is in a subspace with dimension less than nx, is zero. Thus, the probability that the
set of equations (25) holds for an unstable structure is zero.
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Corollary 3. The probability that an unstable structure x ∈ Rm is feasible for prob-
lem (17) with perturbed external force f̄ is zero.

Proof. Let x ∈ Rm be given. If K(x)u = f̄ holds then Kx(x)ux = f̄x is satisfied for
structure x. Thus, from Lemma 1, we conclude that equation K(x)u = f holds for
unstable structure x with probability zero. Additionally, we know that the equation
system K(x)u = f is equivalent to the following set of constraints (Shahabsafa et al.,
2018):

Rq = f,
RTu = ∆l,
λi∆li = σi, i ∈ I,
qi = xiσi, i ∈ I.

Thus, the probability that an unstable solution x is feasible for problem (17) is zero.

Theorem 1. The probability that the feasible set of problem (17) with perturbed
external force f̄ , as defined in (24), includes a kinematically unstable structure is zero.

Proof. In the discrete TTDSO problem (17), cross-sectional area xi, for i ∈ I, takes
values from discrete set S ∪ {0}. So the set of possible structures in problem (17)
is finite, and thus, the set of possible unstable structures is finite. Suppose set X =
{x1, x2, . . . , xτ} is the set of unstable structures that are feasible for problem (17),
where xk ∈ Rm for k = 1, . . . , τ are the cross-sectional area vectors corresponding
to each of the unstable structures. Let Ek, for k = 1, . . . , τ , denote the event that
structure xk is infeasible for problem (17) with perturbed external force f̄ , and let Fk
be the complement of Ek, that is, Fk is the event that structure xk is feasible for the
perturbed version of problem (17). Next, we calculate the probability of the event that

all the structures from set X are infeasible, that is, we compute Pr(
τ⋂
k=1

Ek). Notice that

τ⋂
k=1

Ek =

 τ⋃
k=1

Eck

c

=

 τ⋃
k=1

Fk

c

.

From Lemma 1, it follows that Pr(Fk) = 0 for k = 1, . . . , τ . Thus, Pr(
τ⋃
k=1

Fk) = 0, or

equivalently

Pr

 τ⋂
k=1

Ek

 = 1.

Therefore, the probability that all the unstable structures are infeasible is one, i.e.,
the probability that the feasible set of the problem with perturbation (24) includes a
kinematically unstable structure is zero.
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Figure 2: Michell truss ground structure 8-4-2-2 with 244 bars.

5 Computational experiments
In this section, we present our numerical results. A family of Michell truss struc-
tures (Sokó l, 2011) serves as a test set library. First, we compare the optimization
model (17) with and without random perturbation of the external forces to demon-
strate the impact of the perturbation on the kinematic stability of the structure ob-
tained from model (17). Moreover, we demonstrate the impact of adding necessary
constraints (20) and (21) on the solution time of model (17). Finally, we compare the
solution time and optimized weight obtained from model (17) with those of the model
proposed by Mela (2014).

Computations are carried out on a desktop workstation with Dual Intel Xeon®
CPU 2630 @ 2.20 GHz (20 cores) and 64 GB of RAM. Gurobi 9.0.0 (2019) is used to
solve the MILO models. Gurobi has the capability of using multiple threads in solving
a MILO problem with the branch and bound algorithm and is set to use 10 threads in
solving the MILO models. Since Gurobi exhausts memory in solving the large MILO
models, the NodefileStart parameter is set to 64 GB, which limits the memory to
that amount. When the memory is at the limit, the nodes are compressed and written
to a local disk. The maximum solution time is set to one day. Other Gurobi parameters
remain at the default values.

5.1 Michell Structure

Michell trusses (Sokó l, 2011), which are known scalable two-dimensional truss prob-
lems, are used to obtain the numerical results. A Michell truss is defined by four
parameters: nξ, nη, dξ, dη. Parameters nξ and nη stand for the number of blocks in
the ξ and η directions, respectively, and nη is a multiple of 4. Parameters dξ and dη
describe the connectivity of diagonal bars in the ground structure. A Michell truss has
(nξ + 1)× (nη + 1) nodes. Node (i, j), for 0 ≤ i ≤ nξ and 0 ≤ j ≤ nη, is connected to
node (i′, j′) in the ground structure, if i − dξ ≤ i′ ≤ i + dξ and j − dη ≤ j′ ≤ j + dη.
It should be noted that, unlike the structure considered by Sokó l (2011), we allow
overlapping bars in the ground structure. Nodes (0, nη/4) and (0, 3nη/4) are fixed. A
downward external force f0 is exerted on node (nξ, nη/2). The ground structures of the
Michell trusses are all kinematically stable. In Figure 2, the Michell ground structure
8-4-2-2 with its associated external force is illustrated.
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The discrete set of candidate radii of the cross-sectional areas of the bars in the
Michell truss is set to {2, 2.5, 3, 3.5, 4, . . . , 8} cm, and π = 3.14. In Table 1, the param-
eters of the Michell trusses are given. All the bars of the Michell trusses are assumed
to be made from the same material. The data of the Michell trusses that are solved in
this study are made publicly available1.

Table 1: Parameters used in Michell trusses.

Property Value
f0 8× 105 N

ρ 2, 768 kg/m3

E 69 GPa
umax 2nξ cm
umin −2nξ cm
σmax 172.36 MPa
σmin −172.36 MPa

In Table 2, the number of bars and the number of nodes of all the Michell trusses
considered in this article are presented. It should be noted that model (17) has mv
binary variables and mv + dn+ 5m continuous variables.

5.2 Effect of perturbation variance ε

We demonstrate how changing the magnitude of the variance of the random perturba-
tions of the external forces, as introduced in Section 4.2, affects the optimal structure.
In this numerical experiment we consider the Michell truss 3-4-2-2 and ε takes values
from the set {0, 10−5f0, 10−4f0, 10−3f0, 10−2f0}. We draw 1000 random perturbations
of the external forces for each of the non-zero values of ε, and thus, we solve 1000
optimization problems for each non-zero value of ε. Computers are able to compute
with double precision floating point arithmetic. Therefore, we decrease the feasibil-
ity tolerance of the Gurobi solver, as ε gets smaller to avoid numerical issues. Note
that the feasibility tolerance of Gurobi is dictated by parameters FeasibilityTol and
IntFeasTol.

In Table 3, the percentage of the optimization problems leading to kinematically
stable structures along with the range of the optimal weights and average solution
time is reported for each value of ε. In this numerical experiment FeasibilityTol

and IntFeasTol are both equal to the values of the “Feasibility Tolerance” column.
From Table 3, we can see that, given the appropriate value of feasibility tolerance, the
resulting structures are always stable for all the non-zero values of ε. The results listed
in Table 3 computationally verify Theorem 1.

The parameter ε should be set so small that the resulting random perturbation does
not change the characteristic of the external load. In our demonstration one observes

1https://github.com/shahabsafa/truss-data.git
2In the mathematical model implementation, m extra auxiliary continuous variables are used to

represent the sum of the stress variables,
∑

k∈K σik, for i = 1, . . . ,m. The number of continuous
variables, reported in the table, includes those m auxiliary variables.
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Table 2: Michell trusses

Problem
# nodes # bars # constrs.

# cont. # binary
(nξ-nη-dξ-dη) vars.2 vars.

1-4-1-1 10 21 1,041 394 273
2-4-1-1 15 38 1,896 710 494
2-4-2-2 15 78 4,258 1,430 1,014
2-4-2-4 15 105 6,370 1,916 1,365
3-4-1-1 20 55 2,751 1,026 715
3-4-2-2 20 123 6,920 2,250 1,599
3-4-3-3 20 174 11,501 3,168 2,262
3-4-3-4 20 190 12,993 3,456 2,470
4-4-1-1 25 72 3,606 1,342 936
4-4-2-2 25 168 9,588 3,070 2,184
4-4-3-3 25 252 17,894 4,582 3,276
4-4-4-4 25 300 25,111 5,446 3,900
5-4-1-1 30 89 4,461 1,658 1,157
5-4-2-2 30 213 12,256 3,890 2,769
5-4-3-3 30 330 24,403 5,996 4,290
5-4-4-4 30 410 38,084 7,436 5,330
5-4-5-4 30 435 43,365 7,886 5,655
6-4-6-4 35 595 70,832 10,776 7,735
7-4-7-4 40 780 110,086 14,116 10,140
8-4-8-4 45 990 164,654 17,906 12,870

Table 3: Effect of variance parameter ε on the optimal solution of the Michell truss 3-
4-2-2.

ε
Feasibility # Kinematic Opt. weight Avg. sol.
Tolerance Problems Stability (%) range (kg) time (s)

0 10−9 1 0 152.69 18.09
10−5f0 10−9 1000 100 [155.99–156.89] 33.54
10−4f0 10−8 1000 100 155.99 32.94
10−3f0 10−7 1000 100 155.99 32.85
10−2f0 10−6 1000 100 [144.57–162.25] 40.26

that for the Michell truss 3-4-2-2, if ε = 10−2f0, then it changes the optimal weight and
also the optimal solution, since it significantly changes the external load structure.

Furthermore, it should be noted that changing the value of ε changes the coefficient
matrix of the constraints. Choosing a too small value for ε can potentially lead to
numerically ill-conditioned problems. As it can be seen for the cases where ε = 10−5,
there is a slight variation in the total weight of the optimal structures due to numerical
issues. To prevent numerical difficulties, we choose the largest possible perturbation
which has no impact on the optimal solution.

From Table 3, we observe that ε can take a value in range [10−4f0, 10−3f0] for the
Michell truss 3-4-2-2 without changing the solution. We checked the acceptable range
of ε for different Michell trusses. It turns out that ε = 10−3f0 is appropriate for all the
Michell trusses that are considered in this article.

5.3 Effects of necessary conditions and external force perturbation

Figures 3 through 5 illustrate the effects of bar-crossing elimination constraints (14)
and (15), bar-overlapping elimination constraints (16), constraints (20) and (21) which
are necessary for kinematic stability, and the external force perturbation (22) on
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model (17). In all Figures 3, 4, and 5, sub-figure

(a) is the optimal solution of model (17) without bar-crossing elimination constraints
(14) and (15) and bar-overlapping elimination constraints (16),

(b) is the optimal solution of model (17),

(c) is the optimal solution of model (17) with constraints (20) and (21) which are
necessary for kinematic stability,

(d) is the optimal solution of model (17) with constraints (20) and (21) and the
external force perturbation (22).

In Figures 3(a), 4(a), and 5(a), we have overlapping and crossing bars. For vi-
sualization, overlapping bars are slightly shifted in the figures. Figures 3(b), 4(b),
and 5(b) demonstrate that the crossing bars and overlapping bars are eliminated by
adding constraints (14), (15), and (16).

In Figure 3(b), we have four hinges at nodes (1,1), (2,1), (1,2), and (1,3). Adding
constraints (20) and (21) to model (17), as Figure 3(c) demonstrates, eliminates all
the hinge nodes. Hinge node (1,3) is eliminated by replacing two short bars with a
long bar. The other three hinge nodes are eliminated by connecting extra bars to
those nodes. We observe the same phenomena in Figures 4(b) and 5(b), and see
in Figures 4(c) and 5(c) that all the hinges are eliminated by adding constraints (20)
and (21), which are derived from Proposition 1. Constraints (20) and (21) are necessary
for the kinematic stability of the structure; however, they are not sufficient to guarantee
kinematic stability. For example, Michell structure 5-4-2-2 in Figure 4(c) becomes
stable by adding necessary constraints (20) and (21). However, Michell structures 4-
4-2-2 and 5-4-5-4 in Figures 3(c) and 5(c) are not kinematically stable after adding
constraints (20) and (21).

As proved in Theorem 1, adding the external force perturbation (22) is sufficient
to guarantee kinematic stability. In Figures 3(d), 4(d), and 5(d), the structures are
kinematically stable due to the external force perturbation. Enforcing kinematic sta-
bility by adding the external force perturbation can lead to a significantly different
truss topology compared to the structure obtained from solving the model without
the external force perturbation. Michell truss 4-4-2-2 is an example where adding the
external force perturbation results in a significantly different truss topology as can be
seen in Figure 3(d) compared to Figure 3(b). Although structure 3(d) is topologically
different from structure 3(b), the weight of structure 3(d) is only 3% higher than the
one in Figure 3(b).

As proved in Theorem 1, adding the external force perturbation (24) to model (17) is
sufficient to obtain a kinematically stable structure. Adding necessary constraints (20)
and (21) to the proposed model, though, is useful in reducing the solution time. In
Table 4, the impact of adding necessary constraints (20) and (21) on the solution time
of the proposed model is demonstrated. In this table, “TL” stands for the cases where
the 24-hour time limit passed without proving optimality. We can see in the table that
adding the necessary constraints (20) and (21) can significantly reduce the solution
time, e.g., up to 94% for the Michell truss 5-4-1-1.
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(a)) Model (17) without constraints
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and (21). The structure is unstable.
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(d)) Model (17) with constraints (20)
and (21) and perturbation (24). The
structure is stable.

Figure 3: Optimal structures of the Michell truss 4-4-2-2.
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(a)) Model (17) without constraints (14),
(15), and (16). The structure is unstable.
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(c)) Model (17) with constraints (20)
and (21). The structure is stable.
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(d)) Model (17) with constraints (20)
and (21) and perturbation (24). The
structure is stable.

Figure 4: Optimal structures of the Michell truss 5-4-2-2.
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(a)) Model (17) without constraints (14),
(15), and (16). The structure is unstable.
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(c)) Model (17) with constraints (20)
and (21). The structure is unstable.
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(d)) Model (17) with constraints (20)
and (21) and perturbation (24). The
structure is stable.

Figure 5: Optimal structures of the Michell truss 5-4-5-4.
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(a)) The structure plotted without the nodal
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(b)) The structure plotted with the nodal
displacements.
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(c)) The distribution of stress in the final
structure.
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(d)) The distribution of Euler buckling in the
final structure.

Figure 6: Solution obtained from model (17) with constraints (20) and (21) and external
force perturbation (24) for Michell truss 8-4-8-4. For better visibility, the displacements
are magnified by a factor of 10.

It can be seen from Table 4 that the optimal solutions of the Michell trusses 5-4-3-3,
5-4-4-4, and 5-4-5-4 are the same. However, the solution time increases in these three
instances, as the feasible set of the problem gets larger.

Figure 6 shows the Michell truss 8-4-8-4 obtained by solving model (17) with constr-
aints (20) and (21) and external force perturbation (24) using a 24-hour solution time
budget. Figures 6(a) and 6(b) illustrate the optimal structures without and with nodal
displacements, respectively. We, additionally, show the distribution of yield stress and
Euler buckling stress in Figures 6(c) and 6(d), respectively.

5.4 Comparison of the proposed MILO model with Mela’s model

In this section, we compare the optimization model (17), with constraints (20) and (21)
added, with the model proposed by Mela (2014). In both models, perturbations of the
external forces are considered, though perturbations in the two models are different.
Mela (2014) used the external force perturbation proposed by Faustino et al. (2006).
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Table 4: Optimized weights (kg), solution times (s), and memory usage (MB) for the
proposed model with external force perturbation (24), and with and without constr-
aints (20) and (21).

Problem
w/ perturbation (24) w/ perturbation (24)

and w/o constrs. (20, 21) and w/ constrs. (20, 21)
memory weight sol. time memory weight sol. time

1-4-1-1 84 33.87 0.10 84 33.87 0.07
2-4-1-1 133 98.26 1.36 136 98.26 1.17
2-4-2-2 136 84.29 2.78 142 84.29 4.00
2-4-2-4 151 84.29 4.14 153 84.29 5.09
3-4-1-1 186 162.65 13.94 177 162.65 8.04
3-4-2-2 273 155.99 34.68 290 155.99 31.99
3-4-3-3 341 145.46 33.79 349 145.46 17.82
3-4-3-4 330 145.46 22.77 381 145.46 35.35
4-4-1-1 3,212 253.07 5,060.73 1,088 253.07 1,012.88
4-4-2-2 943 231.25 872.85 729 231.25 240.56
4-4-3-3 1,649 231.25 2166.33 1,125 231.25 592.86
4-4-4-4 1,223 227.73 599.03 1,178 227.73 230.68
5-4-1-1 32,419 339.76 TL 3,041 339.76 4,781.79
5-4-2-2 44,542 321.84 TL 6,187 321.84 11,065.10
5-4-3-3 19,427 317.69 54,037.36 4,450 317.69 9,047.89
5-4-4-4 17,948 314.30 49,808.39 4,561 317.69 12,139.52
5-4-5-4 49,802 318.96 TL 7,608 317.69 18,268.83
6-4-6-4 20,044 427.64 TL 28,718 422.98 TL
7-4-7-4 21,358 545.20 TL 23,743 539.68 TL
8-4-8-4 15,057 699.57 TL 19,740 657.12 TL

24



However, no guidelines were provided on how the random external force perturbations
are generated. To get reasonable comparison, the distribution that is used to generate
external force perturbations in our proposed model is also used for the external force
perturbations in the model proposed by Mela (2014). To make the forces comparable,
we set ε = 2 × 10−3 in Mela’s model, since force perturbations are tied to the active
nodes as opposed to our model where force perturbations are tied to the active bars.
The node-based perturbation in the model proposed by Mela (2014) is chosen two times
the size of the bar-based perturbation since in a 2D kinematically stable truss, at least
two bars are connected to each active pinned node. Parameters FeasibilityTol and
IntFeasTol are set to their default values for both models and all the structures
obtained are kinematically stable.

In Table 5, t and w denote the solution time and the weight of the structure
obtained from the model proposed by Mela (2014), respectively; and t′ and w′ denote
the solution time and the weight of the structure obtained from model (17), respectively.
The optimality gap is the percentage of the gap between the lower and upper bounds
of the optimal objective value w.r.t. the upper bound that is reported by Gurobi.
Further, “TL” stands for the cases where the 24-hour time limit passed without proving
optimality. If no feasible solution is found within the 24-hour time limit, the sign “—”
is used in the optimality gap and weight columns.

Table 5 shows that for the large truss problems, the proposed model (17) can be
solved significantly faster (e.g., more than nine times for the Michell truss 5-4-3-3
while the model proposed by Mela (2014) could not prove optimality), and the quality
of solution is significantly better within the given time limit (e.g., the weight reported
by the proposed model is 539.68 kg vs. 587.65 kg of the Mela’s model for the Michell
truss 7-4-7-4). One can observe that, as the size of the problem grows, the increase in
the solution time of the model proposed by Mela (2014) is significantly higher than that
of our proposed model. The model proposed by Mela (2014) fails to provide a feasible
solution in the 24-hour time limit for the Michell truss 8-4-8-4; while our proposed
model provides a high-quality solution in the same time limit.

6 Conclusions
In this paper, we developed a novel mixed integer linear optimization (MILO) model
for the discrete truss topology design and sizing optimization (TTDSO) problem. We
introduced necessary conditions that are required for a truss structure to be kinemat-
ically stable. Moreover, by introducing novel external force perturbations, we proved
that the solutions of the MILO model are kinematically stable with probability one. We
presented numerical results to demonstrate the efficacy and efficiency of the proposed
MILO model with the external force perturbation in providing kinematically stable
structures. Compared to the model proposed by Mela (2014), we demonstrated that
our MILO model is up to 9 times faster in proving the global optimality of the Michell
trusses. With the novel proposed model, we have obtained high-quality solutions for
Michell trusses with up to 990 bars and considering 13 different cross-sectional areas
in the ground structure.
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Table 5: Optimality gaps (%), weights (kg) and the solution times (s) for our proposed
model and the model proposed by Mela (2014).

Problem
Mela (2014) The proposed model

t/t′
opt. gap w t opt. gap w′ t′

1-4-1-1 0.00 33.87 0.10 0.00 33.87 0.07 1.43
2-4-1-1 0.00 98.26 3.00 0.00 98.26 1.17 2.56
2-4-2-2 0.00 84.29 3.02 0.00 84.29 4.00 0.76
2-4-2-4 0.00 84.29 5.02 0.00 84.29 5.09 0.99
3-4-1-1 0.00 162.65 15.91 0.00 162.65 8.04 1.98
3-4-2-2 0.00 155.99 38.22 0.00 155.99 31.99 1.19
3-4-3-3 0.00 145.46 13.27 0.00 145.46 17.82 0.74
3-4-3-4 0.00 145.46 22.55 0.00 145.46 35.35 0.64
4-4-1-1 0.00 253.07 7,037.59 0.00 253.07 1,012.88 6.95
4-4-2-2 0.00 231.25 1,788.64 0.00 231.25 240.56 7.44
4-4-3-3 0.00 231.25 1,541.55 0.00 231.25 592.86 2.60
4-4-4-4 0.00 226.99 1,175.69 0.00 227.73 230.68 5.10
5-4-1-1 0.00 339.76 29,556.33 0.00 339.76 4,781.79 6.18
5-4-2-2 0.00 321.84 25,019.21 0.00 321.84 11,065.10 2.26
5-4-3-3 0.85 317.69 TL 0.00 317.69 9,047.89 > 9.55
5-4-4-4 2.09 317.69 TL 0.00 317.69 12,139.52 > 7.12
5-4-5-4 1.34 317.69 TL 0.00 317.69 18,268.83 > 4.73
6-4-6-4 6.09 423.99 TL 4.61 422.98 TL NA
7-4-7-4 19.08 587.65 TL 8.42 539.68 TL NA
8-4-8-4 — — TL 10.40 657.12 TL NA
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Standard MILO solvers are used in this paper to solve the TTDSO problems. Spe-
cial purpose solution methodologies can be developed in the future to solve larger-scale
TTDSO problems (Shahabsafa et al., 2018).

7 Replication of results
The data of the Michell trusses that are solved in this study are made publicly available
in the GitHub repository: https://github.com/shahabsafa/truss-data.git. The
repository, for each test problem, includes both the raw data of the structure and the
MPS file used as input for the Gurobi solver.

In the computational experiments, we used the commercial, state-of-the-art, mixed
integer linear optimization software Gurobi (2019) to solve all test problems. The
specification of the workstation used, and the specific parameter settings of Gurobi
ver. 9.0.0 solver are presented on page 16, at the beginning of Section 5.
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Appendix A
In the basic discrete model, the choice constraints for the TTDSO problem are defined
as:

xi =
∑
k∈K

skzik, i ∈ I,∑
k∈K

zik = yi, i ∈ I, k ∈ K,

yi ∈ {0, 1}, i ∈ I,
zik ∈ {0, 1}, i ∈ I, k ∈ K ∪ {0}.

(26)

To enforce equalities (8) and (9), the following set of constraints is needed:

(1− yi)σd
i ≤ σd

i ≤ (1− yi)σd
i , i ∈ I,

max
(
−γisk, σmin

i

)
zik ≤ σik ≤ σmax

i zik, i ∈ I, k ∈ K. (27)

The Euler buckling constraints are incorporated in the set of constraints (27) as
well. The basic MILO model for TTDSO is defined as
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min
∑
i∈I

ρlixi,

s.t. Rq = f,
RTu = ∆l,

xi −
∑
k∈K

skzik = 0, i ∈ I,

λi∆li −
∑
k∈K

σik − σd
i = 0, i ∈ I,

qi −
∑
k∈K

skσik = 0, i ∈ I,∑
k∈K

zik = yi, i ∈ I,

max
(
−γisk, σmin

i

)
zik ≤ σik ≤ σmax

i zik i ∈ I, k ∈ K,
umin
` ≤ u` ≤ umax

` , ` ∈ L,
(1− yi)σd

i ≤ σd
i ≤ (1− yi)σd

i , i ∈ I,
yi1 + yi2 ≤ 1, (i1, i2) ∈ Ap,∑
ī∈Ai

yī ≤ |Ai|(1− yi), i ∈ I,∑
ī∈Ci

yī ≤ 1, i ∈ IB,

yi ∈ {0, 1}, i ∈ I,
zik ∈ {0, 1}, i ∈ I, k ∈ K.

(28)

If yi = 1, for i ∈ I, then the problem reduces to a truss sizing optimization problem.
In a truss sizing optimization problem, bar-crossing elimination and bar-overlapping
elimination constraints are not needed, since the topology of the structure is pre-
determined by the ground structure.

Appendix B
The list of the definitions of the article is given in Table 6.
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Table 6: List of definitions.

No. Page Definition
1 8 Overlapping set
2 8 Maximal overlapping set
3 8 Base element of a maximal overlapping set
4 10 Active bars
5 10 Active nodes
6 10 Active coordinates
7 10 Reduced topology matrix
8 10 Reduced stiffness matrix
9 11 Kinematic stability
10 11 Orientation vector
11 12 Maximal non-spanning set

The decision variables of the mathematical model and the parameters introduced
in the article are presented in Tables 7 and 8, respectively.

Table 7: List of the decision variables of the mathematical models.

Variable Definition
xi The cross-sectional area of bar i

yi

{
1, if xi > 0,

0, otherwise.

zik

{
1, if xi > sk,

0, otherwise.

u The the displacement vector of the pinned nodes
∆li The elongation of bar i
σik The stress on bar i if xi = sk
qi The internal force of bar i

σd
i

{
λi∆li, if xi = 0,

0, otherwise.

p The vector of the random perturbations
f̄ The perturbed external force
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Table 8: List of the parameters of the article.

Parameter Definition
d The dimension of the space
m The number of the bars of the ground

structure
n The degrees of freedom of the ground

structure
v The cardinality of the discrete set of

cross-sectional areas
I The index set of the bars of the ground

structure
J The index set of the pinned nodes of

the ground structure
S The set of candidate non-zero cross-

sectional areas of bars
K The set of indices corresponding to the

discrete set S
K̄ K \ {v}
L The index set of the coordinates of the

pinned nodes
Ap The collection of pairs of bars that cross

each other
Ai The set of bars that cross bar i
IB The index set of all the base elements

of the overlapping sets
CB The maximal overlapping set corre-

sponding to base element i
N` The set of the bars of the ground struc-

ture that are connected to the node cor-
responding to the l-th coordinate of the
displacement vector

Bj The set of bar indices connected to
node j in the ground structure

Qj The set of all the maximal non-spannig
sets corresponding to node j that have
at least a cardinality of d

R The topology matrix of the ground
structure

ri The i-th column of the topology matrix
R

f The vector of the external forces
E, Ei The Young’s modulus
ρ The density of the truss material
li The length of bar i
λi = Ei/li
γi = πEi/4l

2
i

sk The k-th value of the discrete set of the
cross-sectional areas

δk sk+1 − sk
σmin
i , σmax

i The lower and upper bounds on the
stress of bar i

σd
i , σ

d
i The lower and upper bounds on the

dummy variable σd

umin
` , umax

` The lower and upper bounds on the `-
th coordinate of the nodal displacement
vector

p`i Random variable N(0, ε)

�x � in the lower dimensional space of the
active bars and active nodes
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