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Abstract

Natural laminar-flow wings are one of the most promising technologies for reducing
fuel burn and emissions for commercial aviation. However, there is a lack of tools
for performing shape optimization of wings based on computational fluid dynamics
considering laminar-to-turbulent transition. To address this need, we develop a dis-
crete adjoint-based optimization framework where transition is modeled. The core of
this framework is a Reynolds-averaged Navier–Stokes solver that is coupled with a
simplified eN method to predict Tollmien–Schlichting and laminar separation-induced
transition that consists of a laminar boundary-layer code and a database method for
flow stability analysis. The transition prediction is integrated with a Spalart–Allmaras
turbulence model through a smoothed intermittency function, which makes it suit-
able for gradient-based optimization. A coupled-adjoint approach that uses transpose
Jacobian-vector products derived via automatic differentiation computes the transition
prediction derivatives. Lift-constrained drag minimizations of airfoils for a single-point
design and a multipoint design problem are performed. The results show that the opti-
mizer successfully reduces the drag coefficient by increasing the extent of laminar flow.
The multipoint optimization formulation produces an airfoil with a significant amount
of laminar flow that is maintained at several flight conditions. The proposed methods
make it possible to perform aerodynamic shape optimization considering laminar-to-
turbulent transition in airfoil optimization.

1 Introduction
Aircraft designers are constantly looking for ways to reduce drag as a means to reduce
aircraft fuel burn. One of the most promising technologies available to address this
need is to develop aircraft with more laminar flow over the aircraft’s surface [1]. The
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friction drag for a laminar boundary layer is 90% lower than for a turbulent one. Since
friction drag accounts for up to 50% of the total aircraft drag in cruise [2], there is a
significant potential for drag reduction through increased laminar flow.

While laminar-flow control techniques are being developed, natural laminar flow
(NLF) is a far less complex solution for increasing the extent of laminar flow and has
been already implemented in a few aircraft designs. The Piaggio P180 can maintain
50% and 30% laminar region on the wing and the fuselage, respectively, at the cruise
condition [3]. With NLF, the drag is reduced by 20–25% compared with the conven-
tional tractor turboprops. The HondaJet is designed with a favorable pressure gradient
around the front 43% chord on the wing and gains 40% chord laminar region [4]. Boe-
ing has also achieved NLF on the 787 nacelle and the 737 Max winglet [5, 6] 1, and
Airbus has investigated laminar flow on a modified A340 in the Breakthrough Lami-
nar Aircraft Demonstrator (BLADE) project by designing a wing tip with a transonic
laminar profile and a real internal primary structure 2.

Because laminar-to-turbulent transition is driven by multiple physical phenomena,
it is important to develop accurate, robust, and efficient computational fluid dynam-
ics (CFD)-based prediction tools [7–9]. In addition, it is desirable to develop design
optimization approaches that yield shapes that exhibit significant amounts of laminar
flow [10, 11].

The laminar-to-turbulent transition in the boundary layer is the result of a sequence
of complex phenomena. These phenomena depend on Reynolds number, pressure gra-
dient, disturbance environment, and configuration surface roughness [12–15], which
makes developing a rigorous model of the transition process challenging. As a re-
sult, industrial CFD applications focus on the main transition mechanisms, such as
Tollmien–Schlichting (TS) waves, crossflow (CF) vortices, separation-induced transi-
tion, and attachment-line transition (ALT). Focusing on these key mechanisms has
allowed the development of several useful transition prediction models [8, 16–19].

Reynolds-averaged Navier–Stokes (RANS) turbulence modeling approaches are the
most widely used tools in industrial applications because they are a good compromise
between accuracy and computational cost. Thus, many RANS-based transition predic-
tion methods have been developed [8, 18–21]. There are two main types of transition
prediction methods: transport equation modeling, and eN -based methods.

The transport equation modeling concept is solely based on local parameters, mak-
ing the approach compatible with modern CFD solvers. The most prominent transport

equation model for transition prediction is the correlation-based equation
(
γ − R̃eθt

)
proposed by Langtry and Menter [8]. The original model evaluates streamwise tran-
sition, including natural, bypass, and separation-induced transition mechanisms. To
capture CF-induced transition, other researchers have proposed modifications to the
Langtry–Menter method [22–24]. However, the Langtry–Menter method and its modi-
fications do not consider the physically relevant upstream flow history, which limits its
application in industry [7].

1http://www.boeing.com/commercial/737max/737-max-winglets [retrieved July, 2018]
2https://www.airbus.com/newsroom/press-releases/en/2017/09/airbus_-_blade_

-laminar-flow-wing-demonstrator-makes-first-fligh.html [retrieved May, 2019]
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As an alternative, Coder and Maughmer [7] proposed the amplification factor trans-
port (AFT) model. The AFT model uses the approximate envelope method (eN -
based) [25] and takes the envelope amplification factor as a scalar variable, which
makes the approach appealing for use in parallel CFD applications. Coder [20] im-
proved this model to be an entirely localized and Galilean invariant by introducing a
new local shape factor. Unfortunately, both the original and extended AFT models
can only predict transition induced by the TS waves, whereas CF-triggered transition,
which is relevant for swept wings, is not included in the formulation.

In contrast to the transport equation models, eN -based transition methods typi-
cally couple RANS codes with external transition modules. The RANS code predicts
the flow based on an assumed transition location, and the transition model uses the
RANS flow solution to estimate the transition location. Thus, an eN -based transition
framework requires multiple components and iteration between the RANS solver and
the transition module. Both TS waves and CF vortices can be predicted by eN -based
methods, and these methods have been used in various industrial applications [26–
29]. These methods require boundary-layer information (velocity profile, temperature
profile, pressure profile) and stability analysis.

The boundary-layer flow information is obtained from the flow solutions by one
of two means: 1) from a boundary layer well resolved by the RANS solver, where
the mean flow profiles are extracted directly from the field solutions; or 2) the surface
pressure distribution from the RANS solution is imposed as the boundary conditions for
a boundary-layer code to generate mean flow profiles. Directly resolving the boundary
layer with the RANS solver is compatible with three-dimensional configurations, but it
needs a finer mesh, especially in the surface wall-normal direction. On the other hand,
if the flow three-dimensionality is not strong, the wall pressure distribution can be used
under a conical wing hypothesis as an input for the boundary-layer code to compute
the boundary-layer velocity profiles and the corresponding integral parameters.

Possible flow stability analysis approaches for the eN method include linear stabil-
ity theory (LST) [12, 18, 19], a database method based on LST [30, 31], and linear
parabolized stability equations [32]. The LST method is derived from the linearized
unsteady Navier–Stokes equations and neglects non-local and non-parallel effects. The
LST approach is time consuming and demands specific knowledge, as well as user
intervention.

Motivated by the need for a simple, robust, accurate, and fast prediction tool, Per-
raud et al. [31] developed a database method. The general idea for this simplified
method is to use the exact LST method to establish the analytical relationship be-
tween the disturbance amplification rate and boundary-layer parameters. With this
relationship, we can obtain the amplification rate by finding the stability results in the
database directly. The computational time is substantially reduced compared to exact
LST computation.

Bégou et al. [33] also used the database method with a RANS solver. This method
was successfully applied to the ONERA-D airfoil in incompressible conditions and an
industrial laminar airfoil at transonic conditions. Good agreements between experimen-
tal data and the numerical transition predictions were obtained, which demonstrated
the accuracy of the database transition prediction method.
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Different combinations of boundary-layer model and stability analysis methods are
possible: RANS velocity field with a database method, boundary-layer code with LST,
and a boundary-layer code with a database method. For instance, the TAU unstruc-
tured CFD solver includes RANS field velocities, the database method, and LST code
as options to account for transition to turbulence effects [18, 19]. Shi et al. [28] im-
plemented an automatic transition prediction tool based on the eN method in the
open-source CFD solver ADflow 3 [34, 35].

In recent years, gradient-based optimization techniques have been used for CFD-
based aircraft shape optimization with large numbers of design variables, thanks to
efficient gradient computation via the adjoint method [35–41]. To this end, the adjoint
method has been implemented in several large-scale CFD solvers [35, 41–44]. Because
the extent of laminar flow is strongly dependent on the local surface shape, extending
the region of laminar flow requires a large number of design parameters. Therefore, an
adjoint-based approach is necessary to extend the laminar-flow region and to minimize
the drag. This type of optimization is based on either a transport equation model or an
eN -based method. Zhang et al. [45] added the γ − R̃eθt model into a CFD framework
and used a continuous adjoint approach to perform optimization in a turbomachinery
application. This adjoint-based framework considers linearized transition and a frozen
γ − R̃eθt model.

Lyu et al. [46] compared aerodynamic shape optimization results with both frozen-
turbulence and full-turbulence adjoint derivatives and concluded that the full-turbulence
results were more accurate than those obtained with the frozen-turbulence assumption
for optimizations with fully-turbulent simulations. The frozen-turbulence approach ne-
glects the turbulence contribution to the main flow in the adjoint system, while the
frozen-transition method neglects the transition properties in the main flow. There-
fore, the frozen-transition modeling is also likely to affect the accuracy of the derivatives
computations.

Khayatzadeh and Nadarajah [47] implemented the γ − R̃eθt model into a two-
dimensional optimization framework using a discrete adjoint method, where the deriva-
tives of the turbulence model and transition model were obtained by hand differenti-
ation. This study did not show detailed derivative accuracy verification by either
complex step or finite difference.

Lee and Jameson [48, 49] coupled an adjoint-based RANS solver with an eN database
method for NLF shape optimization design. In the coupled system, they did not con-
sider the gradients of the transition module and focus on eliminating the shock wave
to reduce the drag. This causes the optimized wing to have an even shorter laminar
region than the initial configuration, meaning that the full drag reduction potential of
a laminar-flow wing is not realized.

More recently, Driver and Zingg [50] coupled a two-dimensional Newton–Krylov
(NK) RANS solver with a discrete adjoint to the MSES solver [51], which includes
laminar-to-turbulent transition capabilities. The derivatives of the objective function
with respect to the transition locations and the derivatives of the transition locations
with respect to design variables were computed using finite difference method in MSES.

3https://github.com/mdolab/adflow [retrieved September, 2020]
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They then used this optimization approach to maximize airfoil lift. Rashad and Zingg
[10] continued to develop this laminar flow design capability [50] . Based on the original
adjoint equations, they augmented the transition adjoint formulation. This produces
a coupled-adjoint equation involving the two-state RANS-transition formulation. The
gradients were verified by various gradient computation techniques and good agreement
was reported. The optimization results show that this approach is a robust laminar
flow design tool for airfoils.

In this work, we implement a laminar-to-turbulent optimization framework based
on ADflow [35](see footnote 4): an open-source RANS CFD solver that has been used
extensively for aerodynamic shape optimization [40, 52–54]. The transition prediction
is based on the eN method [18, 19, 27]. Specifically, we use a boundary-layer code
with a database method (simplified eN) for its accuracy and efficiency. We extend the
laminar flow prediction capability developed in Ref. [28] and apply it to a full set of
airfoil optimizations.

The present work differs from previous efforts in that the coupled-adjoint imple-
mentation avoids any finite difference approximation, which improves accuracy and
computational efficiency. To further improve the efficiency of the coupled-adjoint sys-
tem for laminar-to-turbulent flow, we compute the derivatives in a Jacobian-free fash-
ion with reverse-mode automatic differentiation (AD), which results in more accurate
derivatives and efficient solution [35]. Another novel aspect is that we have formulated
the transition model such that it yields smooth functions, making it more suitable for
gradient-based optimization.

This paper is structured as follows. We start by introducing the transition predic-
tion tool and the corresponding verification in Sec. 2. We then describe the coupled-
adjoint equation solution and verification in Sec. 3. Airfoil optimization results are
shown in Sec. 4 and summarized in Sec. 5.

2 Transition Prediction Methodology and Verification
The RANS-eN transition prediction tool used in this work consists of the ADflow
RANS solver [34, 35] and an eN method. ADflow is a second-order finite volume
CFD solver that solves for compressible flows over three-dimensional configurations,
and it can handle structured multiblock and overset meshes [55, 56]. ADflow has
several turbulence models, but for this study, we use the Spalart–Allmaras (SA) model
exclusively [57]. The transition prediction module uses an eN method and includes
a laminar boundary-layer equation solution and the transition criteria. We use an
intermittency function to model the laminar-to-turbulent transition process and couple
the eN method with the RANS solver in a robust iterative procedure. The transition
prediction framework can predict TS waves and laminar separation-induced transition.

4https://github.com/mdolab/adflow [retrieved September, 2020]
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2.1 Laminar Boundary-Layer Solver

Solving the laminar boundary-layer equations is an efficient and accurate way of com-
puting the boundary-layer characteristics for two-dimensional geometries and high-
aspect-ratio three-dimensional wings [58]. We develop a quasi-three-dimensional lam-
inar boundary-layer solver under the conical assumption (∂p/∂r = 0, where the r is
the distance along the generator from a conveniently placed origin) [59]. The lami-
nar boundary-layer system includes the continuity, momentum, and energy equations,
forming a system of parabolic partial differential equations [60].

We apply the Keller-box method to reformulate the nonlinear boundary-layer equa-
tions. Then, we use a second-order central-difference scheme for the normal-direction
discretization and a second-order backward finite difference for the streamwise dis-
cretization. The nonlinear differential equations are solved using Newton’s method [61],
where each Newton step is solved with the block-elimination method in this finite dif-
ference solver.

The input parameters (mean flow) for the boundary-layer code include: Mach num-
ber M , pressure coefficient distribution Cp from the RANS solver, sweep angle Λ,
Reynolds number Re, and the cross-sectional airfoil shape (x, y) at specified span-wise
position z. The nonlinear laminar boundary-layer simulation residuals are

B(q̄) = 0 (1)

where q̄ stands for the mean flow variables components (ū, v̄, w̄), pressure p̄, and density
ρ̄.

We define a vector dbl consisting of the displacement thickness Reynolds number
Reδ1 , momentum thickness Reynolds number Reδ2 , shape factor H12, local Reynolds
number Rex, density ρe, Mach number Me, and viscosity coefficient µe at the boundary-
layer edge. This vector is required by the flow stability analysis and is expressed as

dbl = FB(q̄, Cps ;xs) (2)

where Cps is the cross-sectional profile pressure coefficient distribution, which is ex-
tracted from the RANS flow solution; and xs stands for the airfoil surface coordinates.

2.2 Transition Criteria

On a swept wing, transition to the turbulent flow regime can be achieved through four
transition mechanisms: ALT at the leading edge, TS waves in the streamwise direction,
CF vortices in the direction normal to the potential velocity, and separation-induced
transition [12]. Since we focus on airfoil optimization in this study, we only consider
the TS wave and laminar separation transition mechanisms.

2.2.1 Simplified eN Transition Prediction Method

Based on our LST code, we implement the database method proposed by Arnal [30]
and improved by Perraud et al. [31]. The database method idea comes from the results
obtained by studying the stability of a large number of three-dimensional velocity
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profiles obtained from self-similar Falkner–Skan–Cooke (FSC) profiles [30]. The study
considers the relationship between two variables: the displacement thickness Reynolds
number Reδ1 , and the dimensionless spatial amplification rate αi (αi = α∗i δ1, where
α∗i is the spatial amplification rate) for a given reduced frequency F . The αi versus
Reδ1 curve can be represented by two inverted parabolas, as shown in Fig. 1. Using
this representation, αi is computed directly with Reδ1 . Thus, the database method
dramatically reduces the computational cost compared to an exact LST computation,
which would require solving the Orr–Sommerfeld equation.

The representation of αi(Reδ1) using two inverted parabolas is derived as follows.
For simplicity, we define the amplification rate as

αi = −σ = −max (σI , σV ) (3)

where σI and σV represent the inviscid and viscous amplification rates defined as

σI(Reδ1) = σMI

(
1−

(
Reδ1 −RMI

RKI
−RMI

)2
)
, σV (Reδ1) = σMV

(
1−

(
Reδ1 −RMV

RKV
−RMV

)2
)
(4)

The amplified region is determined by R0I , R1I or R0V , R1V , whereas RMI
and RMV

define the peaks of the parabolas. When σ 6 0, there is no amplification for the given
condition case. Taking the maximum of these two parabolas results in σ, whose curve
is highlighted in Fig. 1.

Re !0
(R0I, R0V) RMI RMV R1I R1V

MV

MI

I

V

Figure 1: Parabolic model of the amplification rate for both the inviscid and viscous
case [31].

To evaluate Eqs. (3) and (4), we need values for RK and RM . RK is defined as:

RKI
=

{
R0I if Reδ1 < RMI

R1I if Reδ1 > RMI

, RKV
=

{
R0V if Reδ1 < RMV

R1V if Reδ1 > RMV

(5)

where subscript V denotes the viscous value at low speed and subscript I stands for the
inviscid value at higher velocities or in strong adverse pressure gradients. The stable
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region (σ < 0) is added by extrapolating the parabolas with a tangent line at the zero
crossing point, as shown in Fig. 1.

The parameters σM , RM , R0, and R1 vary with F ; and they are approximated by
the following relationships:
RMI

(F )
R1I (F )
R0I (F )
σMI

(F )

 =


k1IF

E1I

k2IF
E2I

RMV
(1 + C(Fc − F ))

BI

(
1− F

F0I

)
 ,


RMV

(F )
R1V (F )
R0V (F )
σMV

(F )

 =


k1V F

E1V

k2V F
E2V

RMV
(1 + C(Fc − F ))

min
(
BV

(
1− F

F0V

)
, σMVmax

)


(6)
The Reynolds number bounds (RMI

, R1I , RMV
, R1V ) for the unstable region and

σMI
, σMV

are related to the reduced frequency F , which we define as

F =
2πf ∗ν

U2
e

=
ω∗νδ1

Ueδ1

= ω/Reδ1 (7)

where ω∗ = 2πf ∗/Ue = ω/δ1.
To build an estimate for αi from Eqs. (3–5) we need estimates for the following 15

parameters:

[B(Me, H12), F0(Me, H12), k1(Me, H12), E1(Me, H12), k2(Me, H12), E2(Me, H12)]I,V ,

(8)

C(Me, H12), Fc(Me, H12), σMVmax
(Me, H12)

These parameters are dependent on the base flow quantities: Mach number Me,
and the pressure gradient related parameter H12. A data fit for these 15 parameters
is generated using FSC velocity profiles and our LST code using the following proce-
dure [25, 30, 31, 33]:

1) Solve the FSC ordinary differential equations [62] and generate numerous similarity
velocity profiles for different H12 values.

2) Run the exact LST code at specified Me, H12, and F ; and compute the amplification
rate αi.

3) For each specified Me and H12, compute R0, R1, RM , and σM versus αi and Reδ1
at different frequencies.

4) Use least-squares fitting to obtain the 15 parameters with different F at specified
Me and H12.

5) Establish the two-entry lookup table for different Me and H12 with these 15 param-
eters.

The parameters σM , RM , R0, and R1 include both viscous and inviscid criteria. The
two-entry lookup table is valid for 2.22 6 H12 6 4.023 and 0 6Me 6 1.3. Decelerated
flow (H12 > 2.59) is considered by using the inviscid criterion.
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We now describe the procedure to compute the transition onset flow location, xtr.
For a given flow, we extract Me and H12 with the laminar boundary code for calculating
αi. We then integrate αi in the streamwise direction for N and obtain the maximum
N -factor, NTS. The transition location is determined by the linear interpolation

xtr =
NTScrit −NTSL

NTSR
−NTSL

(xR − xL) + xL (9)

where xL and xR are, respectively, the coordinates of the left and right neighbors
of the position where the critical N -factor is reached, and NTSL

and NTSR
are the

corresponding NTS values. Once the data fits underlying the method are generated, no
specialized knowledge is required to use the database method. This makes the database
method more efficient and convenient to use for adjoint-based optimization compared
to the LST approach.

In the remainder of this paper, all transition locations triggered by TS waves are
computed with the database method. The LST method is only used to generate train-
ing data and to benchmark the database method.

2.2.2 Separation-induced Transition Criterion

The laminar boundary-layer code terminates at the laminar separation position. When
NTS does not reach the critical N factor upstream of the separation point, the tran-
sition location is set to coincide with this separation position, i.e., xtr = xsep, where
xsep is the separation point. However, in reality, there is a laminar bubble downstream
of the separation point and the laminar region is extended downstream. Taking the
laminar bubble into consideration, Mayle [63] proposed a correction to predict the
separation-induced transition more accurately. The separation-induced transition lo-
cation is defined as

xtr = xsep + SbRe
0.7
δ2

µe
ρeUe

(10)

Depending on the separation topology, there can be a short laminar separation
bubble or a long laminar separation bubble. For the short bubble (Reδ1 > 450), Sb is
300, whereas for for the long bubble (Reδ1 ≤ 450), Sb is 1000. In our applications, we
mainly apply the short bubble correlation.

2.2.3 Intermittency Function

Dhawan and Narasimha [64] proposed the intermittency concept, which is used to
describe the flow fluctuation between laminar and turbulent regimes. This concept
means that the flow becomes intermittent and alternates in the transition process. To
study the physical nature of such flow, the fraction of time in which the flow remains
turbulent during the transition phase is represented by the intermittency function [64,
65],

g(x) =

{
1− e−0.413

(
3.36(x−xtr)

ltr

)2

if x ≥ xtr,
0 if x < xtr

(11)

9



where ltr is the transition length. The intermittency function affects the production
term of the turbulent model to predict transition in the RANS solver. The transition
lengths induced by TS waves and induced by separation are determined by,

ltrTS
= 2.3

√(
ρeUe
µe

)
(δ1)1.5, ltrsep = 700Re0.7

δ2

µe
ρeUe

(12)

respectively [65]. The corresponding values are calculated at the transition point or
the separation point.

2.3 Transition Prediction Framework

The eN transition is modeled by the boundary layer solver and the database method.
These two components constitute the transition simulation algorithm (TSA) module.
The TSA module is coupled with the RANS solver using an iterative procedure in a
two-field formulation. We show the coupling of these and other components of the
transition prediction framework in Fig. 2 [66].

T 0
r ,Q

0 Critical N -factor

Q∗,T ∗
r

0, 6→1:
RANS transition

solver

1 : Tr

1: Intermittency
function

2 : g

6 : Q 2: Flow solver 3 : x, y, z, Cp

3: Slice
extraction

4 : (x, y, z, Cp)s

4: BL solver 5 : dbl

6 : Tp
5: Database
method

Figure 2: Extended design-structure matrix [66] for the transition prediction frame-
work. Red blocks are iterative solvers, whereas green boxes represent explicit functions.

ADflow solves the flow field with the following form

A(Q) = 0 (13)

where Q is the vector of flow state variables. ADflow computes the solution of the
RANS equations for a fixed transition location. We can either start the RANS solu-
tion from a fully turbulent boundary-layer computation or with the fixed transition
positions. In this paper, we always start from a fully turbulent solution. The RANS
equation residuals (A) include the inviscid, viscous, and artificial dissipation terms.

The database method and criterion for separation-induced transition for computing
transition locations and lengths is defined as

Tp = FT (dbl;xs) (14)
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Tp is directly determined by the boundary-layer information contained in dbl. In the
iterative procedure, the state variables Tr is updated using

T (k)
r = T (k−1)

r + θ(T (k−1)
p − T (k−1)

r ), (15)

where Tp is the vector of the predicted transition locations and θ is the under-relaxation
factor. Then, the transition module residual function is written as

L(Tr) = Tr − Tp. (16)

Thus, the whole transition module solution is treated as a laminar problem and is
written as

L(Tr) = 0 (17)

After solving the RANS equations, the cross-sectional values are obtained from the
flow solution field by extracting two-dimensional (2-D) slices from the three-dimensional
(3-D) solution (“Slice extraction” in Fig 2) and the cross-section flow solution is trans-
ferred to the transition simulation. The results in this paper are pseudo-2-D solutions.
Two-dimensional solutions are computed using single-cell-wide 3-D grids with parallel
symmetry planes. As a result, we still need to extract slices from the 3-D solution for
the boundary layer solver.

With the laminar problem formulation, we can write the governing equations as a
function of the flow states Q, transition results Tr, and design variables X. We write
the combined residual equations from the RANS and the transition disciplines as

R =

[
A(Q,Tr;X)
L(Tr,Q;X)

]
= 0 (18)

The transition prediction based on the RANS-eN framework finds a solution, (Q,Tr),
that satisfies the coupled residual equations. We solve the coupled transition predic-
tion (18) using the nonlinear block Gauss–Seidel (NLBGS) method. In this approach,
the aerodynamic simulation is partially converged, with εA 6 10−8, allowing an ap-
proximation of the pressure coefficient Cp distribution to be computed.

The Cp distribution is transferred to the transition module, where the boundary-
layer states dbl are computed using Eqs. (1) and (2). The transition locations xtr for
the two types of transition are computed using Eqs. (9) and (10). The corresponding
transition lengths ltr are computed using Eq. (12).

The transition locations and transition lengths are passed back to the ADflow solver,
where the intermittency function (11) is computed. A new aerodynamic solution is
converged using the new intermittency function values, and this procedure is repeated
until a certain tolerance is met (εA ≤ 10−8).

The RANS solver and the transition module are coupled using the intermittency
function as a factor in a SA turbulence model source term used in ADflow. The
modified equation is

Dν̃

Dt
= g

{
cb1S̃ν̃(1− ft2)−

[
cw1fw −

cb1
κ2
ft2

]( ν̃
d

)2
}

+
1

σ

[
∂

∂xj
((ν + ν̃))

∂ν̃

∂xj
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

]
(19)
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When the flow is laminar, g is zero and the production term of the turbulence model
turns off; see Eq.(11). This process is defined as a modeling of transitional flow regions
that is used for updating the transition locations and transition lengths in the RANS
solver. Descriptions of the constants cb1, cb2 and cω1 and Eq. (19) is available in the
literature [57]. The full NLBGS solution procedure is detailed in Algorithm 1.

Algorithm 1 Transition prediction using a nonlinear block Gauss–Seidel solver

1: Given: Q(0), T
(0)
r , kmax

2: xs ← xsurf . Extract the cross-sectional coordinates

3: for k ← 1, kmax do

4: g(k) ← T
(k−1)
r . Transfer transition locations from TSA to RANS

5: A(k) ← A
(
Q(k−1), g(k)

)
. Evaluate initial RANS residual

6: while ‖ A(Q
(k−1)
i ;X) ‖> εA ‖ A(k) ‖ do . RANS partial convergence

criterion

7: Q
(k−1)
i+1 ← Q

(k−1)
i + ∆Qi . Iterate RANS

8: i← i+ 1

9: end while

10: Q(k) ← Q(k−1) . Updated RANS solution

11: C
(k)
p ← Cp

(
Q(k), g(k)

)
. Evaluate the surface pressure coefficient

12: Cps
(k)
A ← C

(k)
p . Extract the cross-section pressure coefficient

13: C
(k)
ps ← Cps

(k)
A . Transfer the pressure coefficient from RANS to TSA

14: B(k) ← B
(
q̄(k−1), C

(k)
ps

)
. Evaluate initial boundary-layer residual

15: while ‖ B(q̄(k−1), C
(k)
ps ;xs) ‖> εB ‖ B(k) ‖ do . Boundary-layer partial

convergence criterion

16: q̄
(k−1)
i+1 ← q̄

(k−1)
i + ∆q̄i . Iterate the boundary-layer

17: i← i+ 1

18: end while

19: q̄(k) ← q̄(k−1) . Update the boundary-layer solution

20: d
(k)
bl ← FB(q̄(k), C

(k)
ps ;xs) . Evaluate the boundary-layer parameters

21: T
(k)
p ← FT (dkbl;xs) . Transition locations computation

22: ∆T
(k)
p ← T

(k)
p − T (k−1)

p . Compute the displacement increment

23: if k > 1 then

24: θ ←
(

1−
(

∆T
(k)
p −T (k−1)

p

)
·∆T (k)

p

‖∆T (k)
p −∆T

(k−1)
p ‖2

)
. Adapt under-relaxation with Aitken

acceleration

25: end if

26: T
(k+1)
r ← T

(k)
r + θ∆T

(k)
p . Compute the temporary transition locations

27: if ‖ A(k) ‖< εAL ‖ A(1) ‖ and ‖ L(k) ‖< εALL(1) then . Transition

12



prediction convergence criterion

28: break

29: end if

30: end for

31: Result: Tr

2.4 Validation and Verification

We validate and verify the transition framework [28] using the database method on the
classic NLF(1)-0416 airfoil [67]. This airfoil is designed to operate at Cl = 0.4 and has
a maximum thickness ratio t/c = 0.16, which leads to favorable stall characteristics.

We validate the transition prediction tool against experimental data for various an-
gles of attack at Re = 4.0×106 and M = 0.1 [67]. The freestream turbulence intensity
is 0.15%. According to the correlation by Mack [68], NTScrit = 7.2 at this turbu-
lence level. The simulation requires about 6–10 iterations for the RANS-eN transition
framework to converge. Figure 3 compares the simulation results and experimental
data. The experimental lift coefficient is well matched in the linear region, although
the simulation slope is slightly larger than the experimental data in Fig. 3(a). This
result also has the same trend observed by Coder [69]. The drag polar obtained from
our simulation results shows an excellent agreement with experimental data, as shown
in Fig. 3(b).

The transition locations are compared in Fig. 3(c). Because the experimental data
does not cover the transition results on both the upper and lower surface for all angles
of attack, we compare the available transition location regions only. The simulation
results we present here indicate that our transition predicting framework is reliable and
robust for laminar-to-turbulent transition simulation.

Finally, we show the N -factor distribution for both the database method and exact
LST at an angle of attack (AOA) of 4 deg and Cl = 0.9. Numerical results results
obtained with the database method for different configurations and conditions have
been verified by Perraud et al. [31] and by Bégou et al. [33]. Using our code, the
database method results agree with the exact LST results, as shown in Fig. 4, which
verifies the accuracy of the simplified eN method.

2.5 Ensuring Smooth Functions

Ensuring that objective and constraint functions are smooth with respect to the design
variables is crucial when using gradient-based optimization. To check the smoothness
of these functions when considering transition, we select two airfoils and interpolate
linearly in the design space between these two airfoils using mode shapes [70]. The two
airfoils are analyzed for M = 0.42, Re = 12× 106, and AOA = 1.54◦. Figure 5 shows
the lift, drag coefficients and transition locations versus the interpolation factor χ.

We show three sets of results:

1) The first is the result with no g. this is the solution without including the inter-
mittency function (11). The turbulent production terms are switch on at discrete

13
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Figure 3: Transition simulation results comparison for the NLF(1)-0416 airfoil with
experimental data [67].
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Figure 4: Comparison of database N factor with LST results at AOA= 4◦, Cl = 0.9.

cell locations downstream of the transition location.

2) The second result is with g. This solution is with an intermittency function that is
not smoothed. The turbulent production terms are switched on over the length of
the transition length, with the start of the transition region being identified by the
closest node to the transition location.

3) The third result is smoothed. This solution with is the smoothed intermittency
function (11). The turbulent production terms are switched on over the length
of the transition region, with the start of the transition region being interpolated
to its exact position by interpolating between cells and using a strict transition
convergence criterion.

The intermittency function is related to the transition location and transition length
through Eq. (11). In the transition simulation procedure, two modules (TSA and
ADflow) use interpolation of the transition location. When determining the transition
location from the critical N factor, the transition locations are defined by Eq. (9), with
the mesh points close to the transition point in the TSA module being used to identify
the transition location. Then, the transition location is passed to ADflow, where the
discrete mesh locations are used to specify the intermittency. Specifically, the surface is
divided into laminar and turbulent regions by the transition location and g is set to zero
in the laminar region. Without interpolation, this procedure introduces discontinuities
in the design space, since the transition location jumps from cell to cell as the shape of
the airfoil changes. From the implementation point of view, code developers may use
the grid points when using the intermittency function, which affects the smoothness of
the functions, and thus the robustness of gradient-based optimization. Therefore, we
show the results “With g”.

The computation labeled “With g” uses the mesh points directly, without inter-
polation, in both the TSA framework and ADflow to compute the transition location
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and the intermittency function. The transition convergence tolerance is 10−3 in the
transition simulation for this case. Figure 5 shows that both with and without in-
termittency, Cl is smooth but Cd is not. Although, the drag coefficient is smoother
with the intermittency function than without intermittency, it still exhibits some noise.
The same figure shows that by linearly interpolating the exact transition locations and
lengths for intermittency function in ADflow and by using a stricter convergence crite-
ria (εL 6 10−7) in the TSA module, we are able to smooth the drag coefficient function
with respect to the airfoil shape variables. We also show a smooth variation transition
locations with respect to the airfoil shape variables in Fig. 5, which in turn ensures
the smoothness of the lift and drag coefficient functions with respect to the airfoil
shape variables. The smoothed version increases the robustness of the gradient-based
optimizations, which made it possible to obtain the results presented in Sec. 4.

0.5160

0.6614

Cl Smoothed
With g
No g 

58.505

62.648
Cd 

 (counts)

0.15

0.30
xtr 

(upper surface)

0 1
0.15

0.30
xtr 

(lower surface)

Figure 5: Proposed approach is effective in smoothing drag coefficient with respect to
airfoil shape variables (bottom plot), where χ represents the position in a line going
from one airfoil (χ = 0) to another (χ = 1).

3 Coupled-Adjoint Derivative Computation

3.1 Coupled-Adjoint Equations

As mentioned in the introduction (Sec. 1), adjoint derivative computation is essential
to aerodynamic shape optimization. To account for the effect of laminar-turbulent
transition, a coupled adjoint is required to compute the derivatives of the coupled
system of equations. The coupled-adjoint approach has been previously implemented
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for problems coupling aerodynamics and structures [71, 72] and has been generalized
to multiple disciplines [73–75].

We use the discrete adjoint implemented in ADflow to compute the derivatives
for the RANS equations [35]. In this section, we describe the additional terms we
implemented to compute the derivatives of the system consisting of the RANS equations
and the transition model.

The total derivative of the function of interest I is

dI

dX
=

∂I

∂X
−ψT ∂A

∂X
(20)

where X is the vector of design variables, and Q is the vector of state variables. The
function of interest, I = I(X,Q), is either an objective function such as the drag
coefficient, or a constraint, such as the lift coefficient. Using the existing fully turbu-
lent adjoint as a starting point, we augment the sensitivities to include the transition
prediction code. To accomplish this, we couple the RANS-based solver, which solves
the equation A(Q) = 0, with the simplified eN transition algorithm, which solve the
equation L(Tr) = 0. There are two sets of state variables: the flow state vector, Q,
and the vector of transition locations, Tr.

The coupled residuals, states, and adjoints are

R =

[
A
L

]
, Y =

[
Q
Tr

]
, Ψ =

[
ψ
φ

]
(21)

where the transition residual is L = Tr − Tp for a given transition location predicted
by the simplified eN method Tp. Given the states of the coupled system [Eq. (21)], the
coupled total derivative of the function of interest is written as

dI

dX
=

∂I

∂X
+
[
∂I
∂Q

∂I
∂Tr

] [ dQ
dX
dTr

dX

]
(22)

The other total derivative equation that is needed to derive for the adjoint method
is the total derivative of the residuals, which must be zero for the governing equations
to remain satisfied. The total derivative of the coupled residuals is

dR

dX
=

[
dA
dX
dL
dX

]
=

[
∂A
∂X
∂L
∂X

]
+

[∂A
∂Q

∂A
∂Tr

∂L
∂Q

∂L
∂Tr

] [
dQ
dX
dTr

dX

]
= 0 (23)

Substituting the solution of Eq. (23) into Eq. (22), we get

dI

dX
=

∂I

∂X
−
[
∂I
∂Q

∂I
∂Tr

] [∂A
∂Q

∂A
∂Tr

∂L
∂Q

∂L
∂Tr

]−1

︸ ︷︷ ︸
ΨT

[
∂A
∂X
∂L
∂X

]
(24)

Using the two terms highlighted [Eq. (24)], we can form the coupled-adjoint equa-
tions: [∂A

∂Q
∂A
∂Tr

∂L
∂Q

∂L
∂Tr

]T [
ψ
φ

]
=

[ ∂I
∂Q
∂I
∂Tr

]T
(25)
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These equations are solved for the two adjoint vectors, which can then be used
in the following equations to compute the total derivatives for the coupled RANS-eN

system:
dI

dX
=

∂I

∂X
−ψT

(
∂A
∂X

)
− φT

(
∂L
∂X

)
(26)

In the next section, we describe how the partial derivatives in the above equations
are computed and how the coupled-adjoint equations are solved.

3.2 Computation of Partial Derivatives

To solve the coupled-adjoint equations, we need to derive all the partial derivatives in
Eqs. (25) and (26), and to have an efficient implementation of these terms. These are
∂A/∂Q, ∂A/∂Tr, ∂A/∂X, ∂L/∂Tr, ∂L/∂Q, and ∂L/∂X. Since ADflow uses gener-
alized minimal residual method to solve the adjoint equation [35], we only require the
matrix-vector products to solve the coupled-adjoint equations (25). None of the par-
tial derivatives in this section are stored explicitly. Instead, we used the Tapenade [76]
AD tool in reverse mode to generate the code that computes the partial derivative
matrix-vector products.

3.2.1 Aerodynamic Partial Derivatives

The RANS diagonal term, ∂A/∂Q, represents the derivative of the RANS equation
residuals with respect to the RANS equation state variables and is provided by the
RANS adjoint implemented in ADflow [35].

The off-diagonal block, ∂A/∂Tr, is the derivative of the RANS residuals with re-
spect to the laminar transition states and represents the coupling between the two
systems. We compute this term using reverse accumulation, starting with the adjoint
vector and using the chain rule to propagate the derivative backward as shown in the
following: (

∂A
∂Tr

)T
ψ =

(
∂g

∂Tr

)T (
∂A
∂g

)T
ψ︸ ︷︷ ︸

ψ1

. (27)

We first compute ψ1 and then use that result to compute the value for (∂g/∂Tr)
Tψ1.

The matrix-vector product for the RANS residual partial derivative ψ1 is provided by
ADflow and dependent on the modified turbulence model. We compute the partial
derivatives of this term by extending the reverse-mode AD in ADflow to include the
terms in this computation. The term (∂g/∂Tr)

Tψ1 is defined by Eq. (11), and the
corresponding code is also differentiated using Tapenade.

The adjoint product of the derivative of the aerodynamic residuals with respect to
the design variables is computed using the chain rule(

∂A
∂X

)T
ψ =

(
∂xsurf

∂X

)T (
∂xv
∂xsurf

)T (
∂A
∂xv

)T
ψ︸ ︷︷ ︸

ψ1︸ ︷︷ ︸
ψ2

(28)
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The two terms on the left are computed by the geometry module (pyGeo5) and the
mesh movement module (IDWarp6). The right-most term is derived using reverse-mode
AD.

3.2.2 Transition Partial Derivatives

The diagonal term, ∂L/∂Tr, represents the derivatives of the transition residuals with
respect to the laminar transition states. This term is an identity matrix of size Ntr×Ntr,
where Ntr includes upper and lower surface transition locations and lengths, and it is
four times the number of spanwise sections Ns.

The remaining off-diagonal block, ∂L/∂Q, represents the derivatives of the tran-
sition residuals with respect to the RANS state variables. This term is also obtained
using reverse accumulation through the chain rule,(

∂L
∂Q

)T
φ =

(
∂Cp
∂Q

)T (
∂Cps
∂Cp

)T (
∂dbl

∂Cps

)T (
∂L
∂dbl

)T
φ︸ ︷︷ ︸

φ1︸ ︷︷ ︸
φ2︸ ︷︷ ︸

φ3

, (29)

where (∂L/∂dbl) is the derivative of the transition location residuals with respect to
the boundary-layer parameters, and ∂dbl/∂Cps is the derivative of the boundary-layer
parameters with respect to the section profile pressure coefficient distribution. This
term is related to the partial differential equations solution for the laminar boundary
layer. We compute the (∂Cps/∂Cp)

Tφ2 in ADflow, where (∂Cps/∂Cp)
T represents the

partial derivatives of the section profile value with respect to the surface Cp of the airfoil
CFD mesh. The term (∂Cp/∂Q)T represents the partial derivatives of the surface
pressure coefficient with respect to the RANS state variables. Finally, we compute
(∂Cp/∂Q)Tφ3.

The derivative of the transition residual with respect to the design variables, ∂L/∂X,
is expressed by the chain rule as(

∂L
∂X

)T
φ =

(
∂xsurf

∂X

)T (
∂xv
∂xsurf

)T (
∂xs
∂xv

)T (
∂L
∂xs

)T
φ︸ ︷︷ ︸

φ1︸ ︷︷ ︸
φ2︸ ︷︷ ︸

φ3

, (30)

where xs is the geometry coordinates for the section profile. Note that (∂L/∂xs)T
is obtained in the same way as for (∂L/∂Cps)T . We use the reverse-mode AD in
ADflow to compute (∂xs/∂xsurf)

Tφ1. The matrix-vector product (∂xsurf/∂X)Tφ3 and
(∂xv/∂xsurf)

Tφ2 are unchanged from the RANS adjoint implementation [35, 55] and

5https://github.com/mdolab/pygeo [retrieved September, 2020]
6https://github.com/mdolab/idwarp [retrieved September, 2020]
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are computed by the geometry module (pyGeo7) and the mesh movement module
(IDWarp8), respectively.

3.2.3 Function of Interest

The functions of interest are the force and moment coefficients (Cl, Cd, and Cm).
The transition location is not set as the function interest because we are ultimately
interested in objectives and constraints based on the aerodynamic force coefficients.
The partial derivatives of the total-derivative function, ∂I/∂Q, are the same as before,
whereas (∂I/∂Tr) is zero.

3.3 Coupled-adjoint Solution

For the RANS-eN laminar-to-turbulent transition prediction method, there are two
methods available for solving the coupled-adjoint system [Eq. (25)]: the linear block
Gauss–Seidel (LBGS) method and the coupled-Krylov method [77]. The linear block
Gauss–Seidel method uses a segregated approach, whereas the coupled-Krylov method
uses a monolithic approach [72].

3.3.1 Linear Block Gauss–Seidel Method

The LBGS method moves the off-diagonal terms of the RANS-eN adjoint equations [Eq. (25)]
to the right-hand side (RHS), resulting in the lagged system of equations:(

∂A
∂Q

)T
ψ(k) =

(
∂I
∂Q

)T
−
(
∂L
∂Q

)T
φ(k−1)(

∂L
∂Tr

)T
φ(k) =

(
∂I
∂Tr

)T
−
(
∂A
∂Tr

)T
ψ(k)

(31)

where k is the iteration index. The partial derivative ∂L/∂Tr is an identity matrix, and
∂I/∂Tr is zero. We iterate these two equations in sequence until a target convergence
level is reached. Each of these two equations is fully converged to their respective
solutions before proceeding to the other equation. We use an under-relaxation factor
(Algorithm 2) for the transition update to improve convergence.

Formulated in this fashion, the coupled-adjoint equations now look like a pair of
single discipline adjoint equations with augmented right-hand sides. Therefore, we
can reuse the existing RANS adjoint solver in ADflow, which is the main advantage
of this algorithm. Further, because the diagonal block of the coupled-adjoint system
corresponding to the transition computation is an identity matrix, the solution of the
transition adjoint reduces to a matrix-vector product with the RANS adjoint vector.
The pseudocode for the complete procedure is shown in Algorithm 2.

Algorithm 2 Coupled-adjoint linear block Gauss–Seidel solver

1: Given: ψ(0), φ(0), kmax . ψ(0) and φ(0) could come from previous solution

2: for k ← 1, kmax do

7https://github.com/mdolab/pygeo [retrieved September, 2020]
8https://github.com/mdolab/idwarp [retrieved September, 2020]
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3: φ2 ←
(
∂L
∂Cp

)T
φ(k−1) . Transfer the transition adjoint from TSA

4: RHS
(k)
A ←

(
∂I
∂Q

)T
−
(
∂Cp

∂Q

)T
φ2 . RANS adjoint RHS

5:

(
∂A
∂Q

)T
ψ(k) = RHS

(k)
A . Partially solve RANS adjoint to get ψ(k)

6: φk ← −
(
∂A
∂Tr

)T
ψ(k) . Transfer the RANS contribution to transition RHS

7: RHS
(k)
L ← φk − φ(k−1) . Compute the transition RHS

8: ∆φ = RHS
(k)
L . Compute the TSA adjoint update

9: φ(k) ← φ(k−1) + θ∆φ . Under-relaxed transition adjoint update

10: if ‖ RHSA
(k) ‖< εLF ‖ RHSA

(1) ‖ and ‖ RHS(k)
L ‖< εLF ‖ RHS(1)

L ‖ then

11: break . Coupled-adjoint converged

12: end if

13: end for

14: Result: ψ, φ

3.3.2 Coupled-Krylov Method

The second method for solving the coupled-adjoint system is the coupled-Krylov method,
which is monolithic. Kennedy and Martins [77] and Kenway et al. [72] applied the
coupled-Krylov method to aerostructural problems. Kenway et al. [72] benchmarked
the coupled-Krylov method against LBGS and concluded that the coupled-Krylov
method is more efficient. This motivates the implementation of the coupled-Krylov
method for the laminar flow problem.

Because we use reverse-mode AD to compute all of the partial derivatives in the
coupled-adjoint system, we can directly compute the transpose matrix-vector prod-
ucts needed by the Krylov method. This allows us to efficiently solve the coupled
system without explicitly storing the coupled Jacobian. To ensure that the Krylov
solver performs well, we need effective preconditioning for the coupled system solution.
To accomplish this, we store the approximate diagonal block (∂A/∂Q)TPC computed
by ADflow and ignore the off-diagonal terms ∂A/∂Tr and ∂L/∂Q. For the transition
module diagonal block, the preconditioner is an identity matrix, since that corresponds
to the actual values of the Jacobian. These two diagonal block form a block-Jacobi pre-
conditioner for the coupled system. For the RANS block, we reuse the preconditioned
Krylov subspace method used for the fully-turbulent adjoint solution. The pseudocode
for the transpose matrix-vector product used in the coupled linear solution is shown in
Algorithm 3.
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Algorithm 3 Coupled-adjoint Krylov linear operator

1: function Mult(z) . Compute Jacobian-vector product with z

2: (zA, zL)← z . Extract the RANS and transition components

3:
ψ ←

(
∂A
∂Q

)T
zA

φ← zL

. Evaluate diagonal contributions in parallel

4: ψ ← ψ +
(
∂L
∂Q

)T
zL . Add RANS off-diagonal term

5: φ← φ+
(
∂A
∂Tr

)T
zA . Add off-diagonal term of transition module

6: Ψ← (ψ,φ) . Combine RANS and transition components

7: return Ψ

8: end function

3.4 Gradient Verification and Adjoint Solution Algorithms Com-
parison

3.4.1 Baseline Solution

We use the RAE 2822 airfoil case to verify the adjoint implementation. The compu-
tational mesh for the airfoil has 251 points in the chordwise direction and 121 points
in the wall-normal direction. The airfoil geometry, transition locations, and free-form
deformation (FFD) control points (which are used as shape design variables) [78] are
shown in Fig. 6. We have 18 design variables for this case. The flow conditions for the
simulation are Re = 5.6× 106, M = 0.19 and AOA = 0.7498◦. The resulting pressure
distribution and predicted transition locations are shown in Fig. 6. The predicted tran-
sition location and transition length are xtr/c = 0.370 and ltr/c = 0.0485, respectively,
on the upper surface; whereas on the lower surface, the corresponding quantities are
xtr/c = 0.481 and ltr/c = 0.0604, respectively. Additionally, the upper surface transi-
tion is caused by TS wave amplification, whereas laminar separation triggers transition
on the lower surface because NTS is not up to NTScrit until the laminar separation point
(see Fig. 6).

3.4.2 Verification of Partial Derivatives

In this paper, we use two approaches to verify the gradient computations: The dot-
product test and finite difference derivative estimates. The dot-product test is used
to check the consistency between the forward AD and reverse AD codes. For a given
code with a vector of inputs Z and outputs U , such that U = F (Z), the dot-product
test is expressed as

ŻTZ = U̇TU (32)

where the forward AD result and the reverse AD result are, respectively,

U̇ =
∂F

∂Z
Ż, Z =

∂F

∂Z

T

U
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Figure 6: RAE 2822 airfoil geometry, FFD control points, transition location, and
pressure distribution.

In the forward derivative computation, we seed a random vector Ż and we want to
compute U̇ . Then, we generate a random vector Ū and compute the corresponding
Z̄ with the reverse AD code. Finally, we verify that the left- and right-hand sides of
Eq. (32) match to machine precision.

This dot-product test ensures that the AD code is consistent with the original
subroutine, and we can perform this test for every AD module in the chain. We used
this method to check all the related partial derivatives subroutines: the transition
simulation module, the spanwise direction slices subroutine, and the intermittency
function subroutine. As shown in Table 1, the forward and reverse modes match each
other to least 10 digits.

Table 1: Dot-product verification

Product ∂L/∂Cps ∂Cp/∂Cps ∂g/∂Tr

ŻT Z̄ 2.667966055014 34.333164845932 −7.8272538571149

U̇T Ū 2.667966055389 34.333164845932 −7.8272538571148

3.4.3 Adjoint Solution Verification

In a second verification step, we compare the directional derivatives of Cl and Cd in
a random direction computed with the coupled-Krylov solver for the coupled-adjoint
equations with forward finite differences. The forward finite difference formula for a
directional derivative is

dF

dZ
Ż ≈ F (Z + hŻ)− F (Z)

h
(33)

where Ż is in a random unit vector, and h is the step size.
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In this case, we compute the derivatives of Cl and Cd, and use coupled Krylov to
solve the coupled-adjoint equations. Table 2 lists the derivatives computed using the
coupled-adjoint method and the finite difference method. We consider eight step sizes,
from 10−1 to 10−8. Then, we choose the derivatives computed with the optimum step
hopt, which minimizes the sum of the truncation and subtractive cancellation errors [79].

The derivatives computed with the coupled-adjoint method differ from the finite
difference method with relative errors ranging from 10−4 to 10−7, which represents as
good as an agreement as can be expected, given the errors inherent in finite difference
approximations.

Table 2: Verification of coupled-adjoint gradients

Variable
Coupled adjoint

(Cl)
Finite difference

(Cl)
Rel. error

(Cl)
hopt
(Cl)

Coupled adjoint
(Cd)

Finite difference
(Cd)

Rel. error
(Cd)

hopt
(Cd)

1 −0.3660854201 −0.3660934745 2.20×10−5 10−4 0.0894652885 0.0894677565 2.76×10−5 10−4

2 0.3929952735 0.3929963426 2.72×10−6 10−3 0.0037564749 0.0037561439 −8.81×10−5 10−3

3 0.3982117282 0.3982132122 3.73×10−6 10−3 0.0028817686 0.0028816980 −2.45×10−5 10−3

4 0.6162273716 0.6162242770 −5.02×10−6 10−3 −0.0254760358 −0.0254762670 9.08×10−6 10−3

5 0.6709159055 0.6709132341 −3.98×10−6 10−3 −0.0279524925 −0.0279528039 1.11×10−5 10−3

6 0.4129534277 0.4129652340 2.86×10−5 10−4 0.0574631198 0.0574629440 −3.06×10−6 10−4

7 1.0951753415 1.0951531170 −1.84×10−6 10−2 −0.0091245450 −0.0091248230 3.05×10−5 10−3

8 1.7510676993 1.7510669323 −4.38×10−7 10−3 0.0065412416 0.0065412558 2.17×10−6 10−3

9 5.2954886067 5.2954879960 −1.15×10−7 10−4 0.0309890452 0.0309893164 8.75×10−6 10−2

10 2.9867870010 2.9867766199 −3.48×10−6 10−5 0.1700279389 0.1700284219 2.84×10−6 10−3

11 5.7235077212 5.7235064851 −2.16×10−7 10−5 0.0231841921 0.0231843302 5.96×10−6 10−3

12 1.8297703540 1.8297701544 −1.09×10−7 10−3 0.0102940232 0.0102943202 2.89×10−5 10−2

13 1.0060945300 1.0060940367 −4.90×10−7 10−3 0.0098241461 0.0098244238 2.83×10−5 10−3

14 0.5388777840 0.5388801164 4.33×10−6 10−3 0.0278680554 0.0278677631 −1.05×10−5 10−3

15 0.5306604993 0.5306670045 1.23×10−5 10−4 −0.0009847709 −0.0009838038 −9.82×10−4 10−3

16 1.0219009205 1.0219097890 8.68×10−6 10−3 −0.1138294892 −0.1138315144 1.78×10−5 10−3

17 0.4243864364 0.4243875222 2.56×10−6 10−3 0.0007118109 0.0007115004 −4.36×10−4 10−3

18 0.3803439437 0.3803407838 −8.31×10−6 10−3 0.0161730351 0.0161734646 2.66×10−5 10−3

AOA 0.1150853223 0.1150853584 3.15×10−7 10−2 0.0011165774 0.0011165577 −1.76×10−5 10−2

3.4.4 Adjoint solution performance comparison

We now compare the computational cost of the two different coupled-adjoint solution
methods. The transition prediction solution for this case takes 104.1 s using 15 proces-
sors for solving the RANS equations and one processor for solving the transition for a
total of 16 CPU cores on an Intel Xeon E5-2630 v4 at 2.2 GHz. We use the adjoint of
the Cd objective for the comparison, and we converge the adjoint residual to a relative
tolerance of 10−8. The results of are listed in Table 3, and the corresponding residual
convergence histories are shown in Fig. 7.

Table 3: Gradient computation time comparison with 19 variables

Method θ Niter Time(s)

Finite difference – – 731.0
LBGS 0.5 31 137.3
LBGS 1.0 10 49.2
Coupled Krylov – 52 42.8

The finite difference method is the most time consuming method: over 12 minutes
for 19 design variables. The computational time of LBGS varies, depending on the
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Figure 7: Coupled-adjoint convergence for different solution methods and parameters.

under-relaxation factor value. In this case, using θ = 1 is much faster than 0.5. How-
ever, the best under-relaxation factor is case dependent. The coupled-Krylov solver is
more efficient than LBGS, using 13% less time than the fastest LGBS solution. The
subspace size for the coupled-Krylov solver was set to 20.

4 Optimization Results
To demonstrate our adjoint-based optimization framework for laminar flow design, we
conduct single-point and multipoint laminar flow airfoil optimizations. Since TS waves
are dominant in low-sweep wings, we select two applications with low sweep: the Cessna
172 SP Skyhawk and the HondaJet. The first is a low-speed and low-Reynolds-number
application, whereas the second is a high subsonic speed with moderate-Reynolds-
number application. We complete both transition-based and fully turbulent optimiza-
tions for both the single- and multipoint cases to assess the impact of the transition
estimation on the optimal airfoil result.

The airfoil geometry is parameterized using FFD volumes with the pyGeo soft-
ware [78] [see footnote 9]. The FFD approach requires the user to provide a structured
volume mesh that contains airfoil geometry of the airfoil (red points in Fig. 6). The
FFD volume is represented by a trivariate B-spline, allowing the control points of this
volume to manipulate the geometry. The airfoil geometry is mapped parametrically
to the FFD B spline. Therefore, as the control points move, the embedded surface
mesh deforms according to the B-spline mapping. The FFD control points move in
the vertical direction to change the airfoil shape. Once the airfoil surface is deformed,
the volume mesh in the CFD solver is updated using the IDwarp tool (see footnote

9https://github.com/mdolab/pygeo [retrieved September, 2020]
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10), which implements a mesh-warping algorithm [80], with automatic differentiation
in forward and reverse modes [55].

All the optimizations are performed with SNOPT [81]: a gradient-based optimizer
that implements the sequential quadratic programming method. We call SNOPT
through the pyOptSparse Python interface [82].11 A feasibility tolerance of 10−6 is
reached for all optimizations in this paper, which corresponds to six digits of accuracy
for the lift coefficient. An optimality tolerance of 2.5 × 10−4 is satisfied by all results
and, for the majority of the results, it is 10−5.

4.1 Single-point Optimizations

The flow conditions are M = 0.19 and Re = 5.6 × 106, where the lift coefficient is
constrained to Cl = 0.3. This corresponds to the Cessna 172 SP Skyhawk at a typical
cruise condition. We use the RAE 2822 airfoil as the initial design. Since laminar-
to-turbulent transition is sensitive to the leading-edge geometry, we arrange the FFD
control points to have finer shape control at the leading edge, as shown in Fig. 8.
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Figure 8: FFD control points for the initial airfoil of the single-point optimization.

The optimization parameters for the single-point optimization problem are listed
in Table 4 [83]. The critical N factor for the TS waves NTScrit is set to be 9.0, since the
turbulent intensity is about 0.07% [68]. Cross-sectional area and thickness constraints
are enforced to ensure that the optimal airfoil remains practical from the structural and
manufacturing points of view. The area is constrained to not decrease relative to the
initial airfoil (S/Sinit > 1), whereas the thickness is constrained such that ty > 0.3ty init

and relative thickness constraints are enforced at 10 positions along the chord.
The initial and optimized results using both laminar-to-turbulent transition (LT)

and fully turbulent (FT) models are defined separately. For instance, FT-optimized-

10https://github.com/mdolab/idwarp [retrieved September, 2020]
11https://github.com/mdolab/pyoptsparse [retrieved, September, 2020]
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Table 4: Single-point optimization problem statement

Category Name Quantity Lower Upper Units

Objective Cd 1 – – –
Variables AOA 1 0.0 4.0 degrees

Shape 16 −0.02 0.02 m
Constraints Cl 1 0.3 0.3 –

S/Sinit 1 1.0 30 m2

ty 10 0.3ty init – m

FT means that we take the airfoil optimized using the fully turbulent model and then
analyze it with the same fully turbulent model. FT-optimized-LT is the same optimized
result, but analyzed using the transition model.

The designed geometry and corresponding pressure distribution from LT optimiza-
tion are much more beneficial for extending the laminar region. Figure 10(a) shows that
compared to the initial LT airfoil, the leading radius of the LT-optimized-LT airfoil is
reduced and the position of maximum thickness is shifted aft. As a result, the favorable
pressure gradient region (which suppresses TS wave amplification) is extended, delay-
ing the laminar-to-turbulent transition (Fig. 10(b)). The transition location moves
from 45.3% to 75.7% chord on the upper surface and from 47.9% to 73.4% chord on
the lower surface, which demonstrates the ability of the optimizer to delay transition,
and thus reduce the friction drag coefficient.

Consequently, the total drag coefficient, consisting of pressure drag coefficient and
friction drag coefficient, is significantly reduced. The difference between the optimized
and initial results is given by ∆Cd, which is shown in Table 5. The total drag coefficient
of the LT-optimized-LT is reduced by 32.468 counts (52.27%) compared with the initial
LT result (Table 5) for the LT optimization. The pressure drag coefficient reduction
is 13.385 counts (63.87%) and the friction drag coefficient reduction is 19.084 counts
(46.372%).

Table 5: Single-point optimization results

Geometry Sim. Type Cd ∆Cd Cl Cm xtr/c (upper) xtr/c (lower)
AOA

(degrees)

Initial LT 62.112 – 0.3000 −0.0742 0.453 0.479 0.4499
Initial FT 99.156 – 0.3000 −0.0702 – – 0.5975

LT-optimized LT 29.644 −32.468 0.2999 −0.0687 0.757 0.734 0.6361

FT-optimized FT 89.708 −9.448 0.2999 −0.0447 – – 1.1488
FT-optimized LT 42.553 −19.559 0.2999 −0.0481 0.579 0.555 0.9809

Transition is caused by different mechanisms for the initial-LT airfoil and the LT-
optimized-LT airfoil. We show a comparison of the N factor NTS in Fig. 11. For the
initial-LT airfoil, TS waves induce laminar-to-turbulent transition on the upper surface,
whereas on the lower surface, the critical value for TS transition is not reached. On the
lower surface, laminar separation is caused by the negative pressure gradient, which
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Figure 9: Single-point optimization comparison.
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(a) Airfoil shape comparison.

0.0 0.2 0.4 0.6 0.8 1.0
x/c

0.6

0.2

0.2

0.6

1.0

Cp

Initial-LT
LT-optimized-LT
FT-optimized-LT

(b) Pressure coefficient distribution comparison.

Figure 10: Single-point airfoils and pressure coefficient distribution results by fully
laminar-to-turbulent transition prediction: TS-induced transition (hollow circles), and
separation-induced transition (solid circles).
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Figure 11: N -factor distribution comparison.

triggers transition. The lower surface NTS curve terminates around the midchord point,
where the laminar separation is triggered. For the LT-optimized-LT result, the N factor
reaches the critical N factor at the transition point and the TS waves cause transition
on both upper and lower surfaces.

The transition location is determined by the critical position and the disturbance
amplification trend. For the LT-optimized-LT upper surface, the laminar region is
extended by both moving the critical position aft and by lowering the disturbance
amplification rate. For the LT-optimized-LT lower surface, the laminar region is ex-
tended, owing to the reduction in the disturbance amplification rate. The N -factor
results demonstrate that the optimizer successfully explores the mechanisms to sup-
press boundary layer disturbances.

The entire improvement in the FT-optimized-FT total drag coefficient comes from
the 9.448 count reduction in the pressure drag (9.53%), whereas the friction drag
coefficient increases. This is expected, since transition is not considered. Figure 10(a)
shows that the leading-edge camber of the FT optimized airfoil increases, and Fig. 12
shows that the pressure peak is increased, which reduces the pressure drag. The large
difference between the LT and FT optimization results demonstrate the importance of
considering transition in drag reduction when the flow conditions allow some laminar
flow.

To emphasize the significance of using transition modeling, we compare the initial
airfoil analyzed with and without transition (initial-LT and initial-FT, respectively),
as well as the airfoil optimized without transition analyzed with and without transition
((FT-optimized-LT and FT-optimized-FT, respectively). Compared with the initial-
FT, the total drag of the initial-LT has a lower drag by 37.044 counts (37.36%); and
pressure drag coefficient and friction drag coefficient are 6.444 counts and 30.6 counts
lower, respectively. The comparison shows the significant difference between the FT
and LT simulations. The initial-LT and initial-FT pressure coefficient distributions
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Figure 12: Single-point pressure coefficient distribution comparison by between
laminar-to-turbulent transition prediction and fully turbulent: TS-induced transition
(hollow circles), and separation-induced transition (solid circles).

(black and gray lines in Fig. 12, respectively) are similar overall, but there are some
visible differences at the trailing edge. The Cp distribution differs due to the thinner
laminar boundary layer, which results in a pressure drag coefficient that is lower by
6.444 counts. Similarly, the total drag for the FT-optimized-LT case is lower than
value of the FT-optimization-FT case by 47.155 counts (52.56%). The Cp distributions
are compared in Fig. 12. The difference in the Cp distributions is similar to the initial
results, and it results in a lower pressure drag coefficient for LT simulation.

We further motivate the use of transition modeling in optimization by comparing
LT and FT optimization with LT results (FT-optimized-LT and LT-optimized-LT).
The total drag coefficient of the FT-optimized-LT case is lower than that of the initial-
LT case by 19.559 counts (31.49%). The drag reduction of FT-optimized-LT (31.49%)
is much smaller than that of the LT-optimized-LT (52.27%). Additionally, the laminar
region extension of FT-optimized-LT is much shorter than that of LT-optimized-LT
(Table 5 and Fig. 10(b)).

The LT and FT simulations of the optimal shapes emphasize the importance of
considering transition for the simulation itself, as well as in the design optimization.

4.2 Multipoint Optimizations

Single point optimization does not yield practical results because the resulting aero-
dynamic performance is not robust with respect to the flight conditions [53]. This is
especially important when considering transition because transition is especially sensi-
tive to changes in the flight conditions. Therefore, we perform multipoint optimization
to obtain more practical designs [54].

To demonstrate multipoint optimization, we start with the case proposed by Fujino
et al. [4] as a baseline, which is inspired on the HondaJet aircraft. The flight conditions
are listed in Table 6 and plotted in M −Cl space (Fig. 13). Point 1 corresponds to the
nominal cruise condition, and Point 3 is the nominal climb condition. Two other flight
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conditions (Points 2 and 4) are used to reduce the sensitivity of the final optimized
shape to perturbations in the flight conditions. Point 4 is included to limit the minimum
negative pitching moment coefficient to −0.04 so that the trim-drag penalty at high-
altitude and high-Mach-number cruise conditions is not too severe.

Table 6: Design points and weightings for multipoint optimization [4]

Point Condition Weights Ti M Cl Reynolds number

1 Cruise 1/2 0.69 0.26 11.7× 106

2 Cruise 1/6 0.69 0.18 11.7× 106

3 Climb 1/6 0.31 0.35 13.6× 106

4 Cruise 1/6 0.70 0.38 7.93× 106
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Figure 13: The multipoint optimization flight conditions representing a four-point in
M − Cl space.

The optimization objective is the weighted sum of the drag coefficient at these
four conditions using the weight values listed in Table 6. The multipoint optimization
problem is detailed in Table 7. The area and thickness constraints are the same as for
the single-point optimizations (S/Sinit > 1 and ty > 0.3ty init). The initial geometry
(Fig. 14) has typical NLF airfoil properties with a favorable pressure coefficient dis-
tribution. The grid of multipoint case is similar to the single-point mesh. The initial
airfoil and the corresponding FFD control points are shown in Fig. 14. We use 24 con-
trol points, and the leading edge is arranged with finer control points. The TS wave
critical factor NTScrit is same with the single point and is 9.0.

As before, the results are defined by different optimization and simulation types,
such as LT-optimized-LT, FT-optimized-FT, and etc. ∆Cd in Table 8 is the difference
between the optimized and initial drag coefficients for the same flight condition.

The airfoil shape and pressure coefficient results are compared in Fig. 15 and Fig. 16.
Compared with the initial-LT results (gray lines in Fig. 16), the suction peak of LT-
optimized-LT result (red lines in Fig. 16) decreases, reducing the favorable pressure
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Table 7: Multipoint optimization problem statement

Category Name Quantity Lower Upper Units

Objective
∑N

i=1 TiCdi 1 – – –
Variables AOAi 4 degrees

Shape 24 m
Constraints Cli 4 Cli Cli –

Cmi=4
1 −0.040 0.0 –

S/Sinit 1 1.0 30 m2

ty 10 0.3ty init – m
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Figure 14: FFD control points for the initial airfoil of multipoint optimization.

gradient on the upper surface for the LT optimization results. There are two main
reasons for this change: a lower favorable pressure expands the favorable-gradient
region, which delays the pressure recovery position and allows the laminar region to
be extended in three out of four operating points; and a lower Cp peak reduces the
wave drag substantially at high Mach numbers. When shock waves are present, a less
favorable pressure gradient can reduce the shock strength and consequently wave drag
is decreased. Therefore, in this type of flow, a tradeoff between laminarization and
wave drag control must be performed; and these results represent the optimal tradeoff
for this particular case. On the lower surface, the optimized results have a much longer
favorable pressure gradient to extend the laminar region.

As a result, the LT optimization successfully reduces the drag coefficient at each
flight condition and delays transition in general, and the force and transition location
results and comparisons are shown in Table 8 and Fig. 17. For Point 1 in the LT
optimization, a 33.2% total drag coefficient reduction is achieved. The transition lo-
cation is extended from 41.3% chord to 58.3% chord on the upper surface and from
56.1% chord to 70.9% chord on the lower surface. For Point 2, we obtain a total drag
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Table 8: Multipoint optimization results

Point Geometry Sim. Type Cd ∆Cd Cl Cm
xtr/c

(upper)
xtr/c

(lower)
AOA

(degrees)

1 Initial LT 49.263 – 0.2600 −0.0497 0.413 0.583 −0.3919
Initial FT 94.614 – 0.2600 −0.0409 – – −0.1498
LT-optimized LT 32.929 −16.334 0.2599 −0.0262 0.561 0.709 −0.1981
FT-optimized FT 91.575 −3.039 0.2599 −0.0329 – – 0.9447
FT-optimized LT 56.003 6.740 0.2600 −0.0384 0.324 0.393 0.7855

2 Initial LT 60.854 – 0.1800 −0.0489 0.430 0.344 −0.9449
Initial FT 93.205 – 0.1800 −0.0400 – – −0.6393
LT-optimized LT 32.214 −28.640 0.1801 −0.0233 0.563 0.706 −0.6167
FT-optimized FT 90.257 −2.948 0.1800 −0.0335 – – 0.4778
FT-optimized LT 54.231 −6.623 0.1800 −0.0390 0.366 0.360 0.3151

3 Initial LT 47.451 – 0.3500 −0.0441 0.404 0.638 0.8559
Initial FT 89.702 – 0.3500 −0.0389 – – 1.0459
LT-optimized LT 42.926 −4.525 0.3499 −0.0244 0.375 0.730 1.1867
FT-optimized FT 87.789 −1.913 0.3499 −0.0305 – – 2.1972
FT-optimized LT 61.996 14.545 0.3499 −0.0321 0.130 0.518 2.1686

4 Initial LT 60.242 – 0.3800 −0.0514 0.473 0.618 0.2977
Initial FT 114.480 – 0.3800 −0.0398 – – 0.6496
LT-optimized LT 39.849 −20.393 0.3799 −0.0269 0.503 0.748 0.4030
FT-optimized FT 99.646 −14.834 0.3799 −0.0298 – – 1.6160
FT-optimized LT 58.803 −1.439 0.3799 −0.0366 0.308 0.476 1.4196
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Figure 15: Multipoint airfoil optimization results.
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Figure 16: Pressure coefficient distribution predicted by fully laminar-to-turbulent
transition simulation at different flight conditions: TS-induced transition (hollow cir-
cles), separation-induced transition (solid circles).
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Figure 17: Multipoint optimization: simulation comparison results by bar chart.
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reduction of 28.64 counts (47.0%). The transition location is extended from 43.0%
chord to 56.3% chord on the upper surface and from 34.4% chord to 70.6% chord on
the lower surface. For the climb case (Point 3), the LT-optimized-LT solution shows a
total drag coefficient reduction of 4.525 counts (9.5%). The laminar region is slightly
reduced from 40.4% chord to 37.5% on the upper surface, but laminar region on the
lower surface is extended from 63.8% chord to 73%. For Point 4, the shock wave is
almost removed after optimization, as shown in Fig. 16, and the transition locations
are moved aft on both the upper and lower surfaces. The total drag coefficient is re-
duced by 20.393 counts (33.85%), where the main contribution is from a pressure drag
coefficient reduction.
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Figure 18: N -factor distribution at different flight conditions. Upper and lower denote
upper and lower surfaces, respectively

The N -factor results’ comparison in Fig. 18 reveals the different transition mecha-
nisms and how the transition locations are moved fore and aft. For Point 1, laminar sep-
aration cause the transition on the upper surface for the initial-LT and LT-optimized-
LT cases. The N factor of LT-optimized-LT on upper surface is enlarged but does not
reach the critical value; as a result, the laminar separation point moves aft and the
laminar region is extended. On the lower surface, TS waves trigger the transition for
the initial-LT case, whereas laminar separation occurs for the LT-optimized-LT case.
The N factor is suppressed on the lower surface, thanks to a more favorable pressure
gradient, as shown in Fig. 16. The transition mechanism for Point 2 is same as for
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Point 1. Both the upper surface and lower surface gain longer laminar region. For
Point 3, the upper surface N factor of optimized airfoil is slightly enlarged, and the
transition location moves upstream. However, the N factor for the LT-optimized-LT
case is reduced due to a much more favorable pressure coefficient distribution on the
lower surface, as shown in Fig. 16. For Point 4, the optimized upper surface N factor
increases to the critical N -factor value at the transition point.
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Figure 19: Pressure coefficient distribution comparison between laminar-to-turbulent
transition prediction and fully turbulent at different flight conditions: TS-induced tran-
sition (hollow circles), separation-induced transition (solid circles).

We compare the LT optimization results with FT optimization results to once again
demonstrate the potential for laminar airfoil drag reduction. For the FT optimization
results, the total drag reduction is 3.039 counts (3.21%) for Point 1, 2.635 counts
(2.83%) for Point 2, 1.913 counts (2.13%) for Point 3, and 14.834 counts (12.96%) for
Point 4. For Point 4, since the FT optimization removes the shock wave, the pressure
drag coefficient is significantly reduced, as shown in the light blue line in Fig. 19. The
drag reduction for the FT optimization is much lower than that of all LT optimization
results (Fig. 17). Even for Point 4, the LT optimization reduces the pressure drag
coefficient much more than the FT optimization.

We also compare the cases for initial-LT and initial-FT, FT-optimized-LT and
FT-optimized-FT to emphasize the importance of considering transition in the CFD
simulation process. The general conclusions from this comparison are similar to the
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single-point case. The drag coefficient differences are due to a smaller boundary-layer
thickness in laminar flow compared to turbulent flow. The LT simulation results have
both lower pressure drag coefficient and lower friction drag coefficient than the FT
simulation (shown in Table 8). It is worth demonstrating that a dramatic pressure re-
covery (shock wave for Point 4) shown in Fig. 19 at a higher Mach number corresponds
to a large difference in the pressure recovery region, which is also in the transition
region.

For this multipoint optimization, the total drag of the FT-optimized-LT is even
larger than initial-LT for Point 1 and Point 3 (Table 8 and Fig. 17). The transition
locations of FT-optimized-LT solution are upstream relative to those of the initial-LT,
except for the lower surface result for Point 2. This demonstrates the importance of
considering the transition in the optimization process.

Given that the performance of the LT-optimized airfoil is improved relative to the
initial airfoil at every point, we conclude that the multipoint optimization is successful
in designing a robust NLF airfoil. Similarly to the single-point optimizations, these
multipoint optimizations show that it is important to consider laminar-to-turbulent
transition, because optimization without considering transition leads to suboptimal
results.

5 Conclusions
A methodology for natural laminar flow simulation, derivative computation, and design
optimization is presented. A simplified eN method is coupled with a RANS solver
using an intermittency function for laminar-to-turbulent transition prediction. The
eN method includes a laminar boundary-layer solution and a database method for
stability analysis. The block Gauss–Seidel method with Aitken acceleration is applied
to solve the coupled RANS-eN equations. The transition prediction tool is validated
by comparing CFD results with experimental data for the NLF(1)-0416 airfoil. All
predicted transition locations were verified to match the experimental measurement
within experimental error.

Smoothness in the design space is ensured by interpolating the intermittency func-
tion over the transition length so that the transition location varies smoothly as the
airfoil shape changes. This interpolation ensures that the transition location in the
CFD solution does not exhibit abrupt changes between the discrete mesh points, mak-
ing it amenable to gradient-based optimization.

The derivatives considering the transition modeling are computed by solving the
coupled-adjoint for the RANS-eN equations. Reverse AD is used to generate the code
that computes the required partial derivatives. Two methods are used for solving
the coupled-adjoint system: a linear block Gauss–Seidel method, and a fully coupled-
Krylov method. The coupled-Krylov method method is 13% faster than the linear
block Gauss–Seidel method. The derivative computation time for one objective with
respect to 19 design variables is about 41.1% of the flow solution cost. The computed
coupled derivatives are verified using two approaches: the dot-product test, and the
finite difference method. Since all of the augmented subroutines agree to machine
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precision for the dot-product tests, the AD code is consistent. A good agreement with
finite difference derivative approximations is demonstrated for the derivatives, with an
agreement of five digits or more. Therefore, the coupled-adjoint-based system is shown
to be accurate and efficient.

The developed methodology is used to perform the gradient-based shape optimiza-
tion of an airfoil for both the laminar-to-turbulent transition case and for the fully-
turbulent case. The single-point laminar airfoil optimization reduces the drag coeffi-
cient by 52.27%, owing to an extension of the laminar region to 75.7% chord on the
upper surface and 73.4% chord on the lower surface. The multipoint laminar opti-
mization at transonic conditions successfully trades friction drag and pressure drag,
extending the transition locations and reducing the shock wave drag. As a result, we
achieve a drag coefficient reductions of 33.2% at Cl = 0.26, 47.0% at Cl = 0.18, 9.5%
at Cl = 0.35, and 33.85% at Cl = 0.38, demonstrating a more practical design.

These applications demonstrate the practicality of CFD adjoint-based aerodynamic
optimization as a useful NLF design tool and highlight the benefits of laminar drag
reduction. With the same optimization problem, the fully turbulent case yields signif-
icantly lower reductions than the ones achieved in the laminar transition case (9.53%
drag reduction for the single-point optimization; and a reductions of 3.21% at Cl = 0.26,
2.83% at Cl = 0.18, 2.13% at Cl = 0.35, and 12.96% at Cl = 0.38 for the multipoint
case). These results stress the significant advantages of NLF airfoil for drag reduction.
Also, the laminar-to-turbulent transition simulation results of the fully-turbulent air-
foil, which are closer to the real physics compared with fully turbulent results, show that
the airfoil optimized assuming fully turbulent flow produced even higher drag than the
initial airfoil when simulated considering laminar-to-turbulent transition. This high-
lights the importance of considering transition when optimizing in the relevant flow
regimes.
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