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Abstract A comparison of algorithms for multidisciplinary design optimization
(MDO) is performed with the aid of a new software framework. This framework,
pyMDO, was developed in Python and is shown to be an excellent platform for com-
paring the performance of the various MDO methods. pyMDO eliminates the need
for reformulation when solving a given problem using different MDO methods: once
a problem has been described, it can automatically be cast into any method. In addi-
tion, the modular design of pyMDO allows rapid development and benchmarking of
new methods. Results generated from this study provide a strong foundation for iden-
tifying the performance trends of various methods with several types of problems.

Keywords Multidisciplinary design optimization · Decomposition algorithms ·
Nonlinear programming · Sensitivity analysis

1 Introduction

Multidisciplinary design optimization (MDO) is a growing field of research with a
wide range of applications. When optimizing engineering systems that involve mul-
tiple disciplines, it is well known that strategies such as sequential optimization are
often not able to find the true optimum of the system. Thus it is important that in-
terdisciplinary interactions be accounted for properly, both in the simulation of the
coupled systems and the optimization. Only by considering these interactions during
the optimization process can the true optimum of the coupled system be determined.

As research on MDO has matured, the number of methods available to solve a
given problem has increased. These methods can be divided into two classes: mono-
lithic formulations and multilevel formulations. Monolithic formulations, which in-
clude the multidisciplinary design feasible (MDF) and the simultaneous analysis and
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design (SAND) approaches, use a single system-level optimizer for the whole prob-
lem. These approaches tend to be the most straightforward to implement for small
problems, but can scale poorly with large problems and many disciplines. Addition-
ally, the structure of these formulations is such that they may not adapt well to an
industrial design setting, where groups in charge of each discipline may work largely
independently of one another. Multilevel methods such as collaborative optimization
(CO) (Braun and Kroo 1997), concurrent subspace optimization (CSSO) (Wujek et
al. 1997), and bilevel integrated systems synthesis (BLISS) (Sobieszczanski-Sobieski
et al. 2003) use subspace optimizations to promote discipline autonomy. The system-
level optimizer is then responsible for managing the interactions between the dis-
cipline optimizations. This approach mimics an industrial setting more closely and
allows each disciplinary subgroup to work in relative isolation based on design tar-
gets provided by the system-level optimizer.

With the various MDO methods available, how does one decide which one to use
for a given MDO problem? Typically the selection of an MDO method is done in an
ad hoc manner, since few benchmarking studies are available to make an informed
decision (Alexandrov and Kodiyalam 1998). Results from various studies have shown
that the performance of a method can be dependent on its implementation, the char-
acteristics of the problem being solved, and the optimizer employed (Alexandrov and
Kodiyalam 1998; Brown and Olds 2006; Perez et al. 2004). Furthermore, for some
problems, specific methods may either fail to return an optimum, or may not be suited
to implementation (Brown and Olds 2006). Additionally, comparing results between
studies can be difficult as the performance of an MDO method can depend on specific
implementation details.

Furthermore, after selecting an MDO method, it can be difficult to determine its
proper or most efficient implementation. In the case of collaborative optimization,
there are at least four major variants (Alexandrov and Lewis 2002; Sobieski and Kroo
2000; Braun et al. 1996; Braun and Kroo 1997). Though many of the implementations
have been used to solve specific problems, there has been no study that thoroughly
tested each implementation in a statistically significant manner. Therefore, it is left
to the practitioner to search through the literature in an attempt to find an implemen-
tation that may work well for their particular problem.

pyMDO—the software used in this study—addresses a number of issues (Martins
et al. 2008). The main goal is to create a framework that allows the testing of many
MDO problems in an efficient manner to facilitate the benchmarking of MDO meth-
ods and the development of new ones. By removing the need to manually implement
the various MDO methods for each problem, comparisons using pyMDO can focus
on quantitative metrics such as the number of function evaluations, optimal variable
accuracy, and convergence rate.

In this paper, the computational performance of MDF, IDF, SAND, CO, and CSSO
are compared by solving a suite of four MDO problems. BLISS is not benchmarked
in this paper, as it requires coupled sensitivities. The automatic implementation of
this computation is rather involved and is the subject of ongoing research. The ef-
fect of the sensitivity accuracies on the performance of each MDO method is also
investigated. The description of the each MDO method is followed by an overview
of the pyMDO framework. We then present the problem suite and the corresponding
benchmarking results.
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2 Multidisciplinary systems

A defining characteristic of MDO problems is the existence of two or more design
disciplines. Each discipline is given design authority over part of the system and is
responsible for solving a set of governing equations to find the state variables given
an appropriate set of inputs. Disciplines require not only design variables, but also
information related to the state of other disciplines in the problem. This relationship
between the inputs of one discipline and the outputs of another results in a coupled
system.

Traditionally, the coupled multidisciplinary system has been solved through the
use of block-iterative methods. Each discipline is provided with a set of design vari-
ables and disciplinary inputs (non-local coupling variables) and is responsible for
generating a set of discipline feasible states and outputs (local coupling variables) by
solving the required governing equations. The solution of the coupled system can be
represented as,

Ri (z, xi, yj ) = 0, i = 1, . . . ,N, (1)

where i denotes the discipline, j �= i and N is the total number of disciplines in the
problem. In MDO problems, the design variables can be subdivided based on their
effect on various disciplines. Design variables required to solve only the governing
equations of one discipline are considered local to that discipline. Design variables
local to discipline i are denoted by xi in (1). Design variables that affect two or more
disciplines are considered global. These are denoted by z in the above equation.

Each discipline i generates feasible states (yi ) by solving a series of governing
equations (Ri ) given an appropriate set of inputs (z, xi, yj ). These governing equa-
tions (1) can be seen as equality constraints.

The set of discipline governing equations are solved in succession until the change
in the coupling variable sets over successive iterations is within a specified tolerance.
This multidisciplinary convergence criterion can be stated as,

ym+1
i = ym

i , i = 1, . . . ,N, (2)

where ym
i represents the value of discipline i’s coupling variables after m iterations.

MDO methods are defined by how they transform a multidisciplinary problem into
one or a series of optimization problems. We will now describe these methods.

3 MDO architectures

MDO methods transform the multidisciplinary problem into either a single problem
or a series of optimization problems that can be solved through the use of standard
numerical optimization algorithms. There are a wide variety of different methods,
each of which formulates the given problem in a different manner. Each method has
its advantages and disadvantages and their performance is very much problem de-
pendent. A variety of metrics can be used to classify MDO problems. Some of these
include the number of design variables, the ratio between global and local design
variables, the number of coupling variables, and the number of disciplines. This list
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is by no means exhaustive, but covers only some of the more important aspects of
MDO problems that must be examined prior to the selection of an MDO method. In
this section we describe the various methods.

3.1 Multidisciplinary feasible

The multidisciplinary feasible (MDF) method is the traditional MDO approach and
it involves solving a single optimization problem that calls a multidisciplinary analy-
sis (MDA) when objective or constraint values are required. The MDA solves the
governing equations for all disciplines. The MDA module takes the design variables
solves all governing equations until the coupling variables have converged. The val-
ues of the objective and constraints can then computed (Cramer et al. 1994).

By requiring the solution of the MDA at each design point, MDF ensures that each
optimization iteration is multidisciplinary feasible. This is a very desirable property,
since if the optimization is terminated prematurely, a physically realizable design
point is at hand.

The effort required to implement MDF for a given problem is directly related
to the effort required to build an appropriate MDA module. General iterative ap-
proaches, such as block Gauss–Seidel iteration, can be used in most situations, but
do not always converge. The use of under-relaxation can help to improve the conver-
gence properties, but it is not always effective. Another shortcoming of block-iterative
schemes is that they are much less efficient than fully integrated MDA solvers. For
example, in a problem where all the discipline analyses are linear, Newton solvers
are computationally much more efficient than other iterative solvers.

Depending on the sensitivity analysis method employed, the use of gradient-based
optimizers with MDF can result in poor performance. If either a finite difference or
complex-step method (Martins et al. 2003) is used to calculate the sensitivities of the
objective and constraints with respect to the design variables, an MDA must be solved
for each component of the sensitivity. Since generating solutions to the MDA can be
costly, performing even one complete sensitivity analysis can be prohibitively expen-
sive with these methods. Semi-analytic sensitivity analysis methods should therefore
be used whenever possible in order to reduce the total number of calls to the MDA
module (Martins et al. 2005).

Another drawback of MDF is that there is little opportunity for parallel computa-
tion outside the MDA module. This can increase the computational cost of the method
when compared to decoupled approaches that take advantage of parallel computa-
tions.

MDF can be mathematically stated as,

minimize: f (z, x, y (x, z))

w.r.t.: z, x

s.t.: c (z, x, y (x, z)) ≤ 0,

(3)

where x represents the complete set of local design variables and y all the discipline
coupling variables determined by the solution of the MDA. The constraints, c, can
also be divided into local and global constraints.
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Note that in the mathematical description of the methods, the dependence of the
coupling variables of discipline i (yi ) on the its own state variables (ui ) is omitted.
In general, coupling variables for discipline i depend on the design variables z and
xi as well as the state variables ui . The state variables are obtained from the solution
of the discipline analysis represented by Ri (z, x, yj ) = 0, where yj are the non-
local coupling variables. Therefore, in the most general case the calculation of a the
coupling variables for discipline i should be written as yi = yi(z, x, yj , ui(z, x, yj )).

3.2 Individual discipline feasible

The individual discipline feasible (IDF) method (Cramer et al. 1994) is a decou-
pled version of MDF. Instead of enforcing multidisciplinary feasibility at each design
point, IDF only enforces discipline feasibility. That is, at each optimization iteration,
the governing equations (1) for each discipline are satisfied, but a multidisciplinary
feasible solution may not have been realized. Therefore, if the optimization fails or
is stopped prematurely, each discipline will have a realizable design, but the system
design as a whole will likely be infeasible as the coupling variables (y) may not have
converged according to the criterion (2).

To decouple the discipline analyses so that they no longer rely on one another for
their coupling variable inputs, IDF adds the coupling variables to the set of design
variables. The optimizer then provides each discipline with both design variables
and an estimate of the coupling variables. To ensure that a multidisciplinary feasible
solution is achieved at the optimum, one additional feasibility constraint is added to
the optimization problem for each coupling variable. These constraints ensure that
at the optimum, the estimate of the coupling variables matches the actual coupling
variables computed by each discipline.

IDF can be stated as,

minimize: f (z, x, yt )

w.r.t.: z, x, yt

s.t.: c(z, x, y(x, yt , z)) ≤ 0

yt
i − yi

(
x, yt

j , z
) = 0,

(4)

where yt represents the coupling variables estimates (or targets) provided by the op-
timizer, yi are the coupling variable outputs of discipline i given the estimate of the
non-local coupling variables yt

j .
For a given set of design variables each discipline finds their respective local states

by solving their governing equations, Ri (z, x, yt
j ) = 0. Since these discipline gov-

erning equations are now uncoupled they can be solved in parallel, which can greatly
increase the overall performance of the method. Additionally, the uncoupled nature
of IDF requires that each discipline analysis be solved only once per design point.
As discipline evaluations can be time consuming, an objective evaluation in IDF is
much less costly than an evaluation in MDF. IDF is also more robust than methods
involving an MDA, as obtaining an MDA solution can sometimes be problematic.

As with MDF, if a gradient-based optimizer is employed it is recommended that
semi-analytic sensitivity analysis methods be used whenever possible. Since IDF in-
creases both the number of design variables and the number of constraints, the cost of
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sensitivity analysis per design point can very large if finite differences or the complex-
step method are used. Unfortunately, no efficient semi-analytic method exists that
efficiently computes the sensitivities of a large number of functions of interest with
respect to an equally large number of variables. Thus for problems with a large num-
ber of both coupling variables and constraints, the cost of performing the sensitivity
analysis needed for IDF can be prohibitive.

Therefore, it is preferable to use IDF with problems that exhibit a low bandwidth
of coupling in order minimize the number of coupling variables and constraints that
must be added to the optimization. Techniques such as aggregation can also be used
in some problems to reduce the total number of coupling variables.

3.3 Simultaneous analysis and design

Simultaneous analysis and design (SAND) decomposes the multidisciplinary prob-
lem a step further than IDF by relaxing the requirement of discipline feasibility at
each optimization iteration (Cramer et al. 1994). In this case, the optimizer is as-
signed with the task of solving the governing equations and the optimization problem
simultaneously.

This is accomplished by treating the residuals of the discipline analyses (1) as
equality constraints in the optimization problem. Conventional nonlinear program-
ming experience suggests that optimal solutions can be found at a lower expense
than other MDO methods. It should be noted that for small problems where the state
variable set is identical to the coupling variable set, SAND is equivalent to IDF.

SAND can be stated as,

minimize: f (z, x, y(z, x,u))

w.r.t.: z, x,u

s.t.: c(z, x, y(z, x,u)) ≤ 0

R(z, x, y(z, x,u),u) = 0,

(5)

where R(z, x, y(z, x,u),u) represents the residuals of the governing equations for
all disciplines.

In this method, the state variables (u) for each discipline are added to the set of de-
sign variables. At each iteration, the state variables are used to compute the coupling
variables necessary to evaluate the objective and the constrains. The residuals of each
discipline are then evaluated to provide the values for the residual constraints.

Since the governing equations are not necessarily satisfied until the optimization
problem is solved, discipline feasibility is not generally attained at intermediate de-
sign points. Therefore, if the optimization interrupted, the resulting design might not
be physically realizable. Note that SAND does away with the governing equations
solver for each discipline, but needs a function that computes the residuals of the
governing equations. This is not always possible for compiled proprietary software
and SAND cannot be implemented when that is the case.

The SAND method can drastically increase the dimensionality of the optimization
problem. The cost of the sensitivity analyses required for gradient-based optimization
can be prohibitive because the sensitivity matrix of residuals with respect to states
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is square. As with IDF, even with an inexpensive analysis (in this case a residual
evaluation) the calculation of sensitivities for problems with a large number of state
variables can become prohibitive.

3.4 Collaborative optimization

Collaborative optimization (CO) was first proposed by Braun and Kroo (1997) and is
the first of the bilevel methods described herein. CO is designed to provide discipline
autonomy, while enforcing interdisciplinary compatibility. The optimization problem
is decomposed into a number of independent optimization subproblems, each corre-
sponding to one discipline. Each discipline optimization is given control over its local
design variables and is responsible for satisfying its local constraints. Discipline fea-
sibility is maintained throughout the system-level optimization process since the dis-
cipline optimizations are responsible for generating discipline feasible solutions for
each system-level iteration. The introduction of compatibility constraints at the sys-
tem level ensures that multidisciplinary feasibility is achieved when the system-level
optimization problem has converged.

The CO system-level problem can be written as,

minimize: f (z, y, xobj)

w.r.t.: z, y, xobj

s.t.: J ∗
i = 0, i = 1, . . . ,N

(6)

where J ∗
i is a measure of the interdisciplinary compatibility of each discipline and is

given by the solution of the following optimization problem for each discipline i,

minimize: Ji =
∑

(zi − zt
i )

2 +
∑

(xiobj − xt
iobj

)2

+
∑

(yi − yt
i )

2 +
∑

(yji
− yt

ji
)2

w.r.t.: zi, xi, yji

s.t.: c(xi, zi, yi(xi, yji
, zi)) ≤ 0

(7)

where superscript t represents system-level target values that are held constant
throughout the discipline optimizations.

The design variables at the system level consist of global design variables, cou-
pling variables, and any local design variables that explicitly affect the objective
(xobj). The system-level constraints consist of the global constraints and one com-
patibility constraint per discipline. There are a few variants of CO and each uses a
slightly different form of the compatibility constraints. In the present framework, the
CO2 variant proposed by Alexandrov and Lewis (1999) is used with the following
compatibility constraints,

Ji =
∑

(z∗
i − zt

i )
2 +

∑
(y∗

i − yt
i )

2 +
∑

(y∗
ji

− yt
ji
)2 +

∑
(x∗

iobj
− xt

iobj
)2. (8)
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Each discipline optimization minimizes the discrepancy between the system-level
target variables and the corresponding discipline variables. The design variables con-
sist of all variables required by the discipline, including global and local design vari-
ables, as well as non-local coupling variables. Only constraints depending on either
the local design variables or local coupling variables are imposed by the discipline
optimizers.

Ideally, a semi-analytic sensitivity analysis method should be used when the opti-
mizer requires gradients. However, because the number of design variables and con-
straints has been reduced relative to the original problem, the use of either finite
differences or the complex-step method may be acceptable.

At the system level, the choice of sensitivity analysis method significantly affects
the performance of the method as a whole. Since each system-level constraint con-
sists of multiple discipline optimizations, it is desirable to minimize the number of
constraint evaluations. To this end, the post-optimal sensitivities of J ∗ can be com-
puted as suggested by Braun et al. (1993),

dJ

dxs

= ∂J

∂xs

+ λi

∂ci

∂xs

, (9)

where xs ≡ (z, y, xobj) is the set of system-level optimization variables, and λi rep-
resents the Lagrange multipliers associated with discipline-level constraint, ci . In the
particular formulation of CO we used, no system-level variables have an effect on the
discipline constraints. Therefore, the second term in the post-optimality equation is
zero, leaving only the term that depends on the objective.

One of the major advantages of CO over monolithic approaches is that it mimics
the organization of large industrial design groups, which are typically divided into
different discipline design groups. The chief designer can be regarded as the system-
level optimizer. The relative autonomy of each discipline allows each subproblem to
be solved in parallel.

From the system-level perspective, it is largely irrelevant which optimization al-
gorithms are used to solve the discipline subproblems, as long as the values of the
compatibility constraint, the optimal design point, and sensitivities are provided.

In spite of these advantages, CO is not without its drawbacks. As the number
of coupling variables increases, the dimensionality of the system-level problem in-
creases, as does the number of variables involved in the calculation of the system-
level compatibility constraints. Therefore, CO tends to be most effective in problems
with few coupling variables.

Due to the form of the quadratic penalty function, CO exhibits a singular Jacobian
matrix of the system-level compatibility constraints at the optimum (DeMiguel and
Murray 2000, 2006). Because the value of the compatibility constraints and their gra-
dients are both zero at solutions, the optima returned by CO are irregular optimiza-
tion points. This causes the Lagrange multipliers associated with the compatibility
constraints to tend to zero, resulting in numerical problems that adversely affect con-
vergence when using gradient-based optimizers. The existence of multiple subspace
solution regions can also produce inaccuracies in the system-level Jacobian (Braun et
al. 1996) and further hinder convergence. Sobieski and Kroo (2000) suggested using
response surfaces to model the discipline optimizations as a solution to some of the
system-level convergence difficulties.
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3.5 Concurrent subspace optimization

Concurrent subspace optimization (CSSO) (Sobieszczanski-Sobieski 1988; Wujek et
al. 1997) is a bilevel, non-hierarchic method. In the variant used herein, a quadratic
response surface is used to provide non-local information to each discipline subspace
optimization, as proposed by Sellar et al. (1996). The response surface is initialized
by completing an MDA at a predetermined number of design points. This allows it to
provide an estimate of each discipline’s state variables for any set of design variables.

The CSSO system-level optimization problem can be stated as,

minimize: f (z, x, ỹ)

w.r.t.: z, x

s.t.: c(z, x, ỹ) ≤ 0,

(10)

where ỹ represents the coupling variables given by the response surface approxima-
tion. The CSSO subspace optimization problem is as follows,

minimize: f (zi, z0, xi, x0, yi(zi, z0, xi, x0, ỹj ), ỹj )

w.r.t.: zi, xi

s.t.: c(zi, z0, xi, x0, yi(zi, z0, xi, x0, ỹj ), ỹj ) ≤ 0,

(11)

where zi represents the global variables assigned to discipline i, respectively; z0 and
x0 represent the set variables held constant through the subspace optimization; and
ỹj represents the non-local coupling variables obtained from the response surface
approximation.

Since we use quadratic response surfaces, the number of function calls needed
for the initialization is proportional to the number of design variables squared. Each
function call requires a solution of the MDA, so this can quickly become too costly
and limit the viability of CSSO to problems with more than 20 design variables. The
use of parallel computing, adaptive response surfaces, or sensitivities can assist in
decreasing this cost, but for problems with thousands of variables CSSO may still
prove to be impractical unless a more efficient approximation method is used.

Another shortcoming of quadratic response surfaces is that its Hessian can be
negative definite, in which case the function has no minimum. This can be prevented
by using a trust region approach, which limits the movements in the design space at
each iteration.

The system-level optimizer is responsible for satisfying all of the constraints in the
problem, both global and local. Since each objective and constraint evaluation con-
sists in querying the response surface for the state variables, the system optimization
is solved very quickly. The impact of using inefficient sensitivity analysis methods is
minimal, since the cost of retrieving response surface points is very low.

Design variables are assigned to whichever discipline subspace they exert the most
influence over. For example, a global variable that affects one discipline linearly and
another quadratically would be assigned to the discipline it affects quadratically.

Each subspace optimization problem uses the response surface to gather non-local
state information with local discipline analyses performed to generate local state in-
formation. As with the system-level problem, each subspace optimization must also
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satisfy the global and local constraints. Any design variable not included in a sub-
space is held constant throughout the discipline optimization process.

The efficiency of CSSO is directly dependent on the cost of producing the response
surfaces. Thus it is paramount that the initial bounds for the response surface be
chosen so that the surfaces need to be regenerated as few times as possible. If this
can be done and the dimensionality of the problem is such that the surface can be
initialized at a reasonable cost, CSSO is a competitive method.

4 Framework description

pyMDO was developed primarily to provide a platform where various MDO meth-
ods can be easily and consistently compared for a large set of problems. The primary
means for accomplishing this is the elimination of problem reformulation when solv-
ing a given multidisciplinary problem in different methods. Since each MDO method
produces a different set of optimization problems for a given multidisciplinary prob-
lem, researchers traditionally have had to create each of these sets of optimization
problems manually.

pyMDO was programmed in Python (Langtangen 2004), which allows it to inter-
face with analysis and optimization codes not only in Python, but more importantly
in Fortran, C and C++ (Martins et al. 2008).

Object-oriented practices, such as inheritance, are used to carry forward common
attributes from the optimization problem formulation to the multidisciplinary prob-
lem formulation and finally method-specific problem formulation. This makes it eas-
ier to implement, maintain and develop the various MDO methods.

Once a problem has been described in the standard form, users can select the
desired MDO method using a command line option. pyMDO then casts the multidis-
ciplinary problem into its method-specific form and creates one or more discipline
optimization problems. Figure 1 shows how object-oriented programming automat-
ically implements of each method. The optimization problem class, for example is
used multiple times and in some cases it is partially changed using inheritance and
overloading to adapt it to the appropriate role. For this work, the numerical optimizer
used in the optimization problem class is SNOPT (Gill et al. 2002). A more complete
description of pyMDO has been published in another article (Martins et al. 2008).

A simple example of how to describe a problem is shown in Fig. 2. This Python
source code corresponds to the problem described in Sect. 5.1. Note that for brevity,
only one of the two disciplines is defined.

5 Evaluation

To perform a comprehensive evaluation of the various MDO methods, it is desirable
to test them on numerous problems with varying characteristics. In this evaluation we
solve four MDO problems, the last of which is scalable.
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5.1 Analytic problem

This problem has been previously solved by Sellar et al. (1996) and was selected as
a first test case due to its simplicity. Although is has low dimensionality, the problem
exhibits characteristics of larger MDO problems and allowed each of the method
implementations to be verified prior to further testing.

The optimization problem is defined as follows:

minimize: x2
1 + x2 + y1 + e−y2

w.r.t.: z1, x1, x2

s.t.: 1 − y1/3.16 ≤ 0

y2/24 − 1 ≤ 0

−10 ≤ z1 ≤ 10

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10.

(12)

Discipline 1 is given by,

y1(z1, x1, x2, y2) = z2
1 + x1 + x2 − 0.2y2, (13)

and Discipline 2 by,

y2(z1, x2, y1) = √
y1 + z1 + x2. (14)

The global optimum of this problem is located at (z1, x1, x2) = (1.9776,0,0) and has
an objective value of 3.18339. The constraint in Discipline 1’s constraint is active at
the optimum.

Each of the two disciplines has one state variable. Each of these state variables is
also a coupling variable. There are two global design variables and an additional local
design variable in Discipline 1. The coupling between the two disciplines is nonlinear
and each discipline has a local constraint associated with its state.

This problem was solved successfully using all five methods from a number of
starting points. Under-relaxation was not required to converge the MDA. Response
surface limits were initialized to the upper and lower bounds of the design variables.
The convergence tolerance for the MDA module was set to 10−15. All of SNOPT’s
parameters were left at their default values and therefore the optimality conditions
were satisfied to a tolerance of 10−6.

Table 1 presents the computational performance of each of the methods start-
ing from (z1, x1, x2) = (1,5,2) using both finite differences and the complex-step
method (Martins et al. 2003) to compute the necessary sensitivities. A step of 10−8

was used for the finite-differences and the value for the complex-step method was
10−20.

Since an analytic solution can be obtained for this problem, the optimum returned
by the optimizer was compared to the exact one. The comparison was made using an
l2-norm of the difference between the optimal design variables and their correspond-
ing exact values, i.e.,

errorx = ‖x − xexact‖2 . (15)
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Fig. 2 Python source code for the analytic problem (12)
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Table 1 Analytic
computational performance

*Indicates residual evaluations

Architecture Finite difference Complex step

Discipline 1 Discipline 2 Discipline 1 Discipline 2

MDF 346 346 238 238

IDF 61 61 55 55

SAND 1 + 57* 1 + 57* 1 + 49* 1 + 49*

CO 1291 729 1079 587

CSSO 1250 1188 1210 1148

Table 2 l2-norm of absolute
error in optimal design variables

Architecture Finite difference Complex step

MDF 1.1515 × 10−6 1.1506 × 10−6

IDF 2.0827 × 10−9 2.0803 × 10−9

SAND 7.1353 × 10−7 7.1356 × 10−7

CO 6.1643 × 10−6 7.3389 × 10−6

CSSO 7.1386 × 10−6 3.9559 × 10−6

Table 2 shows the error for the various methods, which is within the specified
tolerance for all cases.

To compare convergence histories, we used the relative error of the objective func-
tion value,

εf =
∣∣∣∣
f − fexact

fexact

∣∣∣∣ . (16)

The convergence histories for the various methods are shown in Fig. 3. For MDF,
IDF, SAND, and CO methods, times were recorded for each objective function call
by the system-level optimizer. For CSSO, the time was recorded at the beginning of
each system-level iteration and before and after each response surface generation.
Flat sections in the convergence history of CSSO represent the time taken to generate
(or regenerate) the response surface. A number of runs were completed with each
method to ensure that the execution time profile of each method was accurate.

Note that as the overall convergence trends were identical for both the finite differ-
ence and complex-step methods, only convergence results from the finite-difference
method are presented.

5.2 Speed reducer problem

This problem was adapted from the NASA MDO test suite (Alexandrov and
Kodiyalam 1998; Padula et al. 1996; Kodiyalam 1998) and represents the design
of a gearbox. The objective is to minimize the weight of the gearbox subject to a
number of design constraints. Since the problem was originally solved as a single-
discipline optimization problem, an MDO problem was created by splitting up the
single discipline problem. The variable names were changed to be consistent with
the conventions used in this article. The values for the constants (C) are listed in
Table 3.
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Fig. 3 Analytic problem convergence history

The speed reducer optimization problem is as follows,

minimize: C1y1z
2
1

(
C2z

2
2 + C3z2 − C4

) − C5
(
y2

2 + y2
3

)
y1

+C6
(
y3

2 + y3
3

) + C1
(
x21y

2
2 + x31y

2
3

)

w.r.t.: z1, z2, x21, x31

s.t.: 1 − z1x3/C7 ≥ 0

0.7 ≤ z1 ≤ 0.8

17 ≤ z2 ≤ 28

7.3 ≤ x21 ≤ 8.3

7.3 ≤ x31 ≤ 8.3.

(17)

Discipline 1 returns y1, which is computed as follows,

find: y1(z1, z2) = max(g1, g2, g3, g4)

s.t.: 1 − x1/(C8z1) ≥ 0

1 − x1/C9 ≥ 0,

(18)

where,

g1 = C10/(z
2
1z2), g2 = C11/(z

2
1z

2
2), (19)

g3 = C12z1, g4 = C13. (20)
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Table 3 Constants for the
speed reducer problem C1 0.7854 C15 1.5

C2 3.3333 C16 1.9

C3 14.9334 C17 1.93

C4 43.0934 C18 1100

C5 1.5079 C19 0.1

C6 7.477 C20 1.69 × 107

C7 40 C21 745

C8 12 C22 2.9

C9 3.6 C23 5.5

C10 27 C24 1.1

C11 397.5 C25 1.93

C12 5 C26 850

C13 2.6 C27 1.575 × 108

C14 3.9 C28 5

Discipline 2 solves the following problem,

find: y2(z1, z2, x21) = max(g5, g6, g7)

s.t.: 1 − y2/C14 ≥ 0

1 − y2C15C16/x21 ≥ 0,

(21)

where,

g5 = (
C17x

3
21/z1z2

)1/4
, (22)

g6 =
(

1/C28C19

√
C2

20x
2
21/(z

2
1z

2
2) + C21

)1/3

, (23)

g7 = C22. (24)

Discipline 3 is defined as,

find: y3(z1, z2, x31) = max(g8, g9, g10)

s.t.: 1 − y3/C23 ≥ 0

1 − y3C24C16/x31 ≥ 0,

(25)

where,

g8 = (
C25x

3
31/z1z2

)1/4
, (26)

g9 =
(

1/(C26C19)

√
C2

20x
2
31/z

2
1z

2
2 + C27

)1/3

, (27)

g10 = C28. (28)

The optimum is at (z1, z2, x21, x31) = (0.7,17,7.3,7.7153199), where the objective
value is 2994.355026.
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Table 4 Function calls for the
speed reducer problem

*Indicates residual evaluations

Architecture Finite difference Complex step

Disc. 1 Disc. 2 Disc. 3 Disc. 1 Disc. 2 Disc. 3

MDF 132 132 132 120 120 120

IDF 56 56 56 50 50 50

SAND 1 + 55* 1 + 55* 1 + 49* 1 + 49* 1 + 49* 1 + 49*

CO 2730 4342 3852 1730 3186 2698

CSSO 116 90 102 102 80 88

Table 5 l2-norm of absolute
error in optimal design variables

Architecture Finite difference Complex step

MDF 1.0377 × 10−5 1.0378 × 10−5

IDF 2.6167 × 10−6 2.6172 × 10−6

SAND 2.6170 × 10−6 2.6164 × 10−6

CO 3.7643 × 10−4 9.6707 × 10−4

CSSO 2.6036 × 10−7 2.6004 × 10−7

Like the analytic problem, the speed reducer problem was solved successfully
using all five methods from various starting points. Under-relaxation was not required
to converge the MDA and response surface limits were initialized to the upper and
lower bounds of the design variables. All other optimization parameters are the same
used in the analytic problem. Table 4 presents the computational performance of each
of the methods starting from (z1, z2, x21, x31) = (0.75,22,7.8,8.3) with both finite
differences and the complex-step method used to compute the sensitivities.

As with the analytic problem, the exact solution of the speed reducer problem was
computed. Table 5 shows the l2-norm of the difference between the optimal design
variables and the exact values for each of the methods. The rate of convergence of the
objective function for the complex-step case is shown in Fig. 4.

As can be seen from Tables 4 and 5, CO performs substantially worse than any
of the other methods in solving this problem. This is related to the current CO im-
plementation, where the system level and discipline level optimizations attempt to
adjust a single value in opposite directions. This drastically slows the convergence
rate of the objective as well as increasing the number of function evaluations. It also
contributes to the lower resolution on the optimal variable sets returned by CO with
this problem.

Two other trends are important to note with this problem. The first is that number
of function evaluations saved by using the complex-step method in this case is much
smaller than similar gains made with the analytic problem. Comparing the gains made
with the MDF method, the speed reducer shows only a 10% reduction in the function
calls made to each discipline, whereas in the analytic problem the reduction was 33%.
This shows that although more accurate sensitivities can provide gains in some cases,
the reduction in function evaluations that can be achieved is problem dependent.

The second important trend is the outstanding performance of CSSO in solving
this problem. This can be attributed to the fact that each of the design variables has
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Fig. 4 Speed reducer convergence history

strictly defined limits and that the governing equations are well-behaved over the
entire design space. Therefore, the initial response surface is able to model the MDA
accurately throughout the entire design space and no response surface regeneration is
required.

5.3 Combustion of propane problem

This problem was also taken from the NASA MDO test suite and represents the
chemical equilibrium reached during the combustion of propane in air. Variables are
assigned to represent each of the ten combustion products as well as the sum of the
products.

In the conventional solution method, eleven nonlinear equations must be solved
simultaneously with eight constants representing the pressure (p = 40), air to fuel
ratio (R = 10), and six empirical constants (K5,K6,K7,K9 = 1, and K8,K10 = 0.1).
To obtain an MDO problem, the equations are divided into three disciplines such
that coupling exists between the disciplines and the evaluation of the system level
objective and constraints require the solution of the coupled system of equations.

The optimization problem is as follows,

minimize: f2 + f6 + f7 + f9

w.r.t.: x1, x3, x6, x7

s.t.: f2(x) ≥ 0, f6(x) ≥ 0

f7(x) ≥ 0, f9(x) ≥ 0

with: x1 ≥ 0, x3 ≥ 0

x6 ≥ 0, x7 ≥ 0,

(29)
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where,

f2(x) = 2x1 + x2 + x4 + x7 + x8 + x9 + 2x10 − R, (30)

f6(x) = K6x
1/2
2 x

1/2
4 − x

1/2
1 x6 (p/x11)

1/2 , (31)

f7(x) = K7x
1/2
1 x

1/2
2 − x

1/2
4 x7 (p/x11)

1/2 , (32)

f9(x) = K9x1x
1/2
3 − x4x9 (p/x11)

1/2 . (33)

Discipline 1 computes (x2, x4) by satisfying the following equations:

x1 + x4 − 3 = 0, (34)

K5x2x4 − x1x5 = 0. (35)

Discipline 2 finds (x8, x10) such that

K8x1 − x4x8 (p/x11) = 0, (36)

K10x
2
1 − x2

4x10 (p/x11) = 0. (37)

Discipline 3 determines (x5, x9, x11) by solving,

2x2 + 2x5 + x6 + x7 − 8 = 0, (38)

2x3 + x9 − 4R = 0, (39)

x11 −
10∑

j=1

xj = 0. (40)

The optimum is (x1, x3, x6, x7) = (1.378887,18.426810,1.094798,0.931214) and
the minimum objective value is zero. All system-level inequality constraints are ac-
tive at this point.

This problem was also solved successfully by each of the methods implemented
within the framework. To converge the MDA, the use of under-relaxation was re-
quired. For design points in the vicinity of the solution, an under-relaxation parame-
ter of 0.7 typically resulted for successful convergence. At design points far from the
solution, the problem is harder to solve and an under-relaxation parameter of 0.4 was
required. Numerical difficulties also forced the convergence tolerance of the MDA
module to be loosened by one order of magnitude—from 10−15 to 10−14. All opti-
mization parameters for SNOPT were left at their default values.

Though a number of starting points were tested, the following results were ob-
tained by starting from (x1, x3, x6, x7) = (2,20,0,0). As with the analytic problem,
both the finite-difference and complex-step sensitivity analysis methods were used.
Since there are no design variable bounds, the initial response surface was generated
to span as much of the design space around the initial design point as feasible. Table 6
shows the computational performance for each of the methods.

To compute the reference solution to this problem, IDF was used with a conver-
gence tolerance of 10−15. IDF was chosen for this purpose since it converges not
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Table 6 Combustion of propane computational performance

Architecture Finite difference Complex step

Disc. 1 Disc. 2 Disc. 3 Disc. 1 Disc. 2 Disc. 3

MDF 874 874 874 809 809 809

IDF 105 105 105 97 97 97

SAND 1 + 105* 1 + 105* 1 + 105* 1 + 97* 1 + 97* 1 + 97*

CO 890 538 16604 – – –

CSSO 6048 6060 6874 5999 6007 6667

*Indicates residual evaluations

Table 7 l2-norm of absolute
error in optimal design variables

Architecture Finite difference Complex step

MDF 9.9551 × 10−7 4.1839 × 10−6

IDF 5.0323 × 10−7 5.0339 × 10−7

SAND 4.5552 × 10−6 4.5548 × 10−6

CO 3.3897 × 10−3 6.8244 × 10−3

CSSO 4.7507 × 10−8 4.7503 × 10−8

only the design variables, but also the coupling variables to the specified tolerance.
The minimum objective value returned in this reference run was O(10−15), i.e., ma-
chine zero. Table 7 shows the l2-norm of the difference between the various results
and the reference ones.

The convergence history of the objective function is shown in Fig. 5.

5.4 Scalable problem

Many multidisciplinary problems do not scale well due to the inclusion of disci-
plines with computationally costly solutions of the governing equations. This scal-
able problem was designed to allow researchers to examine the effects of increasing
dimensionality while keeping manageable computational requirements. This was ac-
complished by conceiving a problem that is scalable, that is, given an arbitrary di-
mensionality of any of its components, a problem is generated automatically. For a
given base class, the generated problems are mathematically similar and the follow-
ing parameters can be varied:

– Number of disciplines
– Number of output coupling variables associated with each discipline
– Number of local design variables associated with each discipline
– Number of global design variables
– Strength of coupling between the disciplines.

This allows to study the effect of each of these factors on the performance of the
various methods. Additionally, a number of other parameters relating to the type and
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Fig. 5 Convergence history of objective for the propane problem

scope of the objective, the number and type of constraints, and the nature of the
coupling can be adjusted, but are beyond the scope of this particular article.

For the scalable problem, a quadratic objective was used. The disciplines have
linear dependence on each other and have local constraint on each coupling variable.
The governing equations for each discipline consist of a linear system dependent on
the global design variables, local design variables, and non-local coupling variables.
The optimization problem statement for this problem is as follows,

minimize: zT z +
N∑

i=1

yT
i yi

w.r.t.: z, x

s.t.: 1 − yi

Ci

≤ 0, i = 1, . . . ,N.

(41)

The governing equations for each discipline i are given by

yi(z, xi, yj ) = − 1

Cyi

(Czz + Cxi
xi − Cyj

yj ). (42)

In the above problem statement, all C’s are matrices of random positive coeffi-
cients generated prior to the start of the optimization. For the purposes of this investi-
gation all coefficients not associated with a discipline’s local coupling variables have
been set to unity. The local coupling variable scaling factors are set such that the scale
of the problem is near unity.

Only MDF, IDF and SAND are currently available in this problem. For each scal-
able problem, the design variables were initialized to unity prior to the optimiza-
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Table 8 Scalable
problem—effect of number of
design variables

Design variables per discipline: 2 20 200 2000

MDF 10348 305145 515264 –

IDF 1493 12202 30918 350782

SAND – – 25637 –

Table 9 Scalable
problem—effect of number of
coupling variables

Coupling variables per discipline: 2 20 200

MDF 55722 134653 136262

IDF 2724 9421 33934

SAND 1921 5351 –

tion. Various coupling variable initialization methods were used, depending on the
method. Typically these involve the completion of an MDA. To aid the convergence
of the Gauss–Seidel iterative solver, an under-relaxation parameter of 0.7 was used.
The convergence tolerance of the method was 10−14. Most of the SNOPT parameters
were left at the default values, including the convergence tolerance on the objective
and constraints, which is 10−6.

Two investigations were performed for this problem. In the first one, the number
of design variables was varied while keeping all other dimensions of the problem
constant. In the second investigation, the number of local design variables for each
discipline was varied. Each problem consisted of three disciplines and three global
design variables. When fixed for the first investigation, the number of local design
variables and coupling variables were set at 50 per discipline, for a total of 150. The
number of function evaluations required per discipline for the two investigations is
shown in Tables 8 and 9. Entries marked with a dash denote failure to converge to an
optimum. For higher-dimensional problems this was typically due to a failure in the
optimization algorithm.

In addition to the number of function evaluations, the total optimization time of
each method was recorded and is presented in Figs. 6 and 7.

6 Concluding remarks

pyMDO was shown to be an invaluable tool for the rapid implementation of multiple
MDO methods for a given problem. This makes it an ideal platform for benchmarking
current and future methods.

The addition of a scalable problem to the set of pyMDO examples has allowed a
great deal of information to be gained on the relative performance of a number of the
MDO methods.

For the fully coupled, highly-constrained problems investigated herein, a number
of conclusions can be drawn with respect to robustness and computational efficiency.
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Fig. 6 Scalable problem—effect of number of design variables

Fig. 7 Scalable problem—effect of number of coupling variables

6.1 Robustness

MDF and IDF found optima with the least number of failures, and are thus the most
robust approaches for this set of problems. CSSO and other MDO methods that rely
on approximation methods are largely dependent on the characteristics of the problem
and the approximation method used. For the quadratic response surface used in this
study, modeling in excess of 15 variables could not be done reliably. Additionally,
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difficulties are routinely encountered in determining the bounds on the approximation
models when no prior knowledge of the problem exists.

6.2 Computational efficiency

In both the analytic problem and the scalable problems, SAND was able to consis-
tently outperform the other methods in terms of computational cost. Although the
coupling and state variables were identical for each of the problems investigated,
SAND’s use of state variables and residual constraints made it converge more rapidly
than IDF. In cases for which SAND was not able to find a solution, IDF was typically
the most computationally efficient method. It is assumed that additional problems
would reveal cases where both IDF and SAND are outperformed by either MDF or
one of the bilevel methods under implementation. Upon examining Fig. 7, we can see
that the slope of the MDF plot is smaller than that of IDF. Providing results can be
obtained beyond 600 coupling variables, MDF may well begin to outperform IDF.

It should be noted that these results were obtained using either finite differences
or the complex-step method to calculate required sensitivities. If the comparison
were performed using either an adjoint or direct sensitivity analysis method for each
method, it is likely that a performance comparison would result in a significantly
different ranking.
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