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Abstract

Multifidelity design optimization is a strategy that can reduce the high computational
cost in cases where the high-fidelity model is too expensive to use directly in optimization.
However, current multifidelity approaches cannot handle the high-dimensional problems
commonly encountered in industrial settings. Furthermore, they cannot accommodate
arbitrary analysis fidelities, directly handle multidisciplinary problems, or provably
converge to the high-fidelity optimum. In this paper, we present a practical multifidelity
approach that leverages the advantages of conventional gradient-based approaches.
Rather than constructing a multifidelity surrogate, we perform a sequence of single-
fidelity gradient-based optimizations. The framework determines the appropriate fidelity
and updates it during the optimization process. Finally, we demonstrate the proposed
approach on a multipoint aerostructural wing optimization problem with over a hundred
design variables. The multifidelity approach reduces the computational cost by 59%
compared to the high-fidelity approach while obtaining the same numerical optimum.

1 Introduction
Ever since the pioneering work of Haftka [1] on aerostructural optimization, there

have been significant efforts towards improving modeling capabilities within multidis-
ciplinary design optimization (MDO), where increasingly complex analyses are being
integrated into an optimization framework. However, more complex modeling incurs
a drastically increased computational cost. For example, Brooks et al. [2] performed
a large-scale aerostructural optimization with over a thousand design variables and
ten flight conditions, which required about 50 000 CPU hours to complete. As we add
further analysis capabilities to aircraft MDO, computational costs will likely become
prohibitive if only high-fidelity models are used. This is particularly important as
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MDO is most effectively employed during the conceptual design phase, where rapid
turnaround time is crucial for the design team.

In recent years there has been growing interest in multifidelity approaches, where
different models with varying levels of accuracy, or fidelities, are combined within
the optimization process to reduce overall computational time. Low-fidelity models
are cheaper to evaluate but provide less accurate predictions. Together with a model
management framework, they form the basis of a multifidelity optimization framework.

In the comprehensive review of multifidelity methods, Peherstorfer et al. [3] distin-
guished between global and local optimization methods for the first time. In global
methods, a search is conducted over the entire feasible domain. In contrast, local
methods terminate when a local optimum is found. Typically, global methods do not
require gradients, and when supplied with gradient information, local methods can
rapidly converge to a local optimum. We use the same characterization below and
provide a short review focusing on optimization, particularly for large-scale problems.
We then discuss multifidelity methods in the context of multidisciplinary problems and
highlight some shortcomings of existing approaches.

1.1 Global and local methods

In global methods, a globally-accurate multifidelity surrogate model is constructed
and used during optimization. These approaches are based on Bayesian optimization
techniques, relying on the construction of surrogate models. Giselle Fernández-Godino
et al. [4] surveyed 178 papers using multifidelity methods and found 73% of them use a
multifidelity surrogate model. Unfortunately, surrogate models all suffer from the curse
of dimensionality [5]. This has been apparent in the multifidelity optimization field,
where applications typically have fewer than 20 design variables [6–9]. This is in direct
contrast to high-fidelity aerostructural optimizations with upwards of a thousand design
variables [2], which are precisely the type of expensive optimizations that would benefit
the most from multifidelity methods. Furthermore, most surrogate-based optimization
techniques do not leverage gradients, nor are they equipped to handle general nonlinear
constraints. As such, they cannot verify the satisfaction of the Karush–Kuhn–Tucker
(KKT) conditions required for optimality and cannot be shown to be convergent to
the high-fidelity optimum. Instead, their termination criteria are commonly based on
heuristics.

On the other hand, local methods are only concerned with finding a local minimum.
With the help of gradient-based approaches, these methods can be very effective
when dealing with many design variables. In this area, the primary method has been
trust-region model management (TRMM), which is adapted from the single-fidelity
trust-region SQP (sequential quadratic programming) method by replacing the local
quadratic model with the low-fidelity model. This was investigated first by Alexandrov
et al. [10], who showed that if the low-fidelity model is corrected to satisfy the first-order
consistency conditions, this method is provably convergent to the high-fidelity optimum.
These requirements are typically met through additive and multiplicative corrections,
and the size of the trust region is updated based on the correlation between high and
low-fidelity models.
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Since then, there have been several developments based on the TRMM approach.
Elham and van Tooren [11] adopted a Pareto filter rather than a penalty parameter when
using an augmented Lagrangian approach but was unable to obtain the high-fidelity
optimum, and the computation was four times slower than the single-fidelity approach.
March and Willcox [12] combined the trust-region approach with Bayesian calibration to
construct a provably-convergent multifidelity method that does not require high-fidelity
derivatives. However, the number of function evaluations was still prohibitively high
given the lack of gradient information. Gratton et al. [13] proposed a recursive TRMM
formulation that allowed for an arbitrary number of fidelities to be used. This approach
is reminiscent of multigrid methods in the numerical solution of partial differential
equations, where the algorithm switches between coarse and fine grids to accelerate
convergence. This method was further extended by Olivanti et al. [14] to include both
a gradient-based switching criterion as well as an asynchronous validation scheme and
demonstrated on an aerodynamic shape optimization problem with 191 design variables,
showing a speed-up factor of 1.3.

Bryson and Rumpfkeil [15] developed an approach based on TRMM that addressed
several shortcomings of the original methodology. Since conventional TRMM uses the
low-fidelity model for the local surrogate, no approximate Hessian is kept. Therefore,
high-fidelity evaluations are only used to calibrate the low-fidelity output to construct
the local surrogate. Instead of discarding those after each step, Bryson et al. maintain
the approximate Hessian, which is used in conjunction with line search to pick the
next iterate. Furthermore, the optimization reverts to using only the high-fidelity
model when the trust-region size is below a threshold to accelerate the optimization
convergence at the final stages. This approach was demonstrated in a subsequent paper
on an aerostructural optimization problem [16].

Unfortunately, TRMM-based approaches still suffer from some shortcomings. Com-
bining multiple fidelities is a significant challenge because the constraint boundary
changes based on the analysis fidelity. As such, most of the results do not include
general nonlinear constraints. Instead, they either include only design variable bounds
or satisfy the constraint (such as the trim constraint) internally within the solver rather
than leaving it to the optimizer [14]. In other cases, a penalty approach is used to
combine the objective and constraints into a single objective function, resulting in an
unconstrained optimization problem [16].

1.2 Multifidelity MDO

Existing work on multifidelity optimization methods applied to multidisciplinary
systems is unfortunately sparse. Several works mentioned earlier demonstrate their
methodology on aerostructural systems [11, 16] that are inherently multidisciplinary.
Still, the low-fidelity aerodynamic model is always coupled with the low-fidelity structural
model, resulting in only two distinct fidelities for the overall aerostructural system.
As a result, there is no analysis on the tradeoffs of improving the fidelity of either
aerodynamics or structures independently. On the other hand, Allaire and Willcox
[17] proposed a methodology for identifying and improving the discipline fidelity that
contributed the most error in the objective. However, the approach does not account
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for the computational cost of each fidelity, nor does it consider the effect of discipline
errors on constraints.

A significant difficulty with MDO problems in multifidelity optimization is the lack
of hierarchy for model fidelities. For example, while it is clear that a Reynolds-averaged
Navier–Stokes (RANS) computational fluid dynamics (CFD) solver has a higher fidelity
relative to an Euler solver, it is not clear whether a RANS solver combined with a
coarse structural grid would be a higher fidelity compared to an Euler solver using a
finer structural grid. Due to the nature of a multidisciplinary problem, many fidelity
combinations can arise, posing a challenge to multifidelity methods. Most existing
methods cannot even account for more than two possible fidelities in total. They may
also suffer from poor scaling when many fidelities are used; for example, they might
require a surrogate model to be trained for each fidelity. In addition, there is an implicit
assumption that all the given fidelities are useful, which is not true when considering
multidisciplinary problems. Few existing methods can analyze all available fidelities
and discard those that are not useful (e.g., fidelity 5 in fig. 3). We focus on effectively
identifying and managing fidelity combinations for multidisciplinary systems to tackle
this challenge.

1.3 Aim of proposed method

We propose a gradient-based multifidelity optimization framework that leverages
the existing high-fidelity MDO approach. We still perform a single gradient-based
optimization, but during the process, we periodically evaluate the adequacy of the
current model and switch to a better fidelity if necessary. Because we limit the
available fidelities to be discipline specific, we first quantify the error in discipline
outputs and then propagate them to multidisciplinary system-level outputs. Based on
the errors and associated computational cost, an algorithm is proposed to select the
appropriate fidelity for the current point in the optimization. Error-based switching
criteria trigger the periodic fidelity evaluation. A robust hot-start strategy allows the
subsequent optimization to progress smoothly without losing information. The proposed
methodology can handle large-scale optimizations with hundreds of design variables
and constraints and converge to the same high-fidelity optimum. Many fidelities can
be handled, including those that are not necessarily useful, which are automatically
filtered. By leveraging low-fidelity models, we can realize significant cost savings.

We note that this type of sequential optimization approach has been employed
before, notably by Lyu et al. [18] and later adopted by Bons and Martins [19]. Named
the “multi-level optimization acceleration technique”, the authors perform a sequence of
optimizations starting from the coarsest grid and switching to a finer grid at the end of
each optimization to reduce the number of iterations needed on the finest grid. Similarly,
Koziel and Leifsson [20] performed multi-level optimization with output space mapping
applied to airfoil shape optimization. While the principles behind this approach are
similar, they lack many of the key ingredients that make the proposed methodology
scalable and general to MDO problems.

The following sections introduce the high-fidelity optimization approach and some
definitions and terminology, followed by an overview of the proposed multifidelity
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framework. Finally, we demonstrate the framework on a multipoint aerostructural
benchmark problem with over a hundred design variables.

2 Single-fidelity MDO
Before we delve into multifidelity optimization, it is essential to define the terms

and concepts for the single-fidelity case. As an example, we look at a two-point
aerostructural wing optimization problem, where we optimize the wing considering two
operating conditions. The traditional approach to solving these types of optimization
problems is by using gradient-based methods together with the multidisciplinary-feasible
(MDF) architecture [21]. Unlike gradient-free methods, gradient-based optimization
methods can efficiently optimize with respect to hundreds or even thousands of design
variables [22].

We start with a single-disciplinary analysis, i.e., a mathematical function that maps
a set of inputs x to outputs y. In this work, we focus on deterministic functions that
exhibit a low level of numerical noise. We let nx be the number of inputs and ny

the number of outputs. In the aerostructural example, there would be two separate
disciplinary analyses. For aerodynamics, the inputs could be the angle of attack and
twist distribution along a wing. The outputs could be the integrated lift and drag
quantities of interest. For structures, the inputs and outputs could be the structural
panel thicknesses and the stress distribution, respectively. In the aerostructural case,
these two disciplines are also coupled together via surface pressures and structural
displacements. The coupled system is typically converged via fixed-point iterations.
Once the states converge to the multidisciplinary-feasible solution, we can compute
the same discipline outputs y for each discipline. Through the use of the coupled
adjoint [23], we can also compute their derivative with respect to the inputs x. The last
thing to do is to combine these discipline outputs y into system-level outputs, i.e., the
objective f(x) and constraints g(x). Note that typically these functions are analytic
expressions of the discipline outputs y, and therefore are straightforward to compute.
For example, a common objective function in aerostructural optimization is the Breguet
range equation, which combines the aircraft weight computed from structures with lift
and drag predictions from the aerodynamics. To compute their sensitivities, we can
analytically differentiate ∂f/∂y, then apply the chain rule to combine with ∂y/∂x.

However, typical engineering optimizations can involve more than a single multidisci-
plinary design analysis (MDA). It is common to perform multipoint optimization, where
the same design is analyzed at multiple operating conditions to improve robustness. In
this case, the different MDAs are entirely parallel and can be analyzed independently,
but the converged MDA outputs are combined to compute the system-level quantities f
and g. For example, we could use the average fuel burn over several flight conditions as
the objective or apply structural constraints from multiple loading conditions. Figure 1
shows the extended design structure matrix (XDSM) diagram [24] of a two-point,
two-discipline MDO problem.
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Figure 1: XDSM diagram of a single-fidelity MDF approach applied to a two-point, two-
discipline MDO problem. In this diagram, thin black lines represent process flow, thick grey
lines represent data flow, and the numbers in each block refer to the execution order.

3 Multifidelity Gradient-based MDO Framework
It is typical in engineering applications to have multiple analysis tools available that

can compute the discipline outputs y to varying degrees of accuracy. Any discussion of
accuracy requires a “truth” model to act as a reference, provided by detailed simulations
or even experimentation. We assume such a model exists and is known a priori, and can
be evaluated as needed to provide the reference for lower-fidelity models. Without loss
of generality, we assume this is provided by a known simulation model, which we call
the high-fidelity model. Then, the high-fidelity model has zero error by construction.

Given a reference model, we define fidelity to be the accuracy of a given model
for a particular input vector x and scalar output y. The fidelity of a model may vary
over the design space and depend on the output quantity of interest. For example,
Euler-based CFD may be a relatively high-fidelity model for predicting lift, but it is low
fidelity in drag because it ignores skin-friction drag. Although higher-fidelity models
are commonly expected to be more computationally expensive, it is not always the
case. For example, it has been shown that in some cases, XFOIL [25] is both cheaper
and more accurate than RANS CFD when analyzing airfoils for low Reynolds number
flows [26] , in which case XFOIL should always be used.

In this work, we restrict fidelities to the discipline level, corresponding to a single
engineering analysis. The only requirement for such fidelities is that they have the
same inputs and outputs such that there is no need to perform design variable mapping
between fidelities. In addition, as the framework is based on the MDF formulation
used in a gradient-based setting, all available fidelities in each discipline must be fully
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coupled with all fidelities in the other disciplines, and the coupled derivatives must be
available as well.
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Figure 2: XDSM diagram showing the proposed method applied to a single-point MDO
problem.

In a multidisciplinary setting, determining the available fidelities is a combinatorial
problem. Suppose we have three aerodynamic fidelities and two structural fidelities.
In that case, there are a total of six possible fidelity combinations for each MDA. In
addition, the number of possible system-level fidelity combinations grows even more in
a multipoint optimization problem, where the same design is analyzed under multiple
operating conditions. This requires novel techniques to handle many possible fidelities
at the optimization level.

Our proposed framework is based on the single-fidelity MDF approach. We perform
a sequence of such single-fidelity MDO, starting from the low-fidelity models and
gradually improving the model during optimization until we reach the high-fidelity
optimum. The framework tries to answer two questions: When is it time to update the
fidelity choice? And what fidelity choice to update to next?

We start by quantifying the errors between the different fidelities in computing the
various outputs. We then perform a single-fidelity MDO, starting from the lowest fidelity
combinations and monitoring its progress. We stop the optimization when specific
error-based termination criteria are met, then update the fidelity. This is a two-step
process: we first propagate the errors from discipline outputs to system-level quantities,
then construct error metrics to select the subsequent fidelity. We then continue the
optimization with updated fidelities. This sequence of single-fidelity optimizations
eventually reaches the high-fidelity case, which is allowed to continue until convergence.
Figure 2 shows this process applied to a single-point MDO problem. In the following
sections, we explain each of the steps in this process in more detail.
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3.1 Error Quantification

Unlike most existing methods, we do not assume that all available models are useful.
Instead, we perform error quantification to assess the suitability of all available fidelities.
As mentioned earlier, the fidelity of a given analysis method depends on both the input
x and the output y. In this work, we opted to neglect the effect of the design variables
because we are focused on high-dimensional problems where the costs are prohibitive.
Instead, we perform this error quantification process just once at the initial design point
x0. Although it is possible to do this quantification every time the fidelity is updated,
we found that unnecessary. In all of our test cases, the errors did not change sufficiently
to cause a different sequence of fidelities to be selected.

We first perform single-discipline evaluations using each available fidelity at the
initial design point and record their outputs. The disciplines need to be evaluated at
each operating point for a multipoint problem. In this work, we use ℓ ∈ {0, 1, 2 . . . nℓ−1}
to denote the fidelity used to compute a given quantity, with ℓ = 0 as the high-fidelity
reference. We then compute the error for each fidelity ℓ and scalar output yi using

δi,ℓ =
∣∣yi,ℓ − yi,0

∣∣ . (1)

By construction, δi,0 = 0. We also record the computational cost ci for performing each
fidelity analysis, measured, for example, in CPU-seconds.

In theory, each model should fall onto the Pareto front of accuracy and computational
cost—otherwise, it could be replaced by a cheaper and more accurate model. For
example, in fig. 3 we can see that fidelity 5 is not Pareto-optimal since fidelity 3 is both
cheaper and more accurate. There would be no use for such fidelity in this case, and it
is removed. Through this filtering process, we can identify and remove fidelities that
are non-optimal. The rest of the fidelities form a Pareto front, resulting in a natural
ordering. This provides the ordering for ℓ, where a higher number indicates a decrease
in fidelity.

Unlike the field of variable-fidelity optimization, where the fidelity can be arbitrarily
controlled, we are not concerned with constructing Pareto-optimal models in this work.
We do not examine whether each physics or numerical model choice is appropriate.
Instead, we take them as provided and assess them purely on their ability to predict
output quantities of interest. This way, the multifidelity framework is problem-agnostic
and general for arbitrary MDO problems.

Because we do this for each scalar output yi, the outcome may be different for
different outputs. We remove a fidelity if at least one of its scalar outputs is not
Pareto-optimal. The remaining fidelities now fall onto the Pareto front and can be
sorted based on the cost of constructing a hierarchy of discipline fidelities.

This initially quantified error can either be assumed to be constant throughout or
updated at the end of each sub-optimization so that fidelity selection is performed with
the most up-to-date information. We have not found updating the error to be useful
for the optimization problem demonstrated. Hence, the rest of the paper assumes that
the error is fixed.
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Figure 3: Notional diagram showing a discipline analysis involving five fidelities, where
fidelities 1–4 are Pareto-optimal and 5 is not. This is for a single scalar output; the relative
positions of the fidelities could be different for other outputs.

3.2 Error Propagation

After quantifying the discipline errors, we propagate them to system-level outputs,
which consist of the objective and constraint functions. This allows us to quantify the
impact of each discipline’s fidelity on the overall system fidelity combination. Unlike
the previous step, this is performed at the end of each sub-optimization because error
propagation depends on the current function values.

As hinted earlier in the section, the system-level fidelities are actually fidelity
combinations composed of fidelity choices for each discipline and analysis. For example,
a two-point aerostructural problem would have a fidelity combination consisting of four
choices. We first identify all possible fidelity combinations from which to select the
subsequent fidelity combination. In this work, they are all the possible combinations
where each discipline’s fidelity is better than or equal to the current fidelity. This allows
for simultaneous fidelity improvements in multiple disciplines and skipping certain
fidelities. For example, we could skip the medium grid and go directly from the coarse
to the fine grid for CFD.

Once we identify the fidelity combinations, we then propagate their discipline errors
to system-level objectives and constraints for each of those combinations. To do this,
we follow the approach outlined by Allaire and Willcox [17] and model each discipline
output yi as a normal random variable ŷi,ℓ ∼ N (yi,ℓ, δ

2
i,ℓ). That is, we model the

discipline outputs as a normal random variable centered on its discipline output and use
its error as the standard deviation. In reality, many of the errors are non-normal and
possibly asymmetric. For example, the discretization error in CFD is typically biased
such that there is significant skewness to the distribution. This has been demonstrated
in NASA’s Drag Prediction Workshop [27], where the drag coefficient computed by all
participating solvers were systematically over-predicted on coarser grids. Of course, if
we knew the actual probability distribution function, we would use that directly instead.
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A normal distribution is a reasonable approximation in the absence of such information.
In reality, these discipline outputs are often correlated and not independent. This

is manifested in two ways. First, outputs computed by the same analysis can be
correlated. For example, because lift and drag are both functionals computed from
the same converged states, a CFD simulation with a significant error in the lift is also
more likely to have a more substantial error in drag. Second, outputs computed from
different discipline analyses but coupled via MDA would be correlated as well. Taking
the aerostructural example, if a CFD simulation had a significant error in the lift, the
converged aeroelastic solution would have a different shape. Consequently, the stress
distributions on the wing structures would be wrong.

In this work, we only capture the first effect. This is done by extending the
probability distribution to a multivariate normal distribution with correlations between
specific output quantities. For a given fidelity ℓ, the multivariate normal distribution
used is

ŷ ∼ N (y,Σ), (2)

where the covariance matrix Σ is given by

Σi,j = ρi,jδiδj. (3)

By definition, ρi,i = 1.0 since each output is perfectly correlated with itself. For
outputs computed from the same analysis, we use a fixed value of 0.9 for ρi,j throughout
this work. We selected a high correlation coefficient because these outputs are computed
from the same set of converged state variables. However, we do not attempt to estimate
this quantity since doing so would require many function evaluations that could instead
be spent on optimization.

After we model the joint probability density function of all the discipline’s outputs,
we must propagate them to the objective and constraints. Fortunately, these system-
level outputs are typically composed of simple analytic expressions. For example, a
common objective used in aerostructural optimization is fuel burn, which is given by

FB = m exp

(
R TSFC

V
(
L
D

) ) , (4)

where lift L, drag D, and mass m are the inputs. The range R, cruise speed V , and
thrust-specific fuel consumption TSFC are constants that remain fixed throughout the
optimization.

In this sense, discipline outputs become inputs to these analytic functions that
are used to compute the objective and constraints. These discipline outputs are now
modeled as normal random variables through the error quantification process. As a
result, the system-level outputs, such as fuel burn, also become random variables. We
compute the standard deviation of these system-level outputs and use that as the error
metric representing the errors introduced by discipline errors. We label system-level
errors as ϵj,ℓ to distinguish them from discipline-level errors δi,ℓ, and use j to index the
system-level outputs. In particular, we use j = 0 denote the objective, and number the
constraints as j ∈ {1 . . . ncon}.
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Since the functions of interest are analytic and relatively simple, we use the Monte
Carlo method to perform the error propagation. We use an adaptive, parallel implemen-
tation, where batches of samples are drawn from the joint probability distribution of the
discipline outputs y, and the resulting mean and standard deviation are monitored. We
terminate the Monte Carlo process when the mean and standard deviation changes are
smaller than a prescribed absolute or relative tolerance. In this work, we use batches of
10 000 samples and tolerances of 1× 10−3, which results in around 1× 106 samples on
average.

Once we have the errors for objective and constraints for each fidelity combination,
we can again apply a Pareto filter to remove certain fidelity combinations, as we did
with discipline outputs. In this case, we filter out a fidelity combination if it is not
Pareto-optimal for all system-level outputs. This is particularly important in this
context as we tend to have many fidelity combinations, and it is helpful to narrow down
the possibilities in fidelity selection.

3.3 Fidelity Selection

Finally, we construct a single scalar error metric for each fidelity, combining the
objective and constraint errors and the cost of evaluating the model. Unlike common
criteria used in Bayesian optimization, this metric is not used to select the next sampling
point, only the fidelity of the next sub-optimization.

For a given fidelity ℓ, we first combine the error contributions from the objective
and constraints with

ϵℓ = ϵ0,ℓ +
ncon∑
j=1

λjϵj,ℓ, (5)

where λj are the Lagrange multipliers associated with constraint j, that are accessed
directly from the optimizer.

For constrained optimization, the Lagrange multipliers carry physical significance.
At the optimum, the Lagrange multipliers provide the sensitivity of the optimum with
respect to each constraint [28]. If a Lagrange multiplier is large, a small change in the
corresponding constraint will cause a significant change in the optimum. Conversely, if
a Lagrange multiplier is zero, then the constraint has no effect on the optimum and
is therefore inactive by definition. In this case, the Lagrange multipliers provide a
natural scaling factor, such that more influential constraints have their errors weighed
more heavily, and inactive constraints are automatically ignored. This is similar to
the approach by Chen and Fidkowski [29] in combining errors in the objective and
constraints when performing output-based mesh adaptation.

Lastly, we compute the error reduction ϵredℓ relative to the current fidelity, given by

ϵredℓ = ϵcurrent − ϵℓ. (6)

This gives us a measure of how much error we expect to reduce if we switch to each of
the possible fidelity combinations. We also normalize ϵredℓ by the cost cℓ of each fidelity,
to give us the normalized error reduction

ϵ̂redℓ =
ϵredℓ

cℓ
. (7)
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The fidelity that has the highest normalized error reduction is chosen as the next fidelity
combination ℓnext for optimization:

ℓnext = argmax
ℓ

ϵ̂redℓ . (8)

By construction, both the current fidelity and the high-fidelity combination yield zero
expected error reduction. This ensures that the algorithm will always eventually select
the high-fidelity combination, which will be the final optimization.

Once the subsequent fidelity is chosen, a new optimization is performed, after which
the fidelity is selected again. This process is repeated until we arrive at the high-fidelity
optimum.

3.4 Switching Criteria

In addition to selecting the next fidelity to use, we also need to determine when
to switch to the updated fidelity. This is accomplished using optimization tolerances
to terminate the current optimization problem and trigger an update to the fidelity
selected. Because we use gradient-based optimizers, the proposed criteria are based
on the KKT conditions, which are the necessary conditions for the solution of a
nonlinear optimization problem. The implementation of these conditions typically
involves feasibility and optimality tolerances.

It is not necessary to fully converge each sub-optimization since the lower-fidelity
optima may not be close to the high-fidelity optimum. Instead, we wish to terminate
each sub-optimization at an appropriate point depending on the level of fidelity used—
typically earlier for a lower-fidelity model. Therefore, instead of using a fixed tolerance
for all sub-optimizations, we developed switching criteria that use the available error
estimates of each system-level output (objective and constraints). This allows us to
achieve a similar level of convergence for each fidelity relative to the accuracy of the
analyses.

The first is an adaptation of the feasibility tolerance based on constraint violation
vi(x), defined as

vi(x) = max{0, gi(x)− gU,i, gL,i − gi(x)}, (9)

where gi(x) are the constraints, and gU,i and gL,i are the upper and lower bounds for
each constraint.

For each constraint, we require the violation to be less than a factor τf of the error in
predicting that constraint. Recall that we denote the error in the output i for the current
fidelity ℓ as ϵi,ℓ, which is computed from Monte Carlo error propagation. We place
error bounds along each constraint curve, representing the uncertainty in computing
these constraints due to the low-fidelity model. Figure 4 shows this graphically for
an equality constraint. In the case of an inequality constraint, only the single dashed
line within the infeasible region would be present. If every constraint lies within the
prescribed error bound, then we have met the feasibility criterion. Mathematically, we
formulate the feasibility criteria as

max
i

{
vi(x)

ϵi,ℓ

}
≤ τf . (10)
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Figure 4: An equality constraint curve within a 2-dimensional design space. The dashed
lines represent the error bound on either side of the constraint, showing the effective feasible
region in between.

The second criterion is an optimality condition, typically based on the objective and
constraint gradients. It would be straightforward to apply the same approach as before
to the optimality criterion. However, since it is a first-order condition, error estimates
of the gradients are needed for each fidelity. Unfortunately, estimating these errors
is costly, as it requires adjoint solutions for every output and every existing fidelity.
Instead, we replace the optimality condition with a sufficient decrease condition. We
monitor the objective decrease between successive major iterations during optimization.
We satisfy the optimality criterion when the decrease in the objective ∆f , scaled by the
error in the objective, is below a prescribed optimality tolerance τo. Mathematically,
this criterion is

∆f

ϵ0,ℓ
≤ τo. (11)

While the values of τf and τo would affect the timing of each sub-optimization
and alter their terminations, we have not found them to cause a large impact on the
overall performance of the approach for the aerostructural optimization demonstrated
here. Therefore, in this work we use τo = τf = 1 × 10−4, but these values may have
to be tuned for other optimization problems. These switching criteria are applied to
every optimization except the final, high-fidelity optimization. In that case, the errors
are zero by definition, and the error-based criteria would never be met. Instead, we
must revert to using the termination criteria within the optimizer, as done for the
single-fidelity optimizations. This ensures that for the final optimization, the optimum
found is computed using the high-fidelity model and with a tight convergence tolerance.
For a unimodal problem, this would guarantee convergence to the same high-fidelity
optimum.
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3.5 Optimization

Optimizations can be initialized in three ways. In a cold start, the optimization
is initialized with no prior knowledge of the problem, so all the state variables are
initialized to default values, except for the initial design variables provided by the
user. This is the most common starting strategy taken. In a warm start, partial state
information is provided by the user. This could be an initial Hessian approximation or
a guess for the active set. In a hot start, the optimizer is initialized with the full state.
For a deterministic optimizer, this means that we have all the information to exactly
retrace an optimization.

We define optimizer states as variables that completely determine the state at each
optimization iteration. Given the same set of states, a deterministic optimizer will
always produce the same design for the next iteration and follow the same path within
the design space (within machine precision). For an SQP-based optimizer, these states
can include Lagrange multipliers, slack variables, the approximate Hessian, and many
more. The exact make-up depends on the implementation of a particular optimizer.

In the context of the multifidelity framework developed, efficiently restarting an
optimization is crucial to the overall performance. As we switch the fidelity from one
to another, we must do so without impeding the progress of subsequent optimizations.
By transferring these state variables from a lower-fidelity optimization to a higher one,
we use the lower-fidelity model to learn about the optimization problem and provide
better estimates for these state variables. We no longer simply use low-fidelity models
to obtain a better initial guess for the subsequent optimization. Instead, we are using
these models to learn about the overall characteristics of the optimization problem so
that fewer iterations are required at the latter stages when more expensive fidelities
are used. For example, the approximate Hessian provides curvature information with
respect to the augmented Lagrangian. If the low-fidelity model is sufficiently similar
to the high-fidelity model, the approximate Hessian can be used to speed up the more
expensive optimizations.

For this work, we use the hot start implemented in SNOPT [30], where the full
state within the optimizer is stored at the end of each sub-optimization and loaded
into SNOPT at the start of the next sub-optimization. However, because the fidelity is
updated in between optimizations, a discontinuity is introduced in the function values,
which may cause optimization difficulties. In particular, if the function value is higher
under the updated fidelity, the optimizer may have trouble finding a feasible step during
line search and may quit immediately after. To address this, we perform an additional
function evaluation at the design where the optimization was paused. This updates the
function value to that of the new fidelity but preserves other state variables that we
want to re-use from the previous optimization.

3.6 Summary

A key focus of the proposed methodology is the quantification of model discrepancy
and how it impacts the optimization problem under consideration. The reason for
quantifying errors at a discipline level, then propagating them to the system level is
that there could be so many possible fidelity combinations that performing an MDA for
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each would be prohibitively expensive. For example, in the aerostructural test case used
in this work, there are 400 combinations for a simple two-point formulation with five
aerodynamic and four structural fidelities. An optimization involving 5 flight conditions
would have required 205 = 3.2× 106 MDAs. Instead, we only determine the discipline
errors and cheaply propagate them to the system-level outputs. The Monte Carlo
evaluations take seconds to complete, compared with the computational time of several
hours for an expensive MDA to converge. This approach also provides a well-defined
method for selecting the next fidelity in a multidisciplinary context, based on expected
error reduction.

4 Computational Framework
We use the MACH Framework (MDO of Aircraft Configurations with High-fidelity)

to perform aerostructural optimizations [31, 32]. It uses the MDF formulation of
the optimization problem and gradient-based optimizers to perform aerostructural
optimizations. We now describe the components of MACH in detail.

4.1 Geometric Parameterization and Mesh Warping

We use pyGeo [33] for geometric parameterization. pyGeo uses free-form deformation
(FFD) volumes to deform both the aerodynamic surface and structural mesh. We then
use IDWarp [34] to warp the aerodynamic volume mesh based on the surface mesh
deformations.

This work does not consider different geometric parameterizations as fidelities, such
as using different FFD volumes. We use the same FFD box for all optimizations to
keep the same number of design variables to hot-start optimizations.

4.2 Aerostructural Analysis and Adjoint

The aerodynamic analysis is performed using ADflow [35], a finite-volume CFD solver
with an efficient adjoint implementation suitable for aerodynamic shape optimization.
ADflow can solve both the Euler and RANS equations with various turbulence models.
In this work, we use two different levels of physics as levels of fidelity: Euler and
RANS with the Spalart–Allmaras (SA) turbulence model. For Euler simulations, we
also compute a viscous drag correction based on a flat-plate estimate with form factor
corrections [32].

The structure is analyzed using the Toolkit for Analysis of Composite Structures
(TACS) [36], a finite-element analysis (FEA) solver designed for gradient-based opti-
mizations of thin-walled structures. We use the approach outlined by Kenway et al.
[31] to solve the coupled aeroelastic system and compute the coupled adjoint.

4.3 Optimization

We use pyOptSparse [37], an optimization framework tailored for large-scale gradient-
based optimizations that provides wrappers for several popular non-linear optimization
packages. In this work, we use the SNOPT optimization package [30].
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5 Aerostructural Benchmark Problem
We use a multifidelity wing optimization problem as the benchmark. It is a two-point

aerostructural optimization, where the aerodynamics and structure are analyzed using
various fidelities during optimization. The geometry consists of a single swept wing
with an embedded wingbox, shown in fig. 5. The wingbox is made of 2024 aluminum;
the material properties are listed in table 2.

Figure 5: Geometric design variables are shown in the upper figure. Each red node indicates
an FFD control point, and groups of nodes are manipulated together to form geometric design
variables. Structural design variables are visualized in the lower figure, where each design
variable controls the panel thickness of a distinct region of the wingbox.

We use the cruise flight condition to compute the wing’s performance and the 2.5g
maneuver flight condition to size the structure. These flight conditions are listed in
table 1. The design variables consist of two angles of attack, one for each flight condition
and seven sectional twist variables that simultaneously warp the CFD and FEA meshes.
However, the root twist is not a design variable because we have separate angles of
attack for trimming the aircraft. There are also 108 panel thickness variables for the
different wingbox components. These geometric and structural design variables are
listed in fig. 5.

The objective of the optimization is to minimize the fuel burn FB given by eq. (4).
The drag D and lift L are computed from the cruise point, and the flow speed is
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Table 1: Operating conditions for the cruise and maneuver points.

Cruise Maneuver

Altitude (m) 10 000 5000
Mach number 0.8 0.75
Load factor ni 1.0 2.5

computed from the cruise Mach number and altitude. The range R and thrust-specific
fuel consumption are given as constants, and the mass m is computed from

m = 2×mstruct +mextra, (12)

where mstruct is the structural mass of the wingbox as computed by FEA, and mextra is
a constant value meant to emulate the fuselage and other mass not accounted for in
the structural model. All the relevant constants are listed in table 2.

Table 2: Reference values for the aerostructural test case.

Description Values

R Range 1× 104 km
TSFC Thrust-specific

fuel consumption 0.53 lb/(lbf · h)
mextra Extra mass 4× 104 kg

ρ Material density 2780 kg/m3

E Young’s modulus 73.1GPa
σy Yield stress 324MPa
ν Poisson’s ratio 0.33

There are also several constraints in this problem. We constrain the lift and weight
for both the cruise and maneuver flight conditions, taking the load condition into
account. We also have manufacturing constraints for the panel thickness variables, such
that the difference in thickness between adjacent panels is less than 2.5mm. These are
sparse linear constraints that can be satisfied easily by the optimizer. Structural stress
constraints are enforced at the maneuver flight condition. These stress constraints are
aggregated using the Kreisselmeier–Steinhauser (KS) function [38], ultimately resulting
in three constraints: one each for the ribs and spars, upper skin and stringers, and
lower skin and stringers. The entire optimization problem formulation is summarized
in table 3.

The structure of the discipline outputs computed at the cruise and maneuver points
is shown in fig. 6, where the different types of correlations are color-coded. As mentioned
in section 3.2, the diagonal entries in green are unity by definition. The correlation
between outputs computed by the same analysis is shown in blue, and the correlation
resulting from the coupled MDA is shown in red. We capture the first two correlations
in this work, but not the third.
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Table 3: Optimization problem formulation.

Function/variable Description Quantity

minimize FB Fuel burn 1

with respect to xtwist Section twist 7
xalpha Angle of attack 2
xstruct Panel thickness 108

Total design variables 117

subject to L = niW Lift constraint 2∣∣xstruct,i − xstruct,i+1

∣∣ ≤ 0.0025 Adjacency constraints 72
KSi ≤ 1.0 Stress constraints 3

Total constraints 77

Lcr

Lcr

Dcr

Dcr

mcr

mcr

Lman

Lman

KS0,man

KS0,man

KS1,man

KS1,man

KS2,man

KS2,man

Figure 6: Correlation matrix for a two-point aerostructural problem, where all correlations
are taken into account. Blue entries indicate correlations between outputs computed by the
same analysis, and red entries indicate correlation as a result of the coupled MDA.

There are several fidelities available for the aerodynamic and structural disciplines.
For aerodynamics, we use both RANS with the SA turbulence model and Euler solutions
with a skin-friction correction. In addition, there are different discretizations available:
three meshes for RANS and two for Euler, for a total of five fidelities. For structures,
there are two discretizations and two finite-element solution orders possible for a total
of four fidelities. In total, there are 20 possible aerostructural fidelity combinations for
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each operating point, giving a total of 400 choices. The available fidelities are listed in
table 4. This shows that even for a small MDO problem, the number of possible fidelity
combinations grows quickly. A rigorous and scalable fidelity management framework is
needed to handle this increasing complexity.

Table 4: Fidelities available for aerodynamic and structural analyses, together with the
number of degrees of freedom and computational cost. For aerodynamic fidelities, “E”
represents Euler simulations and “R” represents RANS. For structural fidelities, the “O” and
the following number represent the structural finite-element analysis order. In both cases,
the final number represents the mesh level, where increasing numbers correspond to coarser
meshes.

Fidelity DOF Cost (proc-hours)
Cruise Maneuver

E1 14 560 0.0172 0.0009
E0 116 480 0.1926 0.0659
R2 24 192 0.0286 0.0234
R1 193 536 0.2290 0.2451
R0 1 548 288 3.3748 3.6901

O2L0 179 628 0.0058 0.0061
O3L0 725 484 0.0596 0.0653
O2L1 44 076 0.0006 0.0006
O3L1 179 628 0.0062 0.0062

6 Results
We perform two optimizations: the first uses the proposed multifidelity approach,

and the second uses only the high-fidelity model.
First, we examine the multifidelity results. The process begins with the initial error

quantification phase, where we perform single-discipline evaluations to determine the
errors in computing discipline outputs. For each of these outputs, we can generate a
scatter plot of cost against error for each output and each fidelity shown in figs. 7 and 8.

We make several observations here. First, not all available fidelities are useful
fidelities. For example, the fine Euler fidelity E0 is not Pareto-optimal for computing
any aerodynamic quantities and is dominated by R2, the coarse RANS solution. Second,
the Pareto-optimality of a fidelity depends on the quantity of interest. For structures,
the fidelity O3L1 is not Pareto-optimal for the KS stress constraints but is optimal
for computing the structural mass. In the current framework, we still filter out such
fidelities as we require each potential fidelity to be Pareto-optimal for all outputs for
which it is responsible. Lastly, the scatter plots could be different if analyzed at another
design point, resulting in the removal of different fidelities. We do not consider such
effects in this work.

After filtering out these non-optimal fidelities, we perform a single-fidelity optimiza-
tion using the lowest fidelity available. Once terminated via the criteria from section 3.4,
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Figure 7: Pareto front for aerodynamic fidelities, showing that not all fidelities are optimal.
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Figure 8: Pareto front for structural fidelities, showing that not all fidelities are optimal.

we propagate the discipline errors to system-level objectives and constraints. Figure 9
shows the Pareto plot of cost against error, analogous to figs. 7 and 8 but for system
outputs. Each point corresponds to a fidelity combination, and the error is computed
through Monte Carlo simulations. After applying another Pareto filter, we compute the
composite metric ϵ̂redℓ . Finally, we select the subsequent fidelity based on this metric.

A new optimization is then performed, hot-started from the previous one. This
process continues until we reach the final, high-fidelity optimization, which is allowed
to continue to completion. Table 5 lists the sequence of fidelities taken, along with the
computational costs. For comparison, we perform a reference optimization starting from
the same initial design but using only the high-fidelity models. Overall, the multifidelity
approach took 41% of the computational cost compared to the single-fidelity approach
while effectively finding the same numerical optimum. The difference in the objective
between the two designs is 2× 10−3 kg, for a relative difference of 4× 10−8.

A total of nine sub-optimizations were taken, each one hot-started from the previous
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Figure 9: Pareto plot of objective errors ϵ0,ℓ against cost for all 400 possible fidelity combi-
nations, showing that many are not Pareto-optimal. The corresponding plot for constraint
KS0 is shown on the right.

optimization. As expected, the early, low-fidelity optimizations took many iterations to
build up a more accurate approximate Hessian. In contrast, the later optimizations
converged in far fewer iterations. As a result, although the number of major iterations
was twice as much as the single-fidelity optimization, the overall computational cost
was far lower. This also demonstrated the robustness of the hot-start approach that
enabled us to perform nine sub-optimizations without losing progress in between.

Looking at the sequence of fidelities chosen, we see that the algorithm preferred
to improve the cruise aerodynamics fidelity more than the maneuver analysis. This
preference makes sense because both lift and drag values are needed from the cruise
point, but only lift is needed for maneuver. Because the error in the lift is typically higher
than the error in the drag for a given fidelity, it was more important to improve the
cruise aerodynamic fidelity. This is commonly done in single, high-fidelity optimizations,
where the maneuver aerodynamics is often analyzed using a lower-fidelity model, such
as by using a coarser grid [39]. Furthermore, structural fidelity is more important for
the maneuver point than cruise because it computes all the stress constraints. Naturally,
the fidelity selection algorithm improves the maneuver structural fidelity more quickly
than the cruise counterpart.

However, some of the selections could improve, particularly for the cruise structural
fidelity. The algorithm waited until the final optimization to switch to the high-fidelity
structural model for the cruise analysis. This is because the only output directly
computed by the cruise structural solver is the structural mass. The mass is computed
accurately for all structural fidelities because it is a simple linear computation. This
results in an insignificant contribution in the objective error from the mass computation.
These two effects, combined with the relative insensitivity of the fuel burn objective
with respect to the structural mass [32], result in the selection algorithm favoring
lower-fidelity models for the cruise structural analysis. The error introduced by using
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Table 5: Sequence of fidelities for the aerostructural optimization, showing the fidelity used,
the computational costs, and the number of major iterations taken. The fidelity combination is
represented by four columns corresponding to the four analyses in the two-point aerostructural
problem. The cost is given in proc-hours, and the relative cost is normalized by the total cost
of the multifidelity approach.

Cruise Maneuver
Number Aero Struct Aero Struct Cost % Cost Iterations

1 E1 O2L1 E1 O2L1 0.95 0.05 80
2 R2 O2L1 E1 O2L0 12.72 0.71 43
3 R2 O2L1 R2 O2L0 0.53 0.03 16
4 R1 O2L1 R2 O2L0 0.53 0.03 14
5 R1 O2L1 R2 O3L0 1.22 0.07 33
6 R1 O2L1 R1 O3L0 32.03 1.79 35
7 R0 O3L1 R1 O3L0 275.01 15.38 15
8 R0 O3L1 R0 O3L0 643.70 36.01 16
9 R0 O3L0 R0 O3L0 821.08 45.93 26

Total 1787.79 100.00 278

High-fidelity R0 O3L0 R0 O3L0 4379.05 244.94 116

a low-fidelity structural model is more than just an inaccurate mass computation. A
lower-fidelity structural model would yield inaccurate structural displacements because
of the coupled aerostructural analysis. This would result in an inaccurate aeroelastic
flying shape and, therefore, inaccurate lift and drag computations. This coupled effect
corresponds to the red entries in the correlation matrix shown in fig. 6, which are not
yet accounted for. In the future, we plan to address this issue and improve the sequence
of fidelities chosen.

Now, we examine the optimizations in more detail. First, we plot the intermediate
designs at the end of each sub-optimization to show the sequence of optimizations.
Figure 10 shows the structural panel thicknesses at the end of each sub-optimization.
The initial design of uniform thickness is also shown. Similarly, fig. 11 shows the
corresponding structural failure when analyzed with the same fidelity as used in
optimization, where a value of 1.0 indicates the yield limit. Despite the loose convergence
tolerance of earlier optimizations, their final stress distributions are still quite close to
being optimal, with significant regions of the wingbox close to the yield limit. Since
the vast majority of the design variables are these structural thicknesses, their rapid
convergence is a good indication of the proposed methodology’s effectiveness.

Next, we plot some design variables over the optimization history in fig. 12, comparing
the progress made by the single and multifidelity approach. We have selected design
variables plotted against major iterations throughout the optimization on the left.
As expected, the single-fidelity approach took significantly fewer major iterations to
arrive at the optimum. However, this is misleading because the earlier iterations in the
multifidelity approach are significantly cheaper. When adjusted for the computational
cost, the multifidelity approach is much quicker, as shown on the right. The earlier,
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Figure 10: Sequence of structural panel thicknesses at the end of each sub-optimization,
showing the rapid convergence in the early optimizations.

cheaper optimizations required far fewer resources. By the time we start the last
few expensive optimizations, the designs are so close to the optimum that only a few
iterations are needed.

Similarly, we plot the optimization history for a few representative outputs in fig. 13.
Unlike design variables, these outputs are not continuous across optimizations since the
same design analyzed using different fidelities will yield different outputs. Nevertheless,
the outputs still converge relatively quickly when plotted against computational cost.

Figure 14 shows the normalized distance traversed by the two optimizations, which
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Figure 11: Sequence of stress failure values at the end of each sub-optimization, where a
value of 1.0 indicates the yield limit.

provides a good idea of the progress made throughout the optimizations. Because the
design variables vector x is composed of entries of varying magnitudes, the design
variables are first scaled element-wise following the scaling factors in table 6. These
scaled design variables x̂ are then used to compute a scalar distance metric at each
optimization iteration, using

d(x̂i) =
∥x̂i − x̂final∥2

∥x̂initial − x̂final∥2
. (13)

This distance metric is normalized such that the initial design vector x0 is one unit
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Figure 12: Selected design variables during the course of optimizations. Because we hot-start
each optimization, these lines are continuous. Despite taking more iterations to converge, due
to cheaper, lower-fidelity models, the design variables converged more quickly when measured
using computational cost.
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Figure 13: Selected function outputs during the course of optimizations. The discontinuity
is due to the same design being analyzed by different fidelities.

distance away from the final high-fidelity optimum. Throughout the optimizations, the
design gradually converges to the final optimum.

From fig. 14, the multifidelity approach uses the low-fidelity optimizations at the
beginning to make significant progress towards the final optimum while using minimal
computational resources. The first five optimizations cost less than 1% in total but
can obtain a design that is 70% of the distance to the final optimum. However, it is
worth noting that not all the optimizations took the design closer to the optimum. For
example, the third optimization took the design further away. This is not unexpected
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Table 6: Normalization factors on the design variables used to compute distances within the
design space.

Design variable Scaling

αcruise 0.1◦

αmaneuver 0.1◦

Twist 0.1◦

Thickness 0.0001m

since there is no guarantee that the distance will reduce monotonically throughout. Due
to the nature of SQP, the optimization will typically follow the constraint boundary
once a feasible point is found. This may result in a circuitous path within the design
space. Ultimately, as we improve the fidelities used and tighten the termination criteria,
we see the optimization rapidly converging to the final optimum.

Lastly, we plot the merit function, the feasibility, and the optimality tolerances for
the optimization in fig. 15, as computed by SNOPT. The merit function is defined
as the augmented Lagrangian plus a quadratic penalty term for constraint violations
and is used during line search to find an appropriate step length. The feasibility and
optimality tolerances are used as termination criteria and are good metrics for judging
the progress of the optimization. Because of the efficient hot start, later optimizations
in the multifidelity approach can quickly reduce the feasibility and optimality compared
with the single-fidelity approach that also used the most expensive high-fidelity model.
Furthermore, the feasibility and optimality plots show that the earlier optimizations
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Figure 15: Optimization metrics as reported by SNOPT over the course of the optimizations.

were not fully converged. Instead, the error-based switching criteria terminated each
optimization at an appropriate time without over-converging on the lower-fidelity
models.

Overall, we see that the multifidelity approach uses more iterations compared to
the single-fidelity approach, but the majority of those iterations were spent on the
low-fidelity models. This allowed the optimizer to “learn” the optimization problem by
building up the approximate Hessian while moving closer to the final optimum. The
final few optimizations using higher-fidelity models took fewer iterations and offered
significant computational savings. Ultimately, a 59% cost reduction is achieved while
obtaining the same numerical optimum.

7 Conclusion
We present a novel multifidelity approach to perform multipoint, multidisciplinary

design optimization. By leveraging existing gradient-based techniques, we preserve key
capabilities, such as handling large-scale optimizations with hundreds of design variables
and constraints, as well as provable convergence to the high-fidelity optimum. In
addition, the framework can handle a large number of fidelities, automatically filtering
out those that are not considered useful and selecting appropriate fidelities during
optimization.

The approach first quantifies the errors and costs in each fidelity analysis. We
then perform a sequence of single-fidelity optimizations, robustly hot-starting the
optimization each time to preserve all state variables within the optimizer. Each
optimization is terminated by error-based feasibility and optimality criteria. We then
propagate the discipline errors to system-level objective and constraint function and
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construct a single metric used to select the subsequent fidelity. This process is repeated
until we arrive at the high-fidelity optimum.

We demonstrate the approach on a two-point aerostructural wing optimization
problem, using a mixture of fidelities with varying physics and discretization. A total
of nine sub-optimizations were performed, where the chosen fidelities were intuitive
to understand from an engineering perspective. For example, the algorithm favored
improving the maneuver structural fidelity early because it is both relatively cheap
and important. The multifidelity approach arrived at the same numerical optimum
using only 41% of the computational cost compared to the high-fidelity approach. The
low-fidelity models were effective in making progress towards the high-fidelity optimum
and providing a good initial guess for the approximate Hessian and other optimizer
states. As a result, few major iterations are needed in the higher-fidelity optimizations,
resulting in significant cost savings.

It would be interesting to apply the approach to other large-scale applications in
future work to see if similar performance is realized.
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