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Abstract

This paper outlines a method for optimizing the design of a lithium-ion battery pack for hy-
brid vehicle applications using a hybrid numerical optimization method that combines multiple
individual optimizers. A gradient-free optimizer (ALPSO) is coupled with a gradient-based op-
timizer (SNOPT) to solve a mixed-integer nonlinear battery pack design problem. This method
enables maximizing the properties of a battery pack subjected to multiple safety and perfor-
mance constraints. The optimization framework is applied to minimize the mass, volume and
material costs. The optimized pack design satisfies the energy and power constraints exactly
and shows 13.9 — 18% improvement in battery pack properties over initial designs. The optimal
pack designs also performed better in driving cycle tests, resulting in 23.1 — 32.8% increase in
distance covered per unit of battery performance metric, where the metric is either mass, volume
or material cost.
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1. Introduction

Hybrid vehicles are becoming increasingly common as automakers make use of alternative
energy storage systems to improve vehicle performance and efficiency [1, 2], and to reduce their
environmental impact [3]. Among the alternative energy storage systems, lithium-ion batteries
are a popular choice due to their high energy densities and cycling durability [4]. Plug-in hybrid
electric vehicles (PHEV) incorporate these batteries to provide all-electric driving range for daily
commuting. The main problem with lithium-ion batteries is that their energy density is orders of
magnitude lower than that of gasoline. As such, the lithium-ion battery packs on PHEVs tend to
be heavy, bulky and expensive. This limits the all-electric driving range the PHEV can sustain,
and hence reduces the advantages of the hybrid drivetrain. Therefore, an optimally designed
battery system is essential to maximize the potential benefits of PHEV.

Lithium-ion electrochemical modeling has been well studied in the past 20 years, with models
of varying degrees of fidelity being introduced. Doyle and Newman [5] introduced a continuum
formulation to model the ion transport and kinetics within an electrochemical cell. Equivalent
circuit models simplify cell mechanisms and reduce a battery to a few parameters identified by
simplified circuits [6, 7]. These models have been subsequently applied to analyze battery per-
formance in electric vehicle operations [8, 9]. Ramadesigan et al. [10] provided a comprehensive
overview of various model and simulation techniques of lithium-ion batteries from a system en-
gineering perspective. A number of authors have examined the development and modeling of
electrochemical energy storage systems for vehicle applications as well. Cooper [11] has exam-
ined the use of lead-acid battery for hybrid electric vehicles. Liaw and Dubarry [12] proposed
a methodology to understand battery performance and life cycle through driving cycle and duty
cycle analyses. This enables transfer between the laboratory and real-life battery testing by pro-
viding a realistic model to simulate battery performance using real-life test data [13].

While numerical models provide an understanding of the physics of battery operation, op-
timization algorithms provide the means to maximize the battery properties and performance
in hybrid vehicle operations. Shahi et al. [14] applied a multi-objective optimization approach
for the hybridization of a PHEV subject to Urban Dynamometer Driving Schedule (UDDS) and
Winnipeg Weekday Duty Cycle (WWDC) drive cycle requirements. Wu et al. [15] described a
methodology to minimize the drivetrain cost of a parallel PHEV by optimizing its component
sizes. Hung and Wu [16] developed an integrated optimization strategy in which both the com-
ponent sizing and control strategies are taken into consideration to maximize the energy capacity
stored while minimizing the energy consumed for a given driving cycle. Optimization of com-
bined component sizing and control strategies have been explored by Zou et al. [17] to study the
hybridization of a tracked vehicle, and by Kim and Peng [18] for the design of fuel cell/battery
hybrid vehicles. Darcovich et al. [19] extended lithium ion battery use to improve residential
energy storage with micro-cogeneration by examining high-capacity cathode materials.

While power management, control strategies and component sizing all play key roles in
achieving greater overall vehicle efficiency, a detailed optimization of PHEV battery packs has
not been considered. Most of the earlier battery optimization works have focused on single-cell
optimization, where the battery is optimized for maximum energy density [20, 21, 22, 23, 24].
More recent efforts have optimized the energy capacity of battery cells with respect to different
power capacities by varying the applied current [25, 26]. Most optimization studies, however,
have ignored the multitude of requirements due to hybrid vehicle operations. Specifically, the
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battery pack has to satisfy: 1) voltage and current constraints for both safety reasons and to min-
imize power electronic cost, and 2) energy and power requirements for performance. To address
these issues, we present a numerical framework to optimize the mass, volume and material costs
of the battery pack, while satisfying all relevant requirements. By combining efficient numer-
ical methods with existing battery models, waste attributed to sub-optimal pack design can be
reduced. This type of analysis is especially important as electric vehicles become more main-
stream and higher volume where small variation from the optimal solution, which may only re-
sult in slight overdesign (in terms of cost or volume), results in large penalties when compounded
over a large quantity of vehicles. This type of analysis also provides a quick, cost effective design
tool in the early phases of vehicle development - giving realistic guidelines on what is possible
in terms of cost, size, and weight for a given battery chemistry.

In the following sections we explain the details of the numerical framework followed by the
optimization results for a representative PHEV battery pack design. Using the optimization re-
sults we aim to demonstrate that the resulting battery pack is able to fulfill the various PHEV
operation requirements most efficiently, hence maximizing the potential gains of PHEV opera-
tion. Finally, three federal test drive cycles are used to evaluate the performance of the battery
designs by comparing the all-electric driving ranges.

2. Methodology

This section presents an overview of the optimization framework and the details of the indi-
vidual components. An optimization problem has the general form:

minimize  f(x), fR">R
Xmin < X < Xmax (1)
subject to cix)<0 j=1,..,m

o(x)=0, k=1,../

where f(x) is the objective function to be optimized with respect to the bounded variables x, and
subject to inequality constraints c(x) and equality constraints ¢(x).

The optimization process is an iterative one that repeatedly samples the design space to locate
the optimal design point, as shown in Figure 1. Both gradient-free and gradient-based optimizers
can be employed to solve the battery pack optimization problem. There are two main components
to this numerical framework: 1) the numerical optimizers that determine the search direction
and convergence criteria of the numerical processes, and 2) the objective function or battery
model. The battery model can be further divided into cell model and pack model. The following
subsections will explain each of these components in detail.

2.1. Optimization technique

The performance and properties of a single electrochemical cell is determined by morpho-
logical parameters such as the electrode porosity and thickness. Physically, the output of the
cell should vary smoothly with these continuous variables, though the effects can be nonlinear.
Gradient-based optimization methods are most apt at handling problems that have smooth design
space and are convex near the optima. While the design at the cell level involves continuous vari-
ables, the battery layout (number of cells in series and parallel) at the pack level requires integer
values, thus making the battery pack design a mixed-integer optimization problem. Gradient-
free optimization methods do not require design space to be continuous or smooth, thus enabling
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easier coupling with mixed-integer problems. However, the lack of gradient information tends
to make gradient-free method less efficient than gradient-based method, and there is less confi-
dence in the obtained results due to lack of mathematical optimality conditions. For the battery
design problem specified here, we propose a hybrid optimization scheme that takes advantage
of the the independence between the cell design and the pack design. The top half of Figure 1
shows the initial design phase during which a rudimentary optimization using a gradient-free op-
timizer is carried out to determine the optimal integer variables. Results from the gradient-free
optimization are used as the starting point of the gradient-based optimization to obtain a refined
cell design with respect to the continuous variables, as shown in the bottom half of Figure 1. The
gradient-free optimizer minimizes the chance of finding a local minimum in the nonlinear design
space and the gradient-based optimizer pinpoints the exactly location of the optimum. The hy-
brid optimization process takes advantage of the different niches of the two classes of optimizers
to facilitate an efficient optimization process. The current optimization approach takes about a
week of computational time to reach convergence, with the bulk of time spent in the gradient-free
optimization. However, it should be noted that the gradient-free optimization can be parallelized
and thus significantly shorten the computational time.
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Figure 1: Extended design structure matrix for the optimization process [27]. Top: gradient-free optimization is used to
determine value of integer variables and provide starting points for the gradient-based optimizations. Bottom: gradient-
based optimization (shown in the red box) is used to fine-tune the continuous variables at the optimum



The overall battery pack problem is a nonlinear mixed-integer problem with constraints.
The optimizer has to traverse a discontinuous constrained design space and handle nonlinear
problems efficiently. For this reason we choose the augmented Lagrangian particle swarm op-
timization (ALPSO) method implemented within the pyOpt framework [28, 29]. The ALPSO
algorithm is a stochastic, population-based method that employs a group of candidate solutions—
known as particles—to identify the optimum [28]. These particles move about in the design space
by updating their positions and velocities according to the following equations:

x;<'+l = x;< + YlchAt ) ) ) (2)

Vi1 = woV, +wir (p;c - x;{) + wory (pi - xj{)
where xjC is the position of the ith particle at iteration &, V;; is its velocity vector, At is the time
step size, pj{ is the position with the best objective function for particle i (particle best), and pi
is the global position with the best objective function for all the particles up to the kth iteration
(global best). The movements of the particles are hence governed by their own movement history
as well as the collective influence of the entire swarm. The weights, wy, w; and w; are assigned
to each component of the velocity update. They are bound by the following relations to ensure
stability and to guarantee convergence [28]:

O<wi+wy <4
wWi+w:
R -l<wy <1

3)

The constraints are included by introducing explicit Lagrangian multiplier estimates for each
constraint into the objective function. This approach transforms the constrained problem into
an unconstrained one, while preserving the feasibility of the solution, as detailed by Jansen and
Perez [28].

The gradient-based optimization method used here is the sequential quadratic problem (SQP)
method. The SQP method assumes the design space near the optimum to be convex and approx-
imates the nonlinear problem as a quadratic subproblem at each iteration. The optimum corre-
sponding to each quadratic subproblem is then used as the starting point for the next iteration.
From the many different SQP implementations available, we select the SNOPT package [30].
The SQP method solves the following subproblem:

minimize %STWkS + g,{s
subject to ATs+¢& =0

“4)

where s is the step size from the current iteration point that minimizes the quadratic subproblem,
g 1s the gradient vector of the objective function with respect to the design variables, Wy is the
estimate of the second-order derivatives using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [31], which is a quasi-Newton method to solve unconstrained nonlinear optimization
problems. The matrix A7 is Jacobian of the constraints with respect to the design variables.
At each iteration, the solution to the quadratic subproblem is obtained using a quasi-Newton
approach.

One of the keys to take full advantage of gradient-based optimization is efficient and ac-
curate computation of derivatives. Given that the battery pack design problem has a relatively
small number of variables, the complex-step approximation method [32] is used to obtain the
derivatives. The complex-step method is similar to the finite-difference approach of derivative
estimation but it has the added advantage of retaining machine precision for arbitrarily small step
sizes. The implementation of complex step to obtain derivatives in battery problem is explained
in our earlier effort [25].
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Figure 2: Schematic diagram of a lithium-ion insertion cell

2.2. Cell model

Battery analysis starts with a physics-based cell model, and for the work described in this
paper, we use a pseudo 2-dimensional cell model that incorporates homogenous electrode for-
mulation with concentrated solution theory [5, 33, 34]. A full sandwich lithium-ion cell (Fig. 2)
consisting of porous materials for both the positive and negative electrodes are considered. The
porous electrodes, which are comprised of solid active materials and liquid electrolyte, are mod-
eled as a continuum medium [5]. Microstructural effects in the electrodes are ignored and the
influence of porosity is instead accounted for using Bruggeman’s relation for spherical parti-
cles [35]. The model takes into account the key transport processes in both solid and liquid
phases and the interfacial reaction rate is modeled using the Butler-Volmer equation. The gov-
erning equations for the cell model are listed in Table 1. The state variables solved in the model
are the ion concentration in electrolyte, ¢, and in the solid matrix, c,, the interfacial current den-
sity at the solid matrix surface, i,, and the potentials in electrolyte and solid matrix, ®, and ®;.
These state variables in turn provide cell properties that are required in the battery pack model.

State variable Governing equation
c ex=V-eD(I - ‘211%) Ve + —’W'Zlfv*:;w ~ Vv taj.
cs G =V D, (1 - GPReve, )+ B8 -V e,
iy i, =1, [exp (w) — exp (__QCF(‘Z&IIQ_T%_U))]
b V¢2:_%+¥(l_ti)(l—%)V1nc
1 I—i,=—-0V¢,

Table 1: Governing equations for a cell model using homogenous electrode formulation and concentrated solution theory.



2.3. Battery model

A simplified battery pack model that consists of identical electrochemical cells arranged in
series and parallel is assumed, as shown in Figure 3. There are n modules arranged in series,
and each module consists of m layers arranged in parallel. The cells are arranged in such a
way that they have to satisfy the safety (voltage and current) constraints. In reality, the cell
properties differ slightly due to manufacturing imprecisions, causing variations in cell capacities.
As such, accurate battery pack modeling requires each cell to be treated individually [36]. Charge
equalization techniques are employed to balance the cells to enhance battery life and to maintain
total capacity as well [37, 38]. Variations in cell properties also cause additional difficulties in
estimating the battery state of charge (SOC). Various methodologies [39, 40, 41, 42, 43, 44] have
been developed to keep track of the SOC in the cells and estimate the remaining capacity.

These additional details in the battery modeling are ignored, as they are not fundamental
to the design philosophy outlined in this work. Accounting for these issues would increase the
computational burden without shedding new insight into the pack design. However, it should be
noted that using the physics-based cell model as the foundation for the pack model would easily
allow cell-to-cell variations and accurately reflect intrinsic cell imbalance due to variations in the
amount of active materials in the cells [36].

= [t R
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e HH HiF

S b L

+

module

Figure 3: Schematic layout of a battery comprised of uniform cells

3. Problem formulation

PHEYV operations require large battery packs of high energy density cells to provide adequate
all-electric driving range. Currently only lithium-ion batteries are able to fulfill the requirements.
There are various viable lithium-ion electrochemical cells of different energy densities, costs
and cycling stability available. A comparison of energy density of various lithium-ion cells
using dimensional analysis has been provided by Du et al [45]. For the current work we choose
a cell consisting of a lithium-ion cell with spinel manganese oxide LiMn,0O, for the cathode
and mesocarbon microbeads (MCMB) graphite for the anode. Manganese oxide is used as the
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cathode material, since it is relatively inexpensive, easily disposable, and exhibits good cycling
resistance. The validation of lithium-ion cell with spinel manganese cathode and graphite anode
using the cell model outlined in Section 2.2 has been provided by Doyle et al [46]. The fixed
properties of the cell are listed in Table 2.

Parameters Value
cathode material Spinel Mn,Oy4
cathode initial stoichiometric parameter (y in Li,Mn,Oy) 0.2
coulombic capacity of cathode material 148 mAh/g
density of cathode material 4280 kg/m?
volume fraction of inert filler in cathode 0.1

bulk diffusivity 1073m?/s
solid particle radius 2 um
anode material MCMB 2528 graphite
anode initial stoichiometric parameter (x in Li,Cg) 09
coulombic capacity of anode 372 mAh/g
density of anode material 2260 kg/m*
volume fraction of inert material in anode 0.05
bulk diffusivity 10783m?/s
solid particle radius 5 um
electrolyte material LiPFg in EC:DMC
initial salt concentration 1000 mol/m?
inert filler material PVDF
ambient temperature 298 K
cycling rate 1.0C
P-to-N ratio 1.0

Table 2: List of Li-ion cell material properties and fixed parameters [47]

In addition to the fixed variables, six free variables (Table 3) are selected to determine the
optimal cell design and pack configuration that best fulfills the pack requirements. These six
variables are chosen as they represent design parameters that can be readily manipulated by the
battery manufacturer to determine the battery pack properties. There are other parameters such
as diffusivity and conductivity as well as electrode particle sizes that affect the performance of
the cell. Our earlier work [25] has shown that in the absence of degradation mechanisms and
side reactions, these other variables invariably go to the bounds at optimal cell designs. Their
relative effects on energy density of the cell have been shown to be less than the morphological
parameters chosen for this study [22]. Therefore, they are neglected in this study. Among the
six variables, the electrode thicknesses and porosities are morphological parameters that balance
the amount of energy content in the cell with the ion transport requirement. A thicker electrode
contains more active material for the intercalation process, and hence higher energy capacity. A
more porous electrode allows higher rate of ion transport by increasing the effective transport co-
efficient. However, it reduces the fraction of charge-storing active materials and overall capacity
of the cell. The competing effects of higher energy and higher power results in an optimal cell
design that must reach a compromise between energy and power. The cutoff voltage determines
the lowest SOC in the cell that can still fulfill the power requirement. The peak power available
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is dependent on the capacity remaining in the battery and must be accurately determined to avoid
over-discharging the battery. While the SOC and cell voltage required to calculate peak power
can be conveniently extracted from the cell model in our framework, a more practical approach
will involve a multi-parameter, model-based method [48] to estimate the peak power. The last
variable is the number of cells connected in parallel within each module, which also determines
the maximum current of the pack. The number of modules connected in series is fixed by the
maximum voltage of the battery pack, which will be explained in greater detail at the end of this
section.

Parameters Lower bound  Upper bound
cathode thickness (um) 40.0 250.0
anode thickness (um) 40.0 250.0
cathode porosity (u«m) 0.1 0.6
anode porosity (um) 0.1 0.6
cut-off voltage (V) 2.6 3.6

no. of layers 1 30

Table 3: List of design variables and their ranges

Three key properties of the battery pack are identified as the objective functions to be min-
imized, which are the mass, volume and material costs. Each objective can be given as linear
functions of the design variables:

Mass = nmAY Y €pil;
7
Volume = nmAYl; (5)
J
Cost = nmA3Y Y bi€jpil;
J 1

where n,m are the number of modules and layers in the battery pack, A is the cross-section of
each cell, €, p and b are the volume fraction, the mass density and the unit cost [49] of the
material respectively, and [ is the thickness of the cell component. The index j cycles over the
cell components, namely the positive electrode, separator, negative electrode, and the current
collectors, while i cycles over the cell materials. Note that if the materials with higher density
have higher unit price, then the cost becomes directly correlated with the mass. Reducing the
battery pack mass will invariably reduce the cost as well.

Equations (5) show that the objective functions are linear with respect to the design variables.
Minimization of the objective functions without proper consideration of constraints simply re-
sults in the trivial solution of all design variables at their lower bounds. Therefore, a useful
battery pack design requires satisfying appropriate design constraints. These safety and perfor-
mance requirements impose limits on how close to the lower bounds the design variables can go.
The constraints for our problem are listed in Table 4.

The energy of the battery pack is computed by galvanostatic discharge of the cells at 1C
cycling rate, while the maximum power is the average power available during a 10-second max-
imum current pulse at the end of the 1C discharge. The maximum power is computed at the
lowest SOC, as this is the point where cell voltage is the lowest. If the battery can meet the
power requirement at the end of discharge, it can meet the power requirement throughout its
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Pack Cell
Voak < 400V n Veerime < 400V
Voltage "0 S 580y N Vena > 280V
Current I, < 420A = m-l..; < 420A
Energy E . = 12kWh nm-E.; > 12kWh
Power Ppack = 120kW nm- P.y > 120kW
Charge balance 0, = 0

Table 4: Conversion of pack-level requirements to cell-level constraints

operation. The 10-second current pulse requirement provides a good estimate of the maximum
power required for vehicle operation, as it mimics the power demand required for accelerating
onto the highway. Based on the constraints outlined in Table 4, the maximum voltage limits the
number of battery modules connected in series. The maximum voltage in a cell is the open-circuit
voltage at the fully charged state, and the maximum pack voltage divided by this value provides
the number of modules allowed in the battery pack. In this study the number of cells connected
in series is fixed at 99. The minimum voltage is computed at the end of the 10-second maximum
current pulse and it sets the limit on the depth of discharge of the cells. Hence, the optimization
problem can be simplified by replacing the voltage constraints with the fixed number of modules
in the pack and the minimum cell voltage to terminate discharge.

4. Results and discussion

4.1. Discharge profile

A typical discharge profile obtained from the cell-model simulation is shown in Figure 4,
which shows both the cell voltage and the current density profiles. The small insert in Figure 4
shows the voltage and current profile at the transition between the galvanostatic discharge and
peak power current pulse. The sudden jump in the cell current creates a discontinuity in the
voltage profile. The cell voltage decreases rapidly as the amount of charge is depleted at a
greater rate.

The secant method is used to obtain the maximum current during the 10-second pulse. The
maximum current is defined as the largest current required for maintaining the minimum voltage
at the end of the pulse. The iterative process for the maximum current computation is shown in
Figure 5. The final cell voltage decreases monotonically as the pulse current is increased, and
the negative correlation between the maximum current and the final cell voltage is shown in the
insert.

4.2. Optimization results

As mentioned previously, three different optimization problems are solved using the opti-
mization framework to design the PHEV battery pack: 1) to minimize battery mass, 2) to mini-
mize battery volume, and 3) to minimize battery material cost. The six design variables are listed
in Table 3 and the four constraints are presented in Table 4. To compare the performance of
the optimized cell designs, three simple initial pack designs are selected. The first two designs
follow the general ‘ad-hoc’ guidelines for cell electrode design; the first one is a power cell with
thin electrode and high porosity, and the other is an energy cell with thick electrode and low
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Figure 4: Discharge profile for a lithium-ion cell undergoing 1C constant current discharge (main) followed by a 10-
second peak power pulse at the end of the discharge (insert)

porosity. The third one is based on the earlier work of cell optimization subjected to a power
constraint [25]. The optimized cell selected for comparison is designed at the same power-to-
energy ratio as specified in the problem definition for the PHEV battery pack. The difference
between the single cell and pack design philosophy is that single cell optimization is performed
at one discharge rate, while the power and energy requirement for the pack design are performed
at different discharge rates, resulting in additional constraints in the design problem. The spec-
ifications for the three initial designs and their properties are listed in Table 5. All three initial
designs satisfy the capacity balance requirement imposed on the problem.

Analyses of initial pack designs show that the optimized single cell and power cell designs
have similar properties, with the power cell exhibiting slightly better performance. The energy
cell design is the worst among the three, as its thick electrodes and low porosity result in an
expensive and bulky cell without providing any energy density improvement over the other two.
All three initial pack designs require 13 layers of cells in parallel to satisfy the pack constraints.
This results in the energy cell designs being the heaviest, most voluminous, and most expensive.

Given that the three separate objective functions are not linear combinations of one another,
the optimal design for one objective should not be the optimum for another. Table 5 shows that
the power cell design performs the best for all three objectives, it is thus not expected to be the
true optimal design. In addition, while the power requirement of the pack is exceeded, the energy
capacity requirement is not fully satisfied by any of the three initial designs. Therefore, further
improvement is possible and can be achieved using numerical optimization.

The gradient-free optimization is first carried out to obtain an approximate estimate of the op-
timal design and to determine the integer value of cell layers. A representative iteration history of
cost optimization is shown in Figure 6. Note that the ALPSO is a population-based optimization
method such that at each iteration, there are multiple design points existing simultaneously. The
plots shown here contain only the design point that best satisfies the design problem criteria at
each iteration, evaluated by the Lagrange function for each particle [28].

Subplots a, b and c in Figure 6 show how the six design variables change during the iteration
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Figure 5: Discharge profiles of the 10-second peak current phase. The secant method is used to determine the maximum
current such that the cell potential is exactly at the minimum voltage at the end of the discharge (insert)

while subplot 6d shows the evolution of the objective function (solid line) and the normalized
constraint values (dashed lines) during the optimization process. The normalized constraint value
is given as a percentage, with 100% and above indicating that the constraint is satisfied. The
charge balance constraint is an equality constraint that has to be satisfied exactly at all times
and hence is not plotted. The optimization history shown in Figure 6 can be broken down into
three phases. The initial design has high number of layers and this resulted in a high battery
cost and extremely high current. The first six iterations reduced the number of layers and hence
lowered the current to below the maximum allowed value, however this results in energy and
power requirements being not satisfied. Further adjustment of the design variables in the next
five iterations converged close to the final cell design, which shows that the energy and power
constraints are fulfilled exactly, while the maximum current is well above the maximum allowed
level. Given the competing effects of energy and power in the battery cell, this result is expected,
as the optimal cell design would be one that satisfies but does not exceed both requirements.

ALPSO is a stochastic optimization method, hence multiple optimizations runs were per-
formed for each optimization problem. The best results are listed in Table 6. Optimizing for
mass and material costs results in very similar optimal cell designs. In fact, the optimal design
obtained for cost minimization has the lowest battery pack mass as well. Given that reduction
in battery mass naturally leads to less materials and hence lower cost, this result is not surpris-
ing. While the difference between the minimal-mass weight and minimal-cost weight is within
the convergence tolerance of the optimizer, it also indicates the ALPSO is unable to locate the
true optima in this situation, such that the final result found for mass minimization problem is
sub-optimal.

A comparison between Tables 5 and 6 shows decreases of 13.4%, 18.1%, and 17.9% in mass,
volume and cost respectively from initial to optimal designs. Compared with the best initial cell
designs, all three optimal designs have thicker electrodes and lower porosities. Therefore each
cell has higher energy density, while still satisfying the power requirement. The energy and
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power cell  energy cell optimized single cell

cathode thickness (um) 129.9 189.8 141.7
anode thickness (um) 80.0 120.0 70.0
cathode porosity 0.4 0.2 0.442
anode porosity 0.4 0.2 0.322
cutoff voltage (V) 3.53 3.63 3.53
no of layers 13 13 13

mass (kg) 86.89 126.00 87.14
volume (dm?) 29.34 39.62 29.52
cost ($) 1398 1862 1401
energy capacity [> 12kWh] 11.9 11.8 11.9
maximum current [< 420A] 388.0 385.2 389.3
peak power [> 120kW] 121.5 123.3 121.7

Table 5: Battery cell properties of initial designs

power requirements are satisfied with far fewer cells (9 or 10 layers vs. 13), and hence better
overall pack properties.

There are some differences between the three optimized designs. The mass and cost mini-
mization problems produce optimal cell designs that have thick electrodes, such that the cell has
as much active material for lithium ion intercalation as possible. This is to maximize the energy
density of the cell and to reduce the total amount of materials needed. While cost minimiza-
tion problem results in a battery pack lighter than the one obtained from the mass minimization
problem, the difference is within the convergence tolerance of ALPSO. Volume minimization,
on the other hand, produces an optimal cell design that has thinner electrodes with lower porosi-
ties. This results in a cell design that has lower gravimetric energy density, but higher volumetric
energy density compared to the designs for the other two problems.

The optimal cell designs are further improved by using SNOPT to refine the continuous
cell variables. The gradient-based optimization is initiated at the optimal designs obtained from
ALPSO. The number of layers in each module, which is a discrete variable, is fixed at the values
around the optimal number of layers obtained via ALPSO, while the gradient-based optimizer
fine-tunes the continuous variables. The results obtained using SNOPT are listed in Table 7.
Again we notice the similarity between the mass minimization and cost minimization solutions.
The two optimal designs are almost identical, and the material cost difference between the two is
less than one dollar. The volume minimization problem produces a battery pack with much thin-
ner electrodes and lower porosities. Comparing the SNOPT and ALPSO volume minimization
results, the cathode and anode thicknesses are 21.3% and 25.6% thinner respectively while the
porosities are 19.1% and 40.5% less. The number of cells required increases by 20%. The low
electrode porosity means the cell design is less adequate to handle high discharge rate, however
this is alleviated by having a larger number of cells connected in parallel and hence a smaller
current density through each cell. The SNOPT optimal design has higher mass and material cost
but lower volume. While utilizing larger number of cells with lower energy density may seem
counter-intuitive, it demonstrates the ability of the optimizer to drive the design to achieve the
objective, which in this particular instance is to minimize the volume of the pack.

Results in Table 7 show that improvements from gradient-free optmization to gradient-based
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Figure 6: Iteration history of an optimization to minimize battery cost showing the evolution of: a) electrode thicknesses,
b) cutoff-voltage and no of layers, c¢) electrode porosities, and d) cost and normalized inequality constraint values

optimization results are less than 1% for all three optimization problems. This is mainly due to
the flatness of the design space near the optimum, and there is little gain in pinpointing the exact
location of the optimal designs, as evidenced by the 8% difference in negative electrode porosity
between ALPSO and SNOPT results. Such differences, however, may become more important
as more details about cell modeling are included. For instance, manganese dissolution rate has
been shown to correlate to the interfacial surface area in the porous electrode [50]. Increase in
cathode porosity will increase interfacial surface area and could potentially cause accelerated cell
degradation. Inclusion of additional degradation mechanisms will likely add nonlinearity to the
design space and further restricts the feasible design regions.

One common problem with gradient-based optimization is that it often converges to local
optimum solutions instead of global best ones. To show that the solutions are indeed global
optimal and that the design space near the solutions are not dominated by local optima, we
obtain the contour plots of the objective functions on the plane that passes through the three
optimal design points of mass, volume and cost respectively. The plane is obtained by projecting
the design space onto the plane spanned by the coordinates of the three optimal design points.
The three optimal points are transformed into the non-dimensional coordinates (0, 0), (1, 0), (0, 1)
respectively on the plane. The shaded area on Figure 7 indicates the region where the energy,
power, voltage and current requirements are all concurrently satisfied. The blue curve indicates
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Propertics Objective function
Mass  Volume  Cost
mass (kg) 7497  75.67  74.90
volume (dm?) 2491  24.02 2448
cost ($) 1153 1169 1147
cathode thickness (um) 169.8 1419  168.8
anode thickness (um) 104.7 86.4 99.8
cathode porosity 0.321  0.272  0.305
anode porosity 0.314  0.252  0.269
cutoff voltage (V) 3.52 3.53 3.53
no of layers 9 10 9
energy capacity [> 12kWh] 12.0 12.0 12.0
maximum current [< 420A] | 398.4  395.0 396.6
peak power [> 120kW] 120.1 1199  120.1

Table 6: Preliminary designs after gradient-free optimization. Results shown are the "best-available’ ones due to stochas-
tic nature of ALPSO algorithms.

the narrow band that fulfills the charge balance requirement, while the black lines show the
design space that satisfies the integer requirement imposed on the number of layers.

In the plots shown in Figure 7, we can see that the objective functions vary smoothly in the
feasible design space. The mass and cost contours vary monotonically in the feasible design
space, while there is a local volume maximum for the volume contour plot. All three opti-
mal design points are located on the boundary of the feasible space, again confirming that the
constraints are active in this design problem. The location of the optimal designs are further
restricted by the charge capacity equality constraints and the integer requirement on the number
of cell layers. Based on the information available in Figure 7, it is clear that the optimal designs
are indeed the best possible designs in the slice of plane shown here. Such information, together
with the smoothness of the objective functions, gives us confidence about the global optimality
of the results. The similarity between mass and cost optimal designs can also be explained from
the contour plots in Figure 7. Comparison of the mass and cost contours reveal that the two ob-
jectives are very similar to one another in the given plane. The gradients for both objectives point
in the same x-direction, and in both cases the best objective functions are on the left boundary
of the feasible space. The similarities of the objectives result in mass and cost optimal designs
being very close to each other in the actual design space.

The optimal cell design for mass minimization problem is compared with the optimal single-
cell design from our previous work [25], in which the optimal cell has the maximum energy
density at constrained discharge rates. Comparison to the optimal cell at 1C discharge rate shows
the PHEV pack cell design has thinner electrodes and higher porosities. This is due to the ad-
ditional peak power requirement at the end of discharge, which imposes a higher ion transport
requirement. The resulting cell design, while not optimal in term of energy density, is able to
meet both the energy and power requirements simultaneously, which is more important given the
variations in power demand under normal driving conditions.
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Propertics Objective function
Mass  Volume  Cost
mass (kg) 7477  79.53  75.06
volume (dm?) 2449 2385 2437
cost ($) 1146 1241 1146
cathode thickness (um) 169.2 111.7 169.4
anode thickness (um) 99.4 64.3 97.5
cathode porosity 0.310 0.220  0.300
anode porosity 0.270  0.150  0.245
cutoff voltage (V) 3.53 3.55 3.54
no of layers 9 12 9
energy capacity [> 12kWh] 12.0 12.0 12.0
maximum current [< 420A] | 395.9 392.5 3944
peak power [> 120kW] 1199  120.1 119.8

Table 7: Refined optimal designs obtained using gradient-based optimizations

Properties Values
vehicle mass (kg) 1500
passenger mass (kg) 150
rolling resistance coeff. 0.01
drag coefficient 0.30
frontal area (m?) 2.0
motor efficiency 0.85
drivetrain efficiency 0.8
generator efficiency 0.85
regenerative braking factor 0.1

Table 8: Properties of the vehicle used to complete the driving cycle

4.3. Driving cycle test

While the optimal designs obtained using the aforementioned optimization framework show
better overall properties than the initial design, it is important to show that they translate to actual
performance advantage in the PHEV operations. We next compare the performance of the battery
packs by simulating discharge using standard federal testing driving cycles. A standard sedan
with the properties listed in Table 8 is used to compute the battery power required to complete
the driving cycles. The power needed to follow the driving cycle at any particular time instance
is given as:

Pyt = Pyec + Pdrug + Proit + Phis (6)

where the total power required is the sum of the power required to overcome aerodynamic forces
(Pgrag), rolling resistance(P,,;;), power miscellaneous systems (P,,;s) and to achieve the required
acceleration (P,..) of the driving cycle. The miscellaneous power refers to the power required
for various auxiliary systems not related to drivetrain and it is given the constant value of 1.0 kW.
Using Equation 6, the power required for any driving cycle can be computed.
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Figure 7: Contour plots of objective functions on the plane spanning the three optimal design points

The battery packs are discharged through the three standard federal driving cycles: UDDS,
SCO03 and US06, with their speed and corresponding power profiles shown in Figure 8. The
UDDS and SCO3 cycles both mimic city driving conditions, with SC0O3 being slightly more
aggressive. US06 simulates highway driving condition. The highway acceleration requirements
impose higher power demands on the battery, with power demands peaking at 100 kW. The
battery is discharged from an initial SOC of approximately 0.8 until the minimum voltage of
280V is reached and the total distance covered for each of the driving cycle is calculated.

Both the initial design and optimal battery packs are discharged through the simulated driving
cycles. The voltage and SOC profiles of the mimimum mass optimal battery pack and the initial
design discharged through the simulated US06 driving cycle are shown in Figure 9. The open-
curcuit voltage (OCV) curve is plotted on the same figure for comparison. The SOC profile
shows that the optimal battery pack lasts longer than the initial design battery pack, resulting in
3.5% longer electric range. The initial battery design contains more cells in parallel compared to
the optimal battery pack, therefore each cell is subjected to a smaller current density. This results
in higher battery pack voltage in the initial design, and less energy lost per cell due to internal
resistance. However, the higher energy density of the optimal battery pack cells still result in
overall better performance.
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Figure 8: Federal driving cycle speed profiles and the corresponding battery power requirement

Battery design
Drive cycle | Initial  Min. mass Min. volume Min. cost

UDDS 53.7km  57.2km 58.1 km 58.1 km
SCO03 48.6km  52.5km 53.4km 53.4 km
UsSo6 39.7km  41.1 km 42.1 km 41.8 km

Table 9: All electric driving range for various battery designs

The all electric ranges for various battery pack designs subject to the three driving cycles are
listed in Table 9. For all three driving cycles, the optimal battery pack designs outperform the
initial battery pack designs in terms of all-electric range. The most improvement is in SC03 cycle
discharge, with the electric ranges of minimum-volume and minimum-cost battery packs almost
10% better than that of the initial design.

While the electric driving range of the optimal battery pack designs show significant improve-
ment over the initial design, a better measure of the battery performance would be to measure the
distance travelled per unit of battery performance metric, where the metric is either mass, vol-
ume or material cost. Figure 10 compares the performance of the optimal battery designs with the
best initial design. While the initial and optimal designs have similar all-electrice drive range, the
optimal designs clearly have better performance per unit of battery performance metric. On av-
erage, the optimal battery packs show 23.1% improvement in distance per unit of battery mass,
32.8% improvement in distance per unit volume and 31.4% improvement in distance per unit
cost.

Results in Table 9 also shows that the minimum-volume battery pack has the longest elec-
tric ranges among the optimal battery pack designs. The disparity between the electric driving
ranges of the various optimal battery packs demonstrates that while the battery packs satisfy
similiar energy and power requirements, the performance is dependent on the driving cycle, or
control variables governing the discharge of the battery. This points to the possible advantages of
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19



performing a design-control coupled optimization. In addition, we only consider the all-electric
operating mode of the PHEV drive and not the overall performance of the PHEV. The problem
definition is limited to minimizing the properties of the battery pack, and this allows decoupling
of the battery from other drivetrain components. To truly optimize the operation of the PHEV,
the hybrid mode, during which both engine and electric power are in use, needs to be considered
as well. The degree of hybridization in the PHEV, which is the ratio of electric motor power to
the total drivetrain power, is shown to affect the optimality of the drivetrain components perfor-
mance [51]. Therefore, the overall hybridization scheme of a PHEV is defined by the battery,
electric motor and internal combustion engine collectively [14]. Inclusion of various components
also necessitates the coupling of power control strategies with design parameters to determine the
optimal performance. Kim and Peng [18] has shown that the ”power management and design”
optimization showed a 17% improvement in fuel economy over “power management only” re-
sults. Consideration of the engine and electric motor sizes could allow for battery design that best
meets the peak power demand during climbing and acceleration, and keeps the engine operation
at maximum efficiency.

5. Conclusions

This work outlines a methodology to perform battery design optimization by coupling a
numerical optimization framework with a physics-based electrochemical cell model. Given the
nonlinear and mixed-integer nature of the optimization problem, a hybrid optimization approach
was developed. A gradient-free optimizer is first used to obtain an approximate estimate of the
optimal design and to obtain the optimal integer design variables. The design is then further
refined using the gradient-based optimization. Such a framework is very useful to obtain the
best possible initial designs, from which further refinement can be carried out by accounting for
additional details such as degradation mechanisms and manufacturing constraints. Comparisons
between the initial and optimal designs show overall improvements of 13.9%, 18.7% and 18.0%
in battery mass, volume and cost, respectively. The optimal designs also perform better in real
drive cycle simulations. The improvements in battery pack properties can be translated to 23.1%
increase in distance traveled per unit mass, 32.8% increase in distance per unit volume, and
31.4% increase in distance per unit cost. The electrochemical cell in this case is assumed to be
ideal and additional capacity fade mechanisms should be considered in the future.
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List of Symbols

Electrochemistry variables
a interfacial surface area
A cross-section area of an electrochemical cell
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b material unit cost

c salt concentration in electrolyte

Cs salt concentration in solid matrix

D diffusion coefficient of electrolyte

Dy diffusion coefficient of solid matrix

S = mean molar activity coefficient of electrolyte
F Faraday’s constant

in transfer current density at the surface of active material
iy exchange current density

i current density in electrolyte

l thickness

m number of electrochemical cell in parallel
n number of electrochemical cell in series
0 charge capacity

R universal gas constant

T temperature

U surface overpotential

a4, @,  anodic and cathodic transfer quotient

€ volume fraction

K ionic conductivity in electrolyte

o ionic conductivity in solid matrix

(O] potential in solid matrix

(0} potential in electrolyte

P material density

Subscripts

0 initial state value

s value in solid matrix

+ positive electrode

negative electrode

Optimization variables

ry, rn

wo
wi, W2

At

Jacobian of constraints w.r.t. design variables
inequality constraints

equality constraints

gradient vector of objective w.r.t. design variables
best position of the ith particle

global best position

random numbers between 0 and 1

solution to the quadratic subproblem in SQP
velocity of particle in design space

inertia weight in ALPSO

confidence parameters in ALPSO

estimate of second-order derivatives in SQP
position of particle in design space

time step value in ALPSO, normally taken to be 1
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