
This is a preprint of the following article, which is available at: http://mdolab.engin.umich.edu

A. Yildirim, G. K. W. Kenway, C. A. Mader, and J. R. R. A. Martins, “A Jacobian-free

approximate Newton–Krylov startup strategy for RANS simulations”, Journal of Computa-

tional Physics, 397:108741, Nov. 2019.

The original article may differ from this preprint and is available at:

https://doi.org/10.1016/j.jcp.2019.06.018.

A Jacobian-free approximate Newton–Krylov
startup strategy for RANS simulations

Anil Yildirim, Gaetan K. W. Kenway, Charles A. Mader, and Joaquim
R. R. A. Martins

Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, 48109

Abstract

The favorable convergence rates of Newton–Krylov-based solution algorithms have in-
creased their popularity for computational fluid dynamics applications. Unfortunately,
these methods perform poorly during the initial stages of convergence, particularly
for three-dimensional Reynolds-averaged Navier–Stokes simulations. Addressing this
problem requires the use of a globalization method such as pseudo-transient continua-
tion, along with an approximate Newton–Krylov startup stage. This class of methods
marches the solution in pseudo-time with a matrix-based approximate Jacobian that
has a lower bandwidth and better conditioning properties compared with the exact
Jacobian. However, this matrix-based approach also has shortcomings, including a
large cost of computing and storing the approximate Jacobian and its preconditioner,
along with the need for an updated Jacobian for every nonlinear iteration. To rectify
these shortcomings, we use herein approximate residual formulations in a Jacobian-free
approximate Newton–Krylov algorithm. With the approximate Jacobian, we compute
the vector products by using the approximate residual computations in a matrix-free
manner while forming a preconditioner based on the matrix-based approximate Jaco-
bian. This approach keeps the approximate Jacobian up to date and mitigates the cost
of forming a matrix-based Jacobian and its preconditioner at each iteration by lagging
the preconditioner between nonlinear iterations. We use varying levels of approxima-
tions with the matrix-free approach and thereby demonstrate the trade-off between
rate of convergence and the cost of each nonlinear iteration. The proposed implemen-
tation uses only the exact and approximate residual formulations and can therefore be
generalized with minimal additional implementation effort to a range of solvers and
various discretizations. The code is available under an open-source license.

1

http://mdolab.engin.umich.edu
https://doi.org/10.1016/j.jcp.2019.06.018

1 Introduction
In multidisciplinary design optimization (MDO) environments [1], computational fluid
dynamics (CFD) is often used to evaluate the aerodynamic performance of a given
design and to compute the objective function and constraint gradients with respect to
the design variables [2–5]. In high-fidelity aerodynamic and aerostructural design opti-
mization processes, hundreds of successive Reynolds-averaged Navier–Stokes (RANS)
simulations and adjoint solutions are required, which use meshes with up to tens of
millions of cells [6–8]. These simulation-based optimizations run on massively parallel
architectures and can take up to three days to complete using one thousand cores for
the more complex aerostructural cases. Because the CFD solver is called repeatedly
during optimization, solver efficiency is even more important than when running a few
cases manually.

However, the robustness of the CFD solver affects optimization applications much
more strongly because, if the solver fails, the optimization run either fails completely
or, at the very least, progresses much more slowly, and a failed run represents lost com-
puting time and requires additional human intervention. This problem is compounded
by the fact that a CFD simulation is more likely to fail within an optimization run
because the optimizer is likely to request the simulation of shapes that a human de-
signer would never request [9]. The failures can be due either to the issues in the mesh
deformation or to the CFD solution itself. In this work, we focus on the robustness of
the CFD solver (we addressed the mesh deformation robustness in previous work [9]).
In this context, obtaining a robust CFD solver at the cost of lower performance is
preferable. Although each simulation might be slower, the optimizations finish sooner
because they require less human intervention.

He et al. [9] studied an aerodynamic shape optimization problem that demonstrates
the importance of robustness. The problem was to minimize the drag at a transonic
condition while constraining lift starting from a circular shape. This required CFD
simulations of many shapes a human designer would not consider, such as the shape
shown in the second frame of Figure 1. Although RANS cannot accurately predict the
aerodynamic performance of such designs due to the massive separation, the gradients
provided the correct trends, and the optimization eventually converged to an optimal
supercritical airfoil for which RANS is valid.

Newton–Krylov (NK) solvers are commonly used in CFD, where Newton’s method
iteratively solves the system of nonlinear equations and a Krylov subspace method
solves the resulting large linear systems during each nonlinear iteration [10]. This is
a desirable approach because Newton’s method has favorable convergence rates and
a matrix-free approach can be used for the Krylov subspace method, which greatly
reduces memory requirements.

In the context of RANS simulations, if the initial guess is not in the basin of attrac-
tion, then NK-based methods often perform poorly and can diverge [11]. Correcting
this problem requires the use of a globalization method [12]. Pseudo-transient contin-
uation (PTC) [13] is the most commonly used globalization approach, where the solver
strategy is initialized with a backward Euler method and the time step is ramped up
as the solution converges. For smaller time steps, this method yields the favorable

2

Figure 1: Optimization problem studied by He et al. [9]. The optimizer started with
the initial shape of a circle (first frame) and converged to a super-critical airfoil (third
frame). In this process, the optimizer had to go through infeasible intermediate shapes,
such as the one shown here (second frame).

stability characteristics of the backward Euler method, and as the time step ramps
up, the method approaches Newton’s method. Furthermore, backtracking and trust-
region methods can be used to overcome the initial convergence problems with NK-type
solvers [14].

Knoll and Keyes [15] comprehensively surveyed the Jacobian-free Newton–Krylov
methods and their applications, and Kelley and Keyes [13] analyzed the convergence
of the PTC method. Gropp et al. [16] detailed the Newton–Krylov–Schwarz (NKS)
algorithms, which use the additive Schwarz method as a preconditioner (PC) for the
globalized NK method with domain decomposition; this was followed by a study on the
performance of NKS methods on distributed memory architectures [17]. These studies
provide the foundation for the NK solver implementations used in CFD.

Hicken and Zingg [18] described a hybrid approach that used an approximate
Newton–Krylov (ANK) method for efficient startup to solve the Euler equations in
three dimensions, and Chisholm and Zingg [19] extended this method to two-dimensional
RANS simulations. Finally, Osusky and Zingg [20] used the ANK solver for three-
dimensional RANS simulations, following which they studied the performance of this
approach [21]. In these studies, the ANK stage was described as a globalized NK
method that operates with a matrix-based approximate Jacobian. This approximate
Jacobian and its PC are lagged for a pre-determined number of iterations to alleviate
the cost of computing and storing these large matrices in every iteration. Lagging these
matrices for 3–5 nonlinear iterations is suitable for Euler simulations [10, 18].

However, RANS simulations require that the approximate Jacobian always be up
to date [20, 21], which greatly increases the computational cost. This problem cre-
ates a critical trade-off between performance and robustness. Although a large lag
can considerably accelerate the nonlinear iterations, it might cause the algorithm to
diverge. For three-dimensional RANS simulations, which is the focus of this work, Os-
usky and Zingg [20] reported that lagging a matrix-based Jacobian does not improve
solver performance and even causes the solver to diverge in some cases. In addition to

3

pseudo-transient continuation, Hicken and Zingg [11] studied two additional types of
globalization methods based on boundary conditions and dissipation. Hicken et al. [22]
also studied the dissipation-based continuation method, and Brown and Zingg [23] de-
veloped a homotopy continuation algorithm and showed that this method outperforms
PTC in some cases. However, the method is relatively new compared with PTC, and
further testing is required before it can replace PTC.

The high-order finite-element community also developed methods that use approx-
imations in the Jacobian formulation to mitigate the large memory requirements and
computational cost of Jacobian matrices that arise from discontinuous Galerkin dis-
cretizations. Crivellini and Bassi [24] studied the effects caused by using a reduced
quadrature formulation for the numerical integrations required by the matrix-free Ja-
cobian computations. Xia et al. [25] detailed a parallel implicit method that uses
Jacobian matrices constructed with a lower-order reconstruction of the state. Both
groups reported that memory and computation costs are lowered by introducing ap-
proximations into the Jacobian formulation.

Having a robust solver is also important in the field of output-based error estima-
tion and mesh adaptation, which requires consecutive solutions of RANS and adjoint
equations [26, 27]. In searching for an automated and robust CFD solver, Modisette
[28] implemented a number of modifications to the baseline PTC algorithm, such as
an unsteady line search and a physicality check to limit the updates computed with
the underlying NK algorithm. Ceze and Fidkowski [29] studied a range of different
CFL evolution methods used in the PTC algorithm and introduced the concept of
constrained PTC [30], where an augmented Jacobian is used for the left-hand side
to prevent non-physical updates. Burgess and Glasby [31] showed how to use meth-
ods from these two studies within the framework of the Computational Research and
Engineering for Acquisition Tools and Environments.

In the present work, we use approximate residual formulations in the context of a
Jacobian-free ANK algorithm, which has two main advantages: The first advantage is
that the use of matrix-free operations means that the Jacobian is always up to date
and contains the correct approximations. This approximate Jacobian has a lower band-
width and is better conditioned than the exact Jacobian, so the resulting linear systems
are easier to solve. This effect still holds when using the diagonal time stepping term; a
linear system with an approximate Jacobian and a time stepping term is easier to solve
than a linear system containing an exact Jacobian with the same time stepping term.
The approximate matrix-free operations require fewer numerical operations compared
with their exact counterparts, further reducing the cost of linear solutions. Because
the approximate Jacobian is always up to date, we can aggressively lag its PC without
the destabilizing effect of an outdated Jacobian. With the lagged PC, we can avoid
forming and factorizing the PC matrix for each nonlinear iteration, which are very
costly operations. Furthermore, we can monitor the performance of linear solutions
with a lagged PC and automatically determine if it needs to be updated. To further
improve robustness, we use both a physicality check to ensure that the updates to the
state vector remain physical and a backtracking line search to pick an appropriate step
size to reduce the unsteady residual norm.

The second main advantage of the proposed approach is that we build the approx-

4

imations for the different solver variants directly into the main residual computations
used for the solver. This allows the nonlinear Newton iteration to be implemented in
a general way, minimizing the effort required to implement the various approximation
levels. The matrix-free formulation uses varying levels of approximate formulations
without requiring further modifications. To precondition the resulting linear systems,
we incompletely factorize a matrix-based approximate Jacobian to obtain the final PC.
Kenway et al. [32] adopted a similar strategy for preconditioning adjoint solvers. These
matrices for preconditioning are computed by using the same approximate residual
computations that we use for the matrix-free operations, and we use efficient coloring
acceleration techniques to reduce the cost of these operations. As a result, manual
differentiation is not required, and we can use a wide range of discretization methods
and options within our solver without incurring the additional implementation effort
required by many implicit methods. Moreover, these residual computations directly
include the full boundary conditions and overset connectivity treatments, further sim-
plifying the implementation and improving robustness.

The high implementation cost of analytic Jacobian computations is not a road-
block in the applications of NK-type solvers, as demonstrated by numerous examples.
For example, Nejat and Ollivier-Gooch [33] used an approximate analytic Jacobian
with a high-order formulation for two-dimensional Euler simulations, Asgharzadeh and
Borazjani [34] developed an approximate analytic Jacobian for Navier–Stokes simula-
tions with immersed boundaries, and Cavalca et al. [35] described their approach for
three-dimensional Euler simulations on unstructured meshes, where they used analytic
expressions for the Jacobian computations. However, we prefer to use the approximate
residual computations in a matrix-free context because this approach is generalizable
and does not require further implementation upon varying the discretization method.

We use ADflow, an open source CFD solver, to demonstrate the performance of
the proposed ANK method.1 We use varying levels of approximations and study the
trade-off between the nonlinear convergence rate and the cost of each nonlinear itera-
tion for different levels of approximations. We benchmark the algorithm by applying
it to a number of cases, perform tests with many variations of the ANK method, and
demonstrate the effects of using a lagged PC with matrix-free operations in the solution
process. The algorithm can handle unconventional aircraft configurations and is suit-
able for an optimization environment, which requires many successive CFD simulations
for a variety of meshes.

The outline of the paper is as follows: Section 2 overviews the governing equations
and the discretization method. Section 3 details the full ANK solver implementation
and the choices for the default solver parameters, along with our contributions. We
make two contributions to the ANK algorithm: Section 3.2 introduces a Jacobian-free
formulation that uses approximate residual formulations, and Section 3.4 introduces an
adaptive PC-lagging algorithm. Readers who want to implement the ANK algorithm
should read all of Section 3, whereas NK experts can read only Sections 3.2 and 3.4
for a description of the proposed contributions. Section 4 describes the computational
framework used in this study, the available solver algorithms, and how the ANK solver

1https://github.com/mdolab/adflow, accessed June 2019

5

https://github.com/mdolab/adflow

fits into the overall solution process. Finally, Section 5 presents a number of results,
and Section 6 summarizes the main conclusions of this work.

2 Governing Equations and Discretization
This section describes the governing equations for the three-dimensional RANS simu-
lations and the discretization methods used to solve them.

2.1 Navier–Stokes Equations

In Cartesian coordinates, the three-dimensional Navier–Stokes (NS) equations can be
written as

∂

∂t

∫
V

QdV +

∮
∂V

~F · ~ndA =

∮
∂V

~D · ~ndA, (1)

where

Q =


ρ

ρu

ρv

ρw

E

 , ~F =


ρu

ρu2 + p

ρuv

ρuw

u(E + p)

 x̂+


ρv

ρvu

ρv2 + p

ρvw

v(E + p)

 ŷ +


ρw

ρwu

ρwv

ρw2 + p

w(E + p)

 ẑ,

~D =


0

τxx

τxy

τxz

uτxx + vτyx + wτzx − qx

 x̂+


0

τyx

τyy

τyz

uτxy + vτyy + wτzy − qy

 ŷ +


0

τzx

τzy

τzz

uτxz + vτyz + wτzz − qz

 ẑ.
(2)

Vectors ~F and ~D are the convective and diffusive flux vectors, respectively. In this
formulation, ρ is the density, u, v, w are the three velocity components in the x, y,
z directions, respectively, E is the total energy, p is the pressure, τji are the viscous
stresses, and qi are the heat fluxes. We use Sutherland’s formula to compute laminar
viscosity, and the equations are closed with the ideal gas law.

2.2 Turbulence Model

We use the one-equation model of Spalart and Allmaras [36] (SA). For brevity, we do
not describe the full model. The model can be written in a simplified form as

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= P (ν̃)−M(ν̃) +D(ν̃), (3)

where P (ν̃), M(ν̃), and D(ν̃) are the production, destruction, and diffusion terms,
respectively, and ν̃ is the working variable of the SA model. Notable modifications of
the baseline SA model, along with the definitions and details of the model variables,
are described in the NASA Turbulence Modeling Resource.2 Unless noted otherwise,
the results presented herein were obtained by using the SA-noft2 version.

2https://turbmodels.larc.nasa.gov/spalart.html, accessed June 2019

6

https://turbmodels.larc.nasa.gov/spalart.html

To prevent negative values for the modified vorticity S̃, we use the modification
introduced by Allmaras et al. [37], which can be written as

S̃ =

{
S + S̄, : S̄ ≥ −cv2S

S +
S(c2v2+cv3S̄)

(cv3−2cv2)S−S̄ : S̄ < −cv2S,
(4)

where S̄ = ν̃fv2/(κd)2, cv2 = 0.7, and cv3 = 0.9.
As detailed in the next subsection, the spatial discretization of the turbulence model

is accurate to first order in space, which changes the end result of the simulations
and the nonlinear convergence rates compared with the use of a turbulence model
that is accurate to second order. While developing a CFD solver for MDO, we saw
little difference between second- and first-order-accurate turbulence discretizations.
Therefore we tuned our solver with the first-order-accurate discretization for the SA
turbulence model. However, the solver described in this work remains applicable to
second-order-accurate discretizations for the turbulence model and even to turbulence
models other than the SA model.

2.3 Spatial Discretization

We use structured multiblock meshes with overset connectivities to discretize a given
domain [38]. The meshes are split into sub-blocks for load balancing and partitioned
among multiple processors to make efficient use of the distributed memory architec-
tures. We use these meshes to compute and store the cell-centered values for the
density, momentum, energy, and turbulence model working variable. The vector of
residuals for the nth nonlinear iteration can be written as

R(n)
0 = R0(Q(n)) = − ∂

∂t

∫
V

QdV
∣∣∣∣
n

, (5)

where Q(n) represents the vector of state variables.
For the finite volume formulation, we use the Jameson–Schmidt–Turkel (JST)

scheme with scalar dissipation for inviscid fluxes [39]. The viscous flux gradients are
computed by using the Green–Gauss approach. For structured meshes, this discretiza-
tion results in a 33-point stencil. We denote the full residual computed with all these
points as R0. The 33 points come from the 26 nearest neighbors, 6 second-level neigh-
bors, and the cell itself.

Along with the full residual formulation, we define modified residuals that contain
varying levels of approximations. The first-level approximation R1 omits the fourth-
order dissipation fluxes that are introduced in the JST scheme. To compute the second-
order dissipation fluxes when using the state Q(n), we fix the shock sensor variable
for the JST scheme, which is entropy in our case, and keep these values constant
throughout the nonlinear iteration. As a result, only R0 computes the up-to-date
entropy, whereas R1 uses the fixed entropy computed with Q(n). This results in a
27-point stencil because we ignore the six second-level neighbors. The second-level of
approximation R2 assumes that the computational mesh is perfectly orthogonal and
that the gradients of velocities at faces are computed by only considering the nearest

7

Figure 2: Exploded view of stencils used for the three levels of residual formulations.
The center cells are highlighted in red.

neighbors sharing a face with the center cell, along with the approximation introduced
in the previous level. The R2 approximation uses a seven-point stencil, which only
contains the nearest neighbors sharing a face and the center cell itself.

The approximations introduced with R2 are commonly used to construct the PC
matrix when solving the adjoint equations, or for solving the resulting linear system
when Newton’s method is used as a solution strategy. This is due to the lower mem-
ory requirements resulting from the reduced stencil [20, 32, 40]. Figure 2 shows the
exploded view of the stencils resulting from these residual formulations.

The turbulence model is discretized by using a first-order-accurate upwind scheme
for the advection term. Because this term is first-order accurate, we only consider the
nearest neighbors sharing a face to compute the diffusion term (i.e., the gradients of ν̃
are computed by using the orthogonal mesh assumption). As a result, the stencil for
the SA model always contains seven points. The two approximate levels R1 and R2

omit the production term defined in Equation (3). Table 1 lists the approximations
used with different levels of residual formulations.

Table 1: List of approximations within residual formulations.

NS equations SA model

Formulation Stencil size Advection term Diffusion term

R0 33 JST w/ scalar dissipation 2nd-order accurate 1st-order accurate

R1 27 w/o 4th-order dissipation 2nd-order accurate w/o production term

R2 7 w/o 4th-order dissipation w/ orthogonal mesh assumption w/o production term

Solving the RANS equations for the steady state is equivalent to finding a state
vector Q that satisfies

R0(Q) = 0. (6)

Because the solver is iterative, a solution is considered to be converged when the norm
of the residual vector is reduced by the specified tolerance compared with the residual

8

norm computed with freestream conditions, which can be written as

ηabs ≥
||R0(Q(n))||2
||R0(Q(fs))||2

, (7)

where Q(n) is the converged solution vector at iteration n and ||R0(Q(fs))||2 is the norm
of the residual vector with freestream initial conditions. Although we can converge
our solutions to machine precision, we select ηabs to be 10−12 to represent the typical
convergence tolerances required for steady state simulations.

2.4 Variable Scaling

The state variables are normalized with respect to freestream values and, in a typical
simulation, entries in the state vector Q have an order of magnitude of about unity.
Because of the high stretching ratios used in meshes for RANS simulation, cell volumes
in a given mesh can span ten orders of magnitude. This discrepancy in the numerical
values causes problems with the solution algorithms, effectively pushing them toward
reducing the residuals of cells with larger volumes while leaving the smaller cells un-
affected. To avoid this problem, we scale the residuals of each cell by the reciprocal
of the cell volume. Finally, we scale the turbulent residuals by 104 to ensure adequate
scaling between the turbulence and mean flow residuals. The modifications presented
here prevent possible numerical issues that can arise with the solution algorithm we
describe below. Because the residuals are scaled within the residual formulations in-
troduced earlier, we do not need additional considerations when solving linear systems
arising from the discretization of the flow equations. This scaling strategy is similar to
that proposed by Chisholm and Zingg [19].

3 Approximate Newton–Krylov Algorithm
For each iteration of the ANK solver, the update to the state vector is calculated as
follows: [

I
∆t(n)

+

(
∂Rm

∂Q

)(n)
]

∆Q(n) = −R0(Q(n)), (8)

where the subscript m is the level of approximation used for the Jacobian matrix and
the superscripts denote the values evaluated at the nth iteration. The term I/∆t(n) is
a short hand notation for the diagonal time stepping term that we include, which is
computed to give the same CFL number in every cell. We determine the time steps by
selecting a global CFL number.

The rest of this section describes the important aspects of the implementation
of the ANK. We highlight our contributions to the algorithm in Section 3.2, which
describes the use of approximate residual computations with matrix-free operations,
and in Section 3.4, which introduces an adaptive PC-lagging algorithm. For each
component in the solver, we present the default solver parameters in the text and, in
the last subsection, we summarize the default parameters used in this work.

9

3.1 Linear Solver Algorithm

To solve the linear system (8), we use the generalized minimum residual (GMRES)
method [41]. This algorithm requires only the Jacobian-vector products, rather than a
full Jacobian, leading to Jacobian-free Newton–Krylov (JFNK) methods [15]. In this
work, we extend the JFNK method to the ANK solver.

To obtain vector products with the Jacobian for the GMRES algorithm, we use(
∂Rm

∂Q

)(n)

v ≈ Rm(Q(n) + εv)−Rm(Q(n))

ε
, (9)

which is equivalent to a forward finite-difference formulation in the direction v. The
subscript m denotes the residual approximation level that is used for the matrix-free
operations. With this approach, we can select the residual formulation for the ANK
solver during runtime with the same Jacobian-free formulation used with the JFNK
methods. Finally, we determine the finite-difference step size by using [42]

ε =

{
erelv

TQ(n)/||v||22 if |vTQ(n)| > umin||v||1
ereluminsign(vTQ(n))||v||1/||v||22 otherwise,

(10)

where we set umin = 10−6 and erel = 10−8.
We use a zero vector for the initial guess of the linear solver and do not use previous

linear solutions as the initial guess for the next linear solution. The linear system we
solve does not change drastically between nonlinear iterations. If the right-hand-side
vector (i.e., the residual vector in our case) remains similar, restarting the linear so-
lution from a previous solution would improve linear convergence. However, because
we are performing linear solutions within a Newton iteration to solve a system of non-
linear equations, the subsequent solutions differ for each nonlinear iteration because
the update direction that decreases the residual norm changes between nonlinear itera-
tions. Therefore, no benefit is gained from restarting linear solutions between nonlinear
updates.

3.2 Approximate Jacobian

The first main contribution of this work is to use the approximate residual computa-
tions within the matrix-free formulation to multiply the approximate Jacobian with a
vector. Osusky and Zingg [20] showed that the use of an approximate Jacobian during
the startup phase is an effective approach for three-dimensional RANS simulations.
However, by storing the approximate Jacobian, they incur a large computational cost
if it is recomputed in every iteration. One way to alleviate this computational burden
is to lag the approximate Jacobian for a pre-determined number of iterations; however,
this approach introduces problems involving the robustness of the solver. The optimal
lag depends strongly on the problem and, for RANS simulations with complex three-
dimensional geometries, there might be no choice but to recompute this approximate
Jacobian for every nonlinear iteration [10, 18, 20, 21].

Our approach eliminates this robustness problem by using a matrix-free formula-
tion for the approximate Jacobian, which we obtain by using the different levels of

10

approximate residual formulations introduced earlier. When using the matrix-free for-
mulation, the approximate Jacobian in the nonlinear iterations is always up to date,
without incurring the burden of formulating and storing the entries of the Jacobian
matrix at each iteration. Furthermore, by using larger stencil sizes, we can incorpo-
rate the higher levels of approximate Jacobian formulations than just the first-order
Jacobian, without incurring the additional memory cost of storing more entries in the
matrix.

With the proposed formulation, the true Jacobian corresponds to using the matrix-
free approach with R0. For the startup strategy, Osusky and Zingg [20] use similar
approximations introduced with R2 to obtain a first-order Jacobian. The first-order
Jacobian is also used for preconditioning in the NK or adjoint solvers [18, 32, 40].
In addition to the first-order and the true Jacobian formulations, we introduce the
intermediate approximation R1 described in Section 2.3. Since the matrix-free formu-
lation is completely general, we can select the level of approximation in our matrix-free
operations by modifying the CFD solver options.

Section 5 investigates the effects of different levels of approximations as the main
driver of the ANK solver. Little to no approximation is expected to yield a better
nonlinear convergence, but with a more costly linear solution due to the increased
bandwidth of the Jacobian. Conversely, a heavily approximated Jacobian should yield
a lower nonlinear convergence rate, but with faster linear solutions due to the higher
diagonal dominance. We use the R1 approximation as the default matrix-free opera-
tion in the ANK algorithm because it provides a good balance between accuracy and
Jacobian stiffness.

3.3 Preconditioning

In the context of three-dimensional RANS simulations, adequate preconditioning is
required for the GMRES solver to be a practical choice [15]. To faithfully represent
the residual in the linear systems, we use right preconditioning, which can be written
as [(I

∆t
+
∂Rm

∂Q

)
M−1

]
(M∆Q) = −R0, M =

(I
∆t

+
∂R2

∂Q

)
, (11)

where superscripts denoting the iteration number are omitted for simplicity. In this
formulation, M−1 is not an exact inverse of M but is an approximate factorization.
We use the additive Schwarz method (ASM) to split the problem into sub-domains,
where we locally apply reverse Cuthill–McKee reordering and incomplete LU (ILU)
factorization to approximate the inverse of M. All of the algorithms mentioned here
are available in the software library of the Portable, Extensible Toolkit for Scientific
Computation (PETSc) [43? , 44], which we use in our CFD solver.

In the context of a flow or adjoint solver, an approximate Jacobian is often used
to construct the PC matrix M, resulting in lower memory requirements [20, 32, 40].
We also follow this convention for the ANK solver. To compute M, we use the most
approximate residual formulation (R2). We store the matrix M and its approximate
inverse M−1. However, since we use R2 to build this PC matrix, the cost of storing it is
low compared with more accurate Jacobian formulations that have a larger bandwidth.

11

In our computational framework, we compute ∂R2/∂Q by using either finite differ-
ences or algorithmic differentiation, as described by Kenway et al. [32]. We use an effi-
cient coloring acceleration scheme described by Lyu et al. [40] to perturb the states for a
finite-difference computation, or set the seeds for algorithmic differentiation. Goldfarb
and Toint [45] describe the coloring scheme for a seven-point three-dimensional stencil,
and we use this approach for matrix-based approximate Jacobian matrices constructed
by using R2. This approach is generalizable because we only need the approximate
residual computations and their respective stencils to perform efficient coloring of the
states. In this work, we only use finite-difference computations for the PCs used with
the ANK solver.

3.4 Adaptive Preconditioner Lagging

The second main contribution of this work is the adaptive PC-lagging algorithm that
we developed. Forming and factorizing M are costly operations and are not done for
each nonlinear iteration. Typically, a JFNK solver stores the factorized form of the
approximate Jacobian and re-uses it for some predetermined iteration count [15]. This
procedure is usually referred to as “Jacobian lagging.” In an ANK solver without the
matrix-free formulation, both the approximate Jacobian and its factorized form are
lagged relative to the flow variables [20]. In a recent review, Witherden et al. [10]
noted that the Jacobian is typically refreshed every 3–5 iterations. In our experience,
the optimal lag is case dependent and determining it a priori is not straightforward.
As a result, users typically set a lower lag, since a higher lag might destabilize the
simulation. Furthermore, a single lag is used for different stages of convergence, and
this lag is limited by the most problematic iterations, thereby becoming a bottleneck
for the whole simulation.

Our matrix-free formulation overcomes these shortcomings. Even if the same ap-
proximate residual formulations are used for the PC and the linear system, we eliminate
the robustness issues that arise due to an outdated Jacobian because the actual linear
system is up to date for every nonlinear iteration, since we only lag the PC. As a result,
we call this method “PC lagging” instead of “Jacobian lagging.”

To determine the optimal lagging for the PC, we monitor the linear convergence for
each nonlinear iteration. Generally, the PC performance deteriorates for each nonlinear
iteration where it is not refreshed. As a result, the GMRES algorithm requires more
iterations to reach the desired linear solution tolerance in each subsequent nonlinear
iteration. Therefore, if the linear solution in a particular nonlinear iteration reaches the
maximum iteration limit for the linear solver, and the linear solution in the previous
nonlinear iteration was successful, then we refresh the PC. This approach provides
several advantages: If the linear solution is proceeding well, we do not update the PC
and avoid the unnecessary cost of forming and factorizing an approximate Jacobian.
As the linear solution begins to lose effectiveness, we refresh the PC to maintain overall
performance and ensure that the linear solutions converge properly.

However, even with an up-to-date PC, if the linear system fails to converge to the
prescribed tolerance within the maximum iteration limit, we simply terminate the lin-
ear solution and proceed to the next nonlinear iteration to keep the computational

12

cost under control. This approach may yield a sequence of linear solutions that fails to
reach the prescribed tolerance. Setting a good value for this tolerance is critical and we
explain how to do so in the next subsection. In most cases that we have experimented
with, the linear solver still achieves a relative convergence of around 0.1 before termi-
nating due to the linear iteration limit. Although we aim for a slightly lower tolerance
for the linear solver, this tolerance can also yield updates that are sufficiently accurate
to achieve nonlinear convergence. In some rare cases, the linear solver stagnates and
may fail to reach these more relaxed levels. In this case, the nonlinear convergence
stalls due to ineffective updates. However, this behavior is caused by inadequate pre-
conditioning, and the adaptive PC-lagging algorithm cannot avoid this problem. To
overcome these failures, we restart the simulations with linear solver options that yield
better PCs and higher iteration limits.

Based on the last nonlinear iteration when the PC was formed, we refresh the PC if
the desired relative nonlinear convergence is reached. We set this relative convergence
value at ηpc = 0.5. This condition aides convergence during the initial stages, when
the flow field changes rapidly, and the performance of the linear solver benefits from
an up-to-date PC [13]. We refer to this method as “adaptive PC lagging.” Finally, as
a safety check, we recompute the PC if it was lagged for nlag = 10 nonlinear iterations.
Section 3.9 presents the full lagging algorithm along with the default solver parameters.

3.5 Linear Solution Tolerance

Within each nonlinear iteration, we solve the linear system defined in Equation (8) to
a specified relative tolerance:

ηlin ≥
R

(n)
lin∣∣∣∣∣∣R(n)
0

∣∣∣∣∣∣
2

, (12)

where the linear residual R
(n)
lin is defined as

R
(n)
lin =

∣∣∣∣∣
∣∣∣∣∣
(I

∆t
+
∂Rm

∂Q

)(n)

∆Q(n) +R(n)
0

∣∣∣∣∣
∣∣∣∣∣
2

. (13)

The performance and robustness of the ANK solver algorithm is a strong function
of ηlin because the cost and accuracy of each nonlinear update ∆Q(n) directly depend
on it [46]. A low ηlin yields a more robust solver algorithm but leads to more expensive
linear solutions. Conversely, a high ηlin means that the solver can perform more nonlin-
ear iterations in a given time because each linear solution would cost less. The values
for ηlin reported in the literature fall in the range (10−4, 10−1) [18, 20, 28]. The pro-
posed approach involves doing many low-cost nonlinear iterations during the startup
stage, so we select ηlin = 0.05, which is the largest value that consistently provides an
adequate update without destabilizing the solver.

With the ANK solver, we always use a fixed tolerance for the linear solution. How-
ever, Eisenstat and Walker [47] developed a method that adaptively adjusts the tol-
erance of the linear solver to achieve optimal nonlinear convergence while avoiding
over-solving the linear system. This method is useful when using a pure Newton

13

method because it is tuned with respect to the expected nonlinear convergence from
an update computed by using a full Jacobian. Because we introduce approximations
in the Jacobian, the resulting nonlinear convergence with each iteration is less than
what this method expects. As a result, the Eisenstat–Walker method predicts a higher
linear solver tolerance for the next nonlinear iteration. This approach is not well suited
for the startup stage because a high linear solver tolerance might lead to inaccurate
updates, whereas our main goal is robustness. Therefore, we preserve a constant linear
solver tolerance for robustness.

Ideally, we would want the linear solver to achieve the prescribed convergence tol-
erance for each nonlinear iteration. However, due to an outdated PC, the linear solver
may require too many iterations to reach the prescribed tolerance. To avoid wasting
computational effort, we set a maximum iteration limit for the GMRES algorithm that
is sufficiently large so that most of the linear solutions converge successfully. However,
the limit is not so large as to allow wasted computation during the linear solution,
because taking another nonlinear step is often more beneficial. This is a problem de-
pendent parameter, but for many practical cases of interest we find that an iteration
limit of nlin = 40 is a good default. For rare cases that repeatedly fail to reach suitable
linear convergence levels, we restart the simulations with either higher iteration limits,
stronger preconditioners, or both.

3.6 Solution Update

During each nonlinear iteration, the state vector is updated as

Q(n+1) = Q(n) + ω(n)∆Q(n), (14)

where ω(n) ∈ [0, 1] is the relaxation factor. To determine a suitable value for ω(n) for
each iteration, we follow the approach of Modisette [28].

We use a physicality check to constrain the state by using

ωphys =

[
max

({∣∣∣∣ ∆Qi,l
θphys,lQi,l

∣∣∣∣ ;∀ (i ∈ ncell) , (l ∈ lphys)

}
, 1

)]−1

, (15)

where the subscripts i, l refer to the cell index and the state component index in the
cell, respectively, ncell is the global cell count, and lphys are the variable indices subject
to the physicality check. By default, we select θphys,ρ = θphys,E = 0.2. The physicality
check for the SA working variable is modified compared with density and energy. We
use θphys,ν̃ = 0.99 by default and only check updates that are in the negative direction.
This modification enables the SA variable to increase rapidly if necessary and prevents
it from taking on a negative value, which would destabilize the solution. We only
check for updates to density, energy, and the SA model working variable ν̃ because the
momentum must be allowed to switch signs. Because the state and the update vectors
are distributed among processes, we use Algorithm 1 to determine ωphys.

After the physicality check, we use a line search to determine the maximum step
size that would reduce the unsteady residual norm. The unsteady residual norm is
defined as

R(n)
u =

∣∣∣∣∣∣∣∣ω(n) I
∆t(n)

∆Q(n) +R0

(
Q(n) + ω(n)∆Q(n)

)∣∣∣∣∣∣∣∣
2

. (16)

14

Algorithm 1 Physicality check
1: ωlocal ← 1 . Initialize the local step to 1
2: for i in ncells,local do . Loop over every cell owned by this process
3: for l in [lρ, lE] do . Loop over density and energy variables

4: ωlocal ←
[
max

(∣∣∣ ∆Qi,l

θphys,lQi,l

∣∣∣ , 1
ωlocal

)]−1
. Limit the step such that |∆Qi,l < θphys,lQi,l|

5: for l = lν̃ do . Check the SA model working variable
6: if ∆Qi,l < 0 then . Only check negative updates

7: ωlocal ←
[
max

(∣∣∣ ∆Qi,l

θphys,lQi,l

∣∣∣ , 1
ωlocal

)]−1
. Limit the step such that |∆Qi,l < θphys,lQi,l|

8: ωphys ← MPI Allreduce(ωlocal,min) . Communicate to determine the global minimum ωlocal

Starting with ωphys, we backtrack to find ω(n) such that

R(n)
u ≤

∣∣∣∣R0

(
Q(n)

)∣∣∣∣
2
. (17)

Algorithm 2 details the procedure of the backtracking line search. This check acts as
a safety measure against failed linear solutions or bad update directions. The default
value for θbt is 0.7; however, this parameter is just a generic factor for the backtracking
line search algorithm.

The backtracking line search algorithm relies on the updates to the state being in the
direction of descent for the unsteady residual norm. An exact Jacobian constructed
with R0 is guaranteed to yield an update with this property. However, we cannot
guarantee such a property with the approximate Jacobians constructed with R1 and
R2. For most practical cases of interest, the approximate Jacobians do indeed generate
updates that are in the descent direction. However, we sometimes see updates that fail
to reduce the unsteady residual norm. If this happens, the solver algorithm modifies
the global CFL number, as detailed in Section 3.7, and moves on to the next nonlinear
iteration. This is done to increase the weight of the time stepping term with respect
to the approximate Jacobian.

Finally, if these methods predict a value for ω(n) that is less than a specified value
ωmin, then ω(n) is set to zero and the solver proceeds to the next nonlinear iteration
without changing the state variables. In this scenario, the next nonlinear iteration
changes the CFL number and refreshes the PC to avoid the bad update in the previous
iteration. If the CFL number is at the lower limit, the solver simply takes the step
given by ω(n), even though the step size might be smaller than ωmin. We select the
default value ωmin = 0.01.

Algorithm 2 Backtracking line search
1: ωu ← ωphys . Initialize ωu with the result from physicality check

2: R(n)
u ← Ru

(
Q(n),∆Q(n),∆t(n), ωu

)
. Compute the unsteady residual norm with the current step size

3: if R
(n)
u >

∣∣∣∣R0

(
Q(n)

)∣∣∣∣
2
then . Check if the unsteady residual has increased

4: while R
(n)
u >

∣∣∣∣R0

(
Q(n)

)∣∣∣∣
2
and ωu > ωmin do . Repeat until unsteady residual norm has decreased

5: ωu ← ωuθbt, θbt ∈ (0, 1) . Backtrack to find a lower ωu

6: R
(n)
u ← Ru

(
Q(n),∆Q(n),∆t(n), ωu

)
. Compute the new unsteady residual norm

7: ω(n) ← ωu . Set the step size for this nonlinear iteration

15

3.7 Evolution of Pseudo-Time Step

We follow the approach of Ceze and Fidkowski [29] and use the monotonic variant of
the residual difference method (mRDM) based on the RDM introduced by Bücker et al.
[48]. In addition to the mRDM algorithm, we enforce lower and upper limits for the
CFL number. The upper limit guarantees that the linear system has sufficient diago-
nal dominance in each nonlinear iteration. We use a constant upper limit throughout
the solution process. The lower limit prevents the CFL number from going below
a moderate value, given the current nonlinear convergence relative to the freestream
conditions. We determine this lower limit by using the successive evolution relaxation
(SER) algorithm of van Leer and Mulder [49]. Because we use this solver in an opti-
mization framework, CFD simulations are not always started from a freestream initial
condition. Instead, we use warm starts, where the solution from the previous design
iteration serves to initialize the flow field. With warm starts, the solver starts with
a higher CFL number than does a cold start with freestream conditions. Therefore,
the lower CFL limit also serves to select an appropriate initial CFL during consecutive
warm starts.

Because we lag the PC, the time step is only updated during the iterations where
we update the PC. This ensures that the time stepping term included in the PC is
consistent with the matrix-free operations, which improves the performance of the
linear solver.

The baseline mRDM algorithm can be written as

CFL(n) = CFL(k)αγ, γ = max


∣∣∣∣∣∣R(k)

0

∣∣∣∣∣∣
2
−
∣∣∣∣∣∣R(n)

0

∣∣∣∣∣∣
2∣∣∣∣∣∣R(k)

0

∣∣∣∣∣∣
2

, 0

 , (18)

and the minimum CFL number is

CFL
(n)
min =


∣∣∣∣∣∣R(fs)

0

∣∣∣∣∣∣
2∣∣∣∣∣∣R(n)

0

∣∣∣∣∣∣
2

β

, (19)

where the superscript (k) refers to the last iteration during which the PC and the CFL

number were updated. The term
∣∣∣∣∣∣R(fs)

0

∣∣∣∣∣∣
2

represents the total residual norm with the

freestream conditions, and we select CFL(0) = 5 to initialize the CFL number. We use
the default values of CFLmax = 105, α = 10, and β = 0.5.

During the nonlinear iterations where the PC is updated, we determine the CFL
number by considering the step size taken in the previous iteration,

CFL(n) =


min

(
CFL(k)αγ ,CFLmax

)
, γ = max

(∣∣∣∣∣∣R(k)
0

∣∣∣∣∣∣
2
−
∣∣∣∣∣∣R(n)

0

∣∣∣∣∣∣
2∣∣∣∣∣∣R(k)

0

∣∣∣∣∣∣
2

, 0

)
, if ω(n−1) > ωramp

max
(

CFL(k),CFL
(n)
min

)
, else if ωramp ≥ ω(n−1) > ωmin

max
(
θredCFL(k),CFL

(n)
min

)
, else.

(20)

This formulation uses the mRDM algorithm to ramp up the CFL number if the previous
update was not heavily limited and enforces the upper and lower limits to the CFL

16

number. The variable ωramp = 0.4 determines the minimum step size required to
increase the CFL number, and ωmin = 0.01 is the minimum step size below which the
CFL number is reduced by θred = 0.5. This formulation is used only during iterations
in which we refresh the PC. For any other nonlinear iteration in which the PC is lagged,
we retain the CFL number from the previous iteration.

3.8 Inclusion of Turbulence Model

The inclusion of the turbulence model in the set of mean flow equations introduces
new issues in the nonlinear solution process. These issues arise largely because of the
discrepancy in the scaling of variables and residuals between the SA model working
variable ν̃ and the flow variables ρ, ρu, ρv, ρw, E. Osusky and Zingg [20] addressed
this issue by introducing automatic scaling of the turbulence working variable with re-
spect to the maximum value obtained in the computational domain. In addition to the
scaling, the convergence characteristics of these variables also differ significantly, be-
cause the SA model residual often varies wildly during the initial stages of convergence.
Chauhan et al. [50] showed that the optimal algorithm for converging tightly coupled
systems might change depending on the convergence stage. Initially, a Gauss–Seidel
approach might be faster, whereas Newton-type algorithms are expected to converge
faster toward the final stages. The characteristics of the SA model convergence also
depend on implementation details and the selected variant of the model, further in-
creasing complexity and making it more difficult to find a set of parameters that works
for a wide range of cases.

The proposed approach is to decouple the turbulence variable from the flow vari-
ables during the ANK stage and to update ν̃ after updating the flow variables in each
nonlinear iteration in a nonlinear block Gauss–Seidel fashion. This approach allows
us to form two separate linear systems: one for the flow variables consisting of 5 × 5
block entries and a second one for the turbulence model variable only. The algorithms
described previously determine the update for the flow variables with the frozen turbu-
lence assumption. After the flow variables are updated, a similar process is repeated for
the turbulence model, where we assume that the flow variables are frozen and obtain
an update vector for the turbulence model.

This approach has two advantages: First of all, by decoupling the flow variables from
the turbulence model variable, we recover the favorable convergence characteristics
of the flow variables. This way, the turbulence model residuals are allowed to vary
without adversely affecting the convergence of the flow variables. Second, decoupling
the turbulence variable overcomes the challenges caused by the scaling of variables and
residuals. This improves the conditioning of the linear systems under consideration,
which reduces the cost of the linear solution. Furthermore, we can monitor the linear
solver performance of the turbulence solver and only update the PC used for the
turbulence model while keeping a lagged PC for the flow variables because the PC for
the turbulence model often requires more frequent updates. However, we still use a
fully coupled approach for the final stage of convergence with our NK solver. Once the
initial transients settle, the scaling introduced in the discretization section suffices to
couple the turbulence variable to the flow variables.

17

3.9 The Complete ANK Algorithm

Algorithm 3 details the complete ANK solver. The main nonlinear loop (line 7) iterates
the states until the relative convergence ηANK of the ANK solver is achieved. We use
the subscript f for quantities composed only of flow variables (ρ, ρe, ρv, ρw, E) and
of t for the turbulence model variable ν̃. The lack of subscript means that the term
contains entries with all the variables in the state vector. The superscript n gives the
current iteration and k gives the last iteration when the flow PC was updated.

Algorithm 3 is the approach we use by default, but many other variations of this
algorithm are possible. For example, a version that couples flow and turbulence would
omit the operations with subscript t and solve the flow and turbulence variables as a
single linear system. With the Jacobian-free approach, we can also select the level of
approximation to use for the matrix-free operations in the linear solutions. As noted
in lines 14 and 23 of Algorithm 3, we use R1 by default; however, the same algorithm
can be used with R0 or R2 for the matrix-free operations.

Many tunable parameters appear in the ANK algorithm, and the default set of
parameters might require modifications for certain simulations where the solver fails.
Generating a default set of parameters that would work optimally with every CFD
simulation is essentially impossible. Given a set of default parameters that are close
to optimal, users can make the necessary adjustments to the CFD solver for poorly
converging cases instead of modifying the case itself [51]. A critical trade-off thus
exists between robustness and performance. Although conservative settings that yield
extremely robust algorithms can be obtained, they would yield highly sub-optimal
performance for many well-behaving cases. Conversely, a failed solution that requires
user intervention decreases the efficiency of the overall optimization process and slows
the design procedure.

Having many tunable parameters in a solver algorithm is beneficial in terms of
robustness and flexibility. Not having tunable parameters, or having fewer tunable
parameters, might seem advantageous because of the low cost of the initial setup.
However, with these solvers, users cannot modify the algorithms when a simulation
fails. Conversely, solvers with tunable parameters are more flexible in handling these
failed cases, because these parameters can be modified on a case-by-case basis for failed
simulations.

Table 2 lists the default values for the solver parameters. In Table 2, we grouped
the options with respect to the components in the solver algorithm to facilitate the
correspondence of these parameters to other CFD codes that might not have this exact
set of parameters. These parameters are tuned for three-dimensional RANS simulations
of full or partial aircraft configurations in transonic conditions with meshes composed of
millions to tens of millions of cells, which give mesh sizes that are appropriate for studies
of aerodynamic shapes and for aerostructural optimization of aircraft geometries [6, 8,
52, 53]. The parameter values listed in Table 2 are also expected to yield satisfactory
results for subsonic and two-dimensional aeronautical applications; however, meshes
that are much smaller or much larger can yield sub-optimal performance, so minor
adjustments to the parameters might be necessary.

A few scenarios exist in which the user would need to modify this default set

18

Algorithm 3 ANK solver
1: n← 1 . Initialize nonlinear iteration counter
2: npc,f ← 0 . Initialize iteration counter for flow PC lagging
3: k ← 0 . Initialize the last iteration for which the PC was updated
4: CFL(0) ← 5.0 . Initialize CFL number
5: ω(0) ← 1.0 . Initialize step factor

6: R(0)
0 ←R0(Q(0)) . Compute initial residual

7: while ||R(n)
0 ||2 > ηANK||R

(0)
0 ||2 do . Iterate until relative convergence is achieved

8: if mod (npc,f , nlag) = 0 or ||R(n−1)||2 < ηpc||R(k)||2 then . Check if the PC needs to be updated

9: CFL(n) ← Equation (20) . Update CFL number

10: M−1
f ←

(
I

∆t(n) + ∂R2

∂Q(n)

)−1

f
. Update flow PC using R2 and factorize it

11: k ← n . Record the iteration number when the flow PC was updated
12: npc,f ← 0 . Reset flow PC lag counter
13: npc,t ← 0 . Reset turbulence PC lag counter

14: ∆Q(n)
f ← solve

(
I

∆t(n) + ∂R1

∂Q(n)

)
f

∆Q(n)
f = −R(n)

0,f . Determine update to flow variables

15: ωphys,f ← Algorithm 1 . Apply physicality check for ρ and E

16: ω
(n)
f ← Algorithm 2 . Backtrack to reduce unsteady flow residual norm

17: if ω
(n)
f < ωmin and CFLn > CFLnmin then . Check if flow step is too small

18: ω
(n)
f ← 0 . Reject step; try again with lower CFL

19: Q(n+1)
f ← Q(n)

f + ω
(n)
f ∆Q(n)

f . Update flow variables

20: if npc,t = 0 then . Check if turbulence PC needs to be updated

21: M−1
t ←

(
I

∆t(n) + ∂R2

∂Q(n)

)−1

t
. Update turbulence PC using R2 and factorize it

22: R(n)
0,t ←R0,t(Q(n+1)

f ,Q(n)
t) . Compute turbulence residual with updated flow variables

23: ∆Q(n)
t ← solve

(
I

∆t(n) + ∂R1

∂Q(n)

)
t

∆Q(n)
t = −R(n)

0,t . Determine update to turbulence model variables

24: ωphys,t ← Algorithm 1 . Apply physicality check for ν̃ only

25: ω
(n)
t ← Algorithm 2 . Backtrack to reduce unsteady turbulence residual norm

26: if ω
(n)
t < ωmin then . Check if turbulence step is too small

27: ω
(n)
t ← 0 . Reject step; try again with an updated turbulence PC

28: Q(n+1)
t ← Q(n)

t + ω
(n)
t ∆Q(n)

t . Update turbulence variable

29: R(n+1)
0 ←R0(Q(n+1)) . Update all residuals for next iteration

30: npc,f ← npc,f + 1 . Increment flow PC lag counter
31: npc,t ← npc,t + 1 . Increment turbulence PC lag counter

32: if ω
(n)
f < ωmin or (η

(n)
lin > ηlin and η

(n−1)
lin ≤ ηlin) then . Check if the flow update broke down

33: npc,f ← 0 . Update flow PC in next iteration

34: if ω
(n)
t < ωmin or (η

(n)
lin,t > ηlin and η

(n−1)
lin,t ≤ ηlin) then . Check if the turbulence update broke down

35: npc,t ← 0 . Update turbulence PC in next iteration

36: n← n+ 1 . Increment nonlinear iteration counter

of parameters. For example, cases that contain massive separation or heavy shocks
yield particularly ill-conditioned Jacobian matrices. In these cases, the default set of
parameters may not be suitable, so users can create a stronger linear solver either
by increasing the iteration limit, increasing the preconditioner strength, or both. As
another example, the algorithm used for the terminal convergence might fail even after
a relative convergence of 10−5. When this happens, users can lower the ηANK parameter
to achieve a more robust overall solver.

19

4 Computational Framework
This work uses the CFD code ADflow, which is available under an open-source license.3

ADflow is based on SUmb [54], which is an explicit solver that uses a Runge–Kutta
time-marching scheme. The development of ADflow involved adding to SUmb the
ANK solver described herein, a Jacobian-free adjoint solver [32], an overset mesh ca-
pability [38], and a Python interface to facilitate aerodynamic shape optimization [2]
and multidisciplinary studies [8]. ADflow solves Euler, laminar Navier–Stokes, and
Reynolds-averaged Navier–Stokes equations in steady, unsteady, and time-spectral
modes and on both multiblock structured and overset meshes. The code is writ-
ten in Fortran 90 and wrapped in Python for interfacing with the MDO of aircraft
configurations with the high-fidelity framework [4]. ADflow has a discrete adjoint
implementation [32] which has been effective in aerodynamic shape optimization stud-
ies [2, 7, 9, 55–59], as well as aerostructural optimization studies [5, 60–62]. We use
the PETSc software library [43? , 44] to implement the GMRES algorithm, precondi-
tioning techniques, and matrix-free computations.

Instead of using a single solver algorithm for the entire simulation, ADflow switches
between algorithms depending on the relative convergence of the residual norm. This is
done to ensure that we obtain the best convergence rate attainable at different stages of
convergence. The relative convergence can be monitored by using the relative reduction
in the residual norm going into iteration n with respect to the freestream value; namely,

η
(n)
rel =

||R(n)
0 ||2

||R(fs)
0 ||2

. (21)

3https://github.com/mdolab/adflow, accessed June 2019

Table 2: Default values for the tunable parameters.

Component Description Symbol Value

Linear solver

Approximation level for matrix-free operations

ILU fill level for PCs

ASM overlap for PCs

Linear solution convergence tolerance

Iteration limit for the GMRES solver

Rm
–

–

ηlin

nlin

R1

2

1

0.05

40

PC lagging
Relative convergence for PC update

Maximum PC lag value

ηpc

nlag

0.5

10

Step size

Maximum allowed change for ρ and E variables

Maximum allowed decrease for ν̃

Backtracking line search factor

θphys,ρ = θphys,E

θphys,ν̃

θbt

0.20

0.99

0.7

Pseudo-transient continuation

RDM factor for CFL number

SER exponent for minimum CFL number

Initial CFL number

Maximum CFL number

CFL cutback factor

Step size for CFL ramp threshold

Minimum allowed step size

α

β

CFL(0)

CFLmax

θred

ωramp

ωmin

10

0.5

5

105

0.5

0.4

0.01

Nonlinear convergence
Relative convergence tolerance with ANK solver

Absolute convergence tolerance for simulations

ηANK

ηabs

10−5

10−12

20

https://github.com/mdolab/adflow

ADflow contains the following solvers:

• RK: A five-stage fourth-order accurate low-memory Runge–Kutta scheme. This
is the only solver algorithm carried over from SUmb; all other algorithms were
developed with ADflow.

• D3ADI: Diagonalized diagonally dominant alternating direction implicit scheme
of Klopfer et al. [63].

• ANK: The solver algorithm proposed and described herein.

• NK: A fully coupled Jacobian-free Newton–Krylov algorithm. We formulate the
PC for this solver in the same way as for the ANK solver. However, the NK solver
always uses the exact residual formulation (R0) for the matrix-free operations.
With this method, we do not include a time stepping term in the left-hand side
of Equation (8), effectively yielding a CFL number of infinity. The solver uses
the algorithm introduced by Eisenstat and Walker [47] to determine the linear
solution tolerance for each nonlinear iteration.

ADflow uses the RK or D3ADI methods as smoothers in a multigrid solution proce-
dure. These solvers are efficient for structured multiblock meshes but are not applicable
to overset meshes. The ANK solver provides good convergence rates for both multi-
block and overset meshes, making it the startup algorithm of choice for overset meshes.
The NK solver yields the best convergence rate of all four algorithms in ADflow, pro-
vided that the initial guess is inside the basin of attraction. However, if the initial
guess is far from the solution, the NK solver performs poorly and can diverge. As a
result, we need to use one of the other algorithms as a startup method. In this work,
for the sake of brevity, we focus on the ANK and NK algorithms. However, many
combinations of these methods are possible because ADflow can switch between solver
algorithms during each nonlinear iteration, which is not a common feature in CFD
solvers.

We converge our simulations with the ANK solver until the residual norm de-
creases by five orders of magnitude (ηrel = 10−5). Witherden et al. [10] suggested
that ηrel = 10−4 is suitable for stability with the NK solver algorithm. Although this
value is usually a good guess for the NK solver, selecting a lower value for this relative
convergence results in a smoother transition to the NK solver and prevents potential
failures during the switch.

5 Results
This section presents the results for benchmarking the performance of the default
solver algorithm and the range of possible ANK solver variations. All computational
times are reported in TauBendch work units (WU).4 For each computational archi-
tecture, we define one WU as the average result from 10 TauBench runs, with the

4http://www.ipacs-benchmark.org/index.php?s=download&unterseite=taubench, accessed
June 2019

21

http://www.ipacs-benchmark.org/index.php?s=download&unterseite=taubench

instructions described in the Third International Workshop on High-Order CFD Meth-
ods guidelines.5 We ran the test 10 times on each architecture with the command
mpirun -np 1 ./TauBench -n 250000 -s 10 and report the average values as one
WU for each architecture. Unless noted otherwise, we use the set of default param-
eter values listed in Table 2. We report the performance metrics for the ANK solver
stage separately from the overall solver cost. The results for different stages are noted
along with their respective relative convergences ηrel. Unless noted otherwise, results
reported for ηrel = 10−5 correspond to the ANK stage, while results for ηrel = 10−12

correspond to the total values within a simulation. The performance metrics of interest
are the number of nonlinear iterations (NIs), the cumulative number of linear iterations
(LIs), and the WUs or thousands of WUs (kWUs) required to reach the stated relative
convergence tolerances.

5.1 Baseline Performance of Solver Variations

To demonstrate the algorithm, we examine the performance with different ANK solver
variations by using the ONERA M6 wing geometry. Recently, Gleize et al. [64] pre-
sented their computational studies on the M6 wing, and they fully describe the ge-
ometry that we use in this work. The computational mesh is a multiblock mesh with
about eight million cells. The flow conditions are M = 0.84, Re = 11.7×106, reference
temperature Tref = 310.93 K, and angle of attack α = 3.06◦ .

For these tests, we use six Ivybridge nodes on NASA’s Pleiades supercomputer.
Each node contains 20 cores, so each test uses 120 cores in total. One WU corresponds
to 6.24 s of CPU time. We converge the simulations to ηrel = 10−5 with the ANK solver
and then switch to the NK solver for the rest of the convergence until ηrel = 10−12.

We tested the three different approximation levels R0–R2 and tested each approx-
imation level with both the decoupled and coupled turbulence method, for a total of
six tests. The decoupled method is equivalent to Algorithm 3, and the coupled method
marches both the flow variables and turbulence model variable in a coupled manner.
After obtaining an update vector by solving the single linear system in the coupled
mode, we use the physicality check and backtracking line search algorithms again to
obtain the final update vector. From this perspective, the decoupled mode is anal-
ogous to a nonlinear block Gauss–Seidel approach where the blocks are updated by
using Newton’s method, whereas the coupled mode is representative of a stand-alone
Newton’s method.

Figure 3 shows the convergence for each variant of the ANK solver, and the cor-
responding numerical values are listed in Table 3. During the initial two-orders-of-
magnitude convergence, each case performs almost identically, which we attribute to
the CFL number being relatively low in this region, so the approximations have mini-
mal effect. The decoupled mode using R0 performs the best in terms of the number of
nonlinear iterations. However, because of the increased cost of the linear solution, this
case performs worse in terms of wall time than the decoupled cases with approximate
residual formulations (R1 and R2).

5https://www.grc.nasa.gov/hiocfd/guidelines/, accessed June 2019

22

https://www.grc.nasa.gov/hiocfd/guidelines/

0 50 100 150 200 250
Nonlinear iterations

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

R2 — decoupled

R1 — decoupled

R0 — decoupled

R2 — coupled

R1 — coupled

R0 — coupled

0 5 10 15 20
Thousands of TauBench work units

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

R2 — decoupled

R1 — decoupled

R0 — decoupled

R2 — coupled

R1 — coupled

R0 — coupled

Figure 3: Relative convergence versus number of nonlinear iterations and thousands of
TauBench WUs for the ONERA M6 wing. The Rm symbols denote the residual formu-
lation used in the matrix-free operations. “Coupled” and “decoupled” represent how
the turbulence model is marched in pseudo-time. While they require more nonlinear
iterations, tests that use approximate residual formulations converge faster.

Similar trends occur with the coupled mode when we use the exact residual formu-
lation R0. Between ηrel = 10−2 and 10−4, the convergence rate slows down, whereas the
cases with approximate residual formulations do a better job in this region. Overall,
the decoupled cases perform better in terms of wall time. Among the decoupled cases,
those that use the approximations in the matrix-free operations (R1 and R2) perform
better than when R0 is used. These results demonstrate the advantages of march-
ing the flow and turbulence variables separately and of using approximate residual
formulations in matrix-free operations.

5.2 Effect of Lagged Preconditioner

To study the effects of lagging the PC, we use the test case introduced in the previous
subsection with the identical setup and the default ANK solver (Algorithm 3). To
monitor these effects, we consider the eigenvalue spectra of the preconditioned matrix-
free operators. These spectral analyses are similar to those used by Qin et al. [65] to
compare the stand-alone and preconditioned linear systems in the context of hypersonic
viscous simulations. An effective PC is expected to cluster the eigenvalues and thus
improve the linear solver performance. As we lag the PC during nonlinear iterations
and it becomes outdated, we expect the favorable clustering properties to diminish.
By monitoring how the eigenvalue spectra change as the solver takes nonlinear steps
without updating the PC, we demonstrate how the lagging algorithm affects the linear
solver performance.

The ANK solver goes through three different phases to reach ηrel = 10−5, as shown

23

in Figure 3. During the initial phase, which we define as going from a freestream
initial conditions to ηrel = 10−2, the global CFL number is relatively small. Here,
all six solver variations performed almost identically, both in terms of convergence per
nonlinear iteration count and wall time. In this stage, strong transients exist with large
changes to the flow field, especially near the no-slip surfaces that represent the aircraft
geometry. The intermediate stage can be defined as the convergence from ηrel = 10−2

to about 10−4. During this stage, the CFL number is relatively large and the far-field
boundary conditions interact with the no-slip surfaces. In this stage, the turbulence
model variables go through strong transients. The final stage of the startup can be
defined as the convergence from the intermediate stage to ηrel = 10−5. Here, the CFL
number is typically at its enforced upper limit (CFLmax) and most flow features have
already been settled. Kelley and Keyes [13] described similar stages of convergence.

To faithfully represent the effects of a lagged PC during different convergence stages,
we converge the solution to ηrel = 100, 10−3, and 10−5 by using the default ANK algo-
rithm and then lag the PC for ten nonlinear iterations while monitoring the eigenvalue
spectra at each nonlinear iteration. Because computing the true eigenvalues would be
very expensive for these systems, we consider the approximations to the eigenvalues
obtained by using the Arnoldi iteration method to produce the orthogonal projection of
the linear system onto the Krylov subspace. During the spectral analysis process, the
updates to the state vector are determined by solving the linear system to ηlin = 0.05,
as done in the baseline algorithm. However, we further converge the linear systems
to ηlin = 10−8 to get better approximations to the eigenvalue spectra of the precondi-
tioned operators. We chose not to converge the linear systems to machine precision
(ηlin = 10−16) because, at these levels, the finite-difference formulation (9) introduces
large truncation errors in the eigenvalue approximations, yielding inconsistent results.

The process for computing the eigenvalue spectra of the matrix-free operators as

Table 3: ONERA M6 wing tests. For each case, we list the number of nonlinear
iterations (NI), cumulative number of linear iterations (LI), and thousands of work
units (kWU) required to reach the target convergence. The approximate formulations
perform better overall in spite of requiring more nonlinear iterations. The coupled
approach for the turbulence model requires both more nonlinear iterations and more
work units.

ηrel = 10−5 ηrel = 10−12

Test Approximation Level Turbulence NI LI kWU NI LI kWU

1 R2 Decoupled 122 2184 9.44 133 2391 15.86

2 R1 Decoupled 114 1967 9.42 126 2176 15.89

3 R0 Decoupled 71 2139 9.97 77 2371 17.08

4 R2 Coupled — —

5 R1 Coupled 156 2723 13.30 161 2905 18.78

6 R0 Coupled 95 2758 14.54 102 2974 21.11

24

we lag the respective PCs consists of the following steps:

1. Converge the system to ηtarget by using the default ANK solver.

2. Fix the CFL number to the CFL number from the last iteration and update the
PCs for linear systems containing the flow and turbulence variables.

3. Increase the linear iteration limit to 300 to ensure that the linear systems are
converged to ηlin = 10−8 without any restarts to the GMRES algorithm.

4. Compute the update vector for the flow variables ∆Qf by solving the linear
system to ηlin = 0.05.

5. Further solve the linear system to ηlin = 10−8 and obtain approximations to the
eigenvalues.

6. Update the state vector by using the default methods defined in Algorithms 1
and 2.

7. Repeat steps 4–6 for the turbulence model.

8. Without updating the PCs, go back to Step 4 and repeat for ten nonlinear iter-
ations.

Using this methodology, we study the evolution of the eigenvalue spectra at three
different relative convergence levels (ηtarget = 100, 10−3, 10−5), where ηtarget = 100 refers
to initiating the procedure from freestream conditions, whereas the default algorithm
is used to reach the latter two targets. For each ηtarget, we start from a freestream
condition and run independent tests for all three convergence levels to eliminate any
cross effects due to taking ten nonlinear iterations without lagging the PCs in the
convergence history.

Figures 4–6 demonstrate how the eigenvalue spectra evolve as the PCs are lagged
for the linear systems that we solve at each iteration. The figures show plots of the
spectra evaluated at iterations 1–5 and 10 after the PC update. The results under flow
and turbulence represent the eigenvalues of the linear systems used to march the flow
and turbulence variables, respectively. From a numerical perspective, the clustering of
eigenvalues is preferred because it reflects better linear convergence, whereas a wider
distribution of eigenvalues on the complex plane characterizes ill-conditioned operators.

Figure 4 shows that, during the initial stages of convergence, the PC for the flow
variables becomes outdated faster than the PC for the turbulence model. As the flow
field undergoes significant changes, the discrepancies between the actual linear system
and its PC increase faster than the linear system for the turbulence model. This
behavior is characterized by the spreading of eigenvalues after ten nonlinear iterations
without updating the PC. In contrast, the eigenvalue spectrum of the linear system for
the turbulence model spreads less, which means that, after ten iterations, the PC for
the turbulence model is more effective than the PC for the flow variables.

Figure 5 shows how the eigenvalue spectra change when the PC is lagged during the
intermediate stages of convergence (ηtarget = 10−3). During this stage, the spectrum

25

0.0 0.2 0.4 0.6 0.8 1.0

Re(λ)

0.0

0.2

0.4

0.6

0.8

1.0

−4 −3 −2 −1 0

−2

−1

0

1

2

Im(λ)

Flow

−4 −3 −2 −1 0

Turbulence

1

2

3

5

10

Iterations
after PC
update

Figure 4: Evolution of the eigenvalue spectra as the respective PCs are lagged at
ηtarget = 100 and CFL = 5.0. In the initial stages of convergence, changes in the flow
variables are larger compared with the turbulence model. Therefore, the PC for the
flow variables becomes outdated more rapidly than the PC for the turbulence model.

0.0 0.2 0.4 0.6 0.8 1.0

Re(λ)

0.0

0.2

0.4

0.6

0.8

1.0

−10 −8 −6 −4 −2 0

−4

−2

0

2

4

Im(λ)

Flow

−10 −8 −6 −4 −2 0

−4

−2

0

2

4

Turbulence

1

2

3

5

10

Iterations
after PC
update

Figure 5: Evolution of the eigenvalue spectra as the respective PCs are lagged at
ηtarget = 10−3 and CFL = 387.1. In the intermediate stages of the startup, the tur-
bulence model undergoes large changes, and the PC for this system loses effectiveness
after a few iterations.

for the turbulence model spreads out faster than the spectrum for the flow variables.
This shows that the turbulence model goes through larger changes during this stage of
convergence, so its PC is more rapidly outdated.

Finally, Figure 6 shows the evolution of the eigenvalue spectra during the final
stages of convergence with the ANK solver (ηtarget = 10−5). During this stage, most

26

0.0 0.2 0.4 0.6 0.8 1.0

Re(λ)

0.0

0.2

0.4

0.6

0.8

1.0

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Im(λ)

Flow

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

Turbulence

1

2

3

5

10

Iterations
after PC
update

Figure 6: Evolution of the eigenvalue spectra as the respective PCs are lagged at
ηtarget = 10−5 and CFL = 105. During the final stage of the startup, both flow and
turbulence model variables undergo small changes, so the respective PCs maintain their
effectiveness despite being lagged.

flow features have already been resolved, so the updates to the state vectors are small.
As a result, lagging the PCs do not change the eigenvalue spectra as much as in the
earlier stages of convergence. This shows that, during this stage, lagging the PC does
not hinder the performance of the linear solver because the discrepancies between the
matrix-free operations and the PCs remain relatively small.

The different trends that appear in the evolution of eigenvalue spectra during dif-
ferent stages of convergence demonstrate the need for adapting the PC lagging strategy
as a function of convergence stage. If a single lag were selected for the complete startup
process, it would be set by the most problematic stage (i.e., the initial stage for flow
variables and the intermediate stage for turbulence variables). Having an adaptive PC-
lagging algorithm alleviates this limiting factor. Furthermore, the results show that
the eigenvalue spectra for the flow and turbulence model variables evolve differently in
the different stages of convergence, which demonstrates that the use of a decoupled al-
gorithm might be more beneficial because the PCs for the respective linear systems can
be updated separately as needed. In contrast, a coupled approach would require more
frequent PC updates because, at different stages of convergence, different variables act
as the bottleneck hindering the performance of the linear solver.

5.3 Generalization of Matrix-Free Approximate Jacobian Method
to Other Discretizations

By default, we use the JST discretization scheme with scalar dissipation to compute
the inviscid fluxes, as stated in Section 2.3. However, the approximate matrix-free
approach can be generalized to other discretization methods. To demonstrate this,
we test the algorithm by using the JST scheme with matrix dissipation [66] and the

27

0 50 100 150
Nonlinear iterations

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

JST — scalar

JST — matrix

Upwind

Upwind
No NK

0 5 10 15 20 25 30
Thousands of TauBench work units

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

JST — scalar JST — matrix

Upwind

Upwind
No NK

Figure 7: Relative convergence versus number of nonlinear iterations and thousands
of TauBench WUs for the ONERA M6 wing. We used three different discretization
methods for the inviscid flux computations to demonstrate the applicability of the
proposed algorithm to various discretization methods. The upwind method with the
Roe flux fails during the NK stage; however, the same case without the switch to the
NK solver converges successfully.

upwind method using the Roe flux [67]. The test case is identical to that in Section 5.1.
We only test the algorithm with decoupled turbulence. In addition to the JST scheme
with matrix dissipation and the upwind scheme, we also include for comparison the
results of using R1 and decoupled turbulence from Section 5.1.

To use the approximate matrix-free approach with the additional discretization
methods, we first need to define approximate residual formulations that have a struc-
ture similar to those we built for the JST scheme with scalar dissipation (see Table 1).
For the JST scheme with matrix dissipation, we adopt the same modification we de-
fined for the case with scalar dissipation. For the upwind method, the exact residuals
are computed with a second-order-accurate reconstruction of the states on the faces for
flux computations. For R1 and R2, we simply use a first-order reconstruction of the
states on the faces. The Roe flux itself is not modified for R1 and R2. The approxi-
mations for both discretization methods result in the same stencils that we defined for
the JST scheme with scalar dissipation.

We tuned the default solver parameters for the JST scheme with scalar dissipation;
this set of parameters achieves the desired convergence during the startup stage for
both the JST scheme with matrix dissipation and the upwind method. Once the code
switches to the NK solver with the upwind method, convergence stalls because the
linear solver repeatedly fails to converge. We reran this case without switching to the
NK solver, and the ANK solver successfully converges the system to ηrel = 10−12, as
presented in Figure 7 and Table 4. This result shows that the approximations in the

28

matrix-free formulation improve convergence by making the resulting linear systems
easier to solve.

5.4 Comparison with Matrix-Based Algorithm

We now discuss the performance characteristics of the matrix-based and matrix-free
solver variants for a range of Jacobian lags. For all cases described in this section, we
use the coarse overset mesh of the Common Research Model (CRM) wing-body (WB)
configuration, which was used in the 6th Drag Prediction Workshop (DPW6) [68].
Coder et al. [69] describe the overset mesh used for the DPW6 test cases, which has
14 million cells. For these tests, we use eight Ivybridge nodes on NASA’s Pleiades
supercomputer. Each node contains 20 cores, and each test uses 160 cores in total.
One WU corresponds to 6.24 s.

A total of 18 tests are performed with this case, where the flow conditions are
M = 0.85, Re = 5 × 106, reference temperature Tref = 310.93 K, and angle of attack
α = 2.4◦ . The first seven tests are executed with the matrix-based ANK algorithm
(denoted MB) that uses the R2 approximations. The matrix-based algorithm uses
the approximate Jacobian formed to create the PC matrix as the main driver in the
solution process. With this algorithm, we lag both the Jacobian and its PC. The next
seven tests represent the matrix-free ANK algorithm (denoted MF) that again uses
the same approximation level R2 as the matrix-based algorithms. Finally, we conduct
two tests each with the matrix-free algorithm using R0 and R1. With all matrix-
free algorithms, we only lag the PC because the Jacobian is approximated by using
the matrix-free approach introduced in Equation (9). With these tests, we handle the
turbulence model separately, as detailed in Algorithm 3. The simulations are converged
to ηrel = 10−5 with the ANK solver and then converged to ηrel = 10−12 with the NK
solver.

Table 5 details the full range of tests conducted with this case, along with the
relevant performance metrics. With these tests, the adaptive lagging process (denoted

Table 4: ONERA M6 wing tests using different discretization methods for the inviscid
fluxes. For each case, we list the number of nonlinear iterations (NI), cumulative
number of linear iterations (LI), and thousands of work units (kWU) required to reach
the target convergence. The ANK solver converges cases with different discretizations.
For the upwind case, the NK solver fails, but the ANK solver reaches 10−12 relative
convergence, which shows that the Jacobian approximations improve robustness.

ηrel = 10−5 ηrel = 10−12

Discretization Method ηANK NI LI kWU NI LI kWU

JST with scalar dissipation 10−5 114 1967 9.42 126 2176 15.89

JST with matrix dissipation 10−5 179 3570 15.56 184 3943 26.83

Upwind 10−5 79 1973 10.59 —

Upwind No NK 79 1973 11.18 187 4327 23.45

29

adaptive) corresponds to Algorithm 3. Furthermore, a constant lag corresponds to
omitting the criteria for refreshing the Jacobian or the PC when the desired relative
convergence is reached. The results reveal the following two trends:

First, for larger Jacobian lags, the matrix-free algorithm with the R2 approxima-
tions outperforms the matrix-based algorithm with respect to the number of nonlinear
iterations required to reach a relative convergence of ηrel = 10−5, which is expected for
the matrix-free formulation. However, the matrix-based algorithm clearly outperforms
the matrix-free algorithm in terms of computational time because each matrix-vector
multiplication with the matrix-based approximate Jacobian is 10% to 20% cheaper
than the finite-difference approximation used in the matrix-free approach. If imple-
mented correctly, the two algorithms with a Jacobian or PC always up to date should
only differ due to the truncation errors introduced with the respective finite-difference
computations. This similarity is demonstrated by the results of Tests 1 and 8, which

Table 5: Tests with the coarse overset mesh of the CRM WB configuration. For
each case, we list the number of nonlinear iterations (NI), cumulative number of lin-
ear iterations (LI), and thousands of work units (kWU) required to reach the target
convergence. The results demonstrate the advantage of lagging the PC.

ηrel = 10−5 ηrel = 10−12

Test ANK Variant Jacobian/PC Lag NI LI kWU NI LI kWU

1 MB-R2 1 191 3242 42.23 213 3908 83.88

2 MB-R2 2 412 7046 59.76 428 7609 95.08

3 MB-R2 3 195 3305 23.66 220 3961 80.43

4 MB-R2 4 263 3855 27.47 287 4548 70.33

5 MB-R2 5 270 3801 25.27 293 4449 65.51

6 MB-R2 10 635 7135 39.42 652 7706 75.09

7 MB-R2 Adaptive 290 4039 23.31 314 4748 67.09

8 MF-R2 1 190 3232 52.42 212 3895 93.82

9 MF-R2 2 199 3385 59.98 223 4047 100.96

10 MF-R2 3 180 3151 41.89 200 3775 80.42

11 MF-R2 4 186 3239 30.62 208 3884 70.89

12 MF-R2 5 240 3947 34.36 260 4615 75.67

13 MF-R2 10 197 3688 30.21 218 4323 69.93

14 MF-R2 Adaptive 277 4486 35.88 298 5192 79.91

15 MF-R1 10 102 2971 27.74 120 3563 64.52

16 MF-R1 Adaptive 106 2850 26.96 123 3456 64.64

17 MF-R0 10 71 1775 16.65 87 2448 58.3

18 MF-R0 Adaptive — —

30

show that the two different methods require an almost identical number of nonlinear
iterations to achieve ηrel = 10−5. The small discrepancy is due to the accumulation of
finite-difference truncation errors over thousands of linear iterations.

Second, with the approximate formulations, the solver requires more nonlinear it-
erations, as demonstrated in Tests 7, 14, 16, and 17. The trade-off here is between
the number of nonlinear iterations and the cost of each nonlinear iteration. Tests 7
and 16, despite having a different number of nonlinear iterations, require an almost
identical number of WUs to reach the same level of convergence. Test 18 fails because
the adaptive PC-lagging algorithm results in too frequent updates to the PC, which in
turn prematurely increases the CFL number to unstable values.

Figure 8 plots the relative convergence versus the number of nonlinear iterations
and versus the number of WUs required to achieve ηrel = 10−12 with the tests that
use the adaptive PC-lagging algorithm. The R0 variant fails due to the high CFL
number obtained after consecutive PC updates, and the R1 approximation requires
fewer nonlinear iterations compared with R2. When using the R2 formulation, the
convergence oscillates, especially toward the final stages of the startup. During these
iterations, the backtracking line search limits the step sizes to achieve a stable solver.
However, the approximations still introduce some jumps in the total residual norm.
The line search only aims to reduce the unsteady residual norm and, because of the
time stepping term in this formulation, the total residual norm can increase, as it does
here.

Comparing the computational cost across different cases in terms of TauBench
WUs demonstrates the performance gains due to the approximate Jacobian. Across all
tests done with the automatic lagging algorithm, the solver performs similarly despite
requiring a different total number of nonlinear iterations. This discrepancy is due to the
lower cost per linear iteration of the approximate formulations and the approximations
that improve the conditioning of the linear system by increasing the diagonal dominance
of the Jacobian. Because this case uses an overset mesh, we could generate high-
quality component meshes while preserving orthogonality in the layers. As a result,
the approximations introduced with R2 do not degrade the performance. Despite
being faster than the matrix-free algorithm with R2, we do not use the matrix-based
algorithm in our production runs where we perform full-scale optimization because this
algorithm can destabilize the solver in the more challenging cases. Also, the matrix-
based method with Jacobian lagging is stabilized by limiting the step size for each
nonlinear iteration with the physicality check and the backtracking line search. For
the matrix-free approaches, these methods act as a safety net for bad solution updates
and are not as limiting as in the matrix-based case.

5.5 Effects of Different Levels of Approximations

We now discuss the effects of different levels of approximations in the matrix-free
formulation. Compared with overset meshes, structured multiblock meshes tend to
have more skewness in the layers due to the geometrical constraints when generating a
continuous structured mesh for a wing-body configuration. As a result, the orthogonal
mesh approximation in R2 breaks down sooner, necessitating more accurate residual

31

0 50 100 150 200 250 300
Nonlinear iterations

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l) R2 — matrix based

R2 — matrix free

R1 — matrix free

R0 — matrix free

0 20 40 60 80
Thousands of TauBench work units

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

R2 — matrix based

R2 — matrix free

R1 — matrix free

R0 — matrix free

Figure 8: Relative convergence versus number of nonlinear iterations and thousands of
TauBench WUs for the overset mesh of the CRM WB configuration. All the results
presented here use the adaptive PC-lagging algorithm. A trade-off exists between
computational cost and convergence rate per nonlinear iteration.

formulations. To demonstrate this effect, we use the coarse multiblock mesh of the
CRM WB configuration used for the DPW6 case [68], which has 32 million cells.
This geometry is identical to that in the previous subsection, with similar boundary
layer resolution, as defined by the DPW6 meshing guidelines [68]. The flow conditions
are the same as the overset case defined in the previous set of results and tests are
performed with the full ANK solver (Algorithm 3). These tests use the adaptive PC-
lagging algorithm, along with the matrix-free formulation for each approximation level.
These tests were done on the 20 Ivybridge nodes on the Pleiades supercomputer, so the
TauBench WUs are the same as for the previous cases. We study six cases in all, with
all three approximation levels (R0–R2) for the matrix-free operations, and we test each
approximation level with two different switching tolerances for the NK solver; namely,
ηANK = 10−5 and 10−6. We also impose a limit to the cumulative linear iteration count
and terminate the simulations when they reach 10 000 linear iterations.

Table 6 lists the test cases and the corresponding results. The tests with R0 and R2

fail to reach either of the switch tolerances, so we only include tests with the default
switch tolerance because the remaining two cases follow identical convergence paths.

The test with the R1 and the default parameters achieve the default switching
tolerance of ηANK = 10−5; however, the NK solver performs poorly after the switch.
Conversely, the NK solver has no difficulty converging to ηrel = 10−12 when using a
lower switching tolerance of ηANK = 10−6 along with R1. This shows that the criterion
for switching to the NK solver is not straightforward and a more robust method is
required, as mentioned in Section 3.9.

Because mesh orthogonality is not preserved on this multiblock mesh, the R2 ap-

32

0 50 100 150 200 250 300
Nonlinear iterations

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

R2 — switch to NK at ηrel = 10−5

R1 — switch to NK at ηrel = 10−5

R0 — switch to NK at ηrel = 10−5

R1 — switch to NK at ηrel = 10−6

0 200 400 600 800 1000
Thousands of TauBench work units

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

R2 — switch to NK at ηrel = 10−5

R1 — switch to NK at ηrel = 10−5

R0 — switch to NK at ηrel = 10−5

R1 — switch to NK at ηrel = 10−6

Figure 9: Relative convergence versus number of nonlinear iterations and thousands of
TauBench WUs with the multiblock mesh of the CRM WB configuration. The cases
presented here use the matrix-free formulation and the adaptive PC-lagging algorithm.
The tests with R0 and R2 fail. Delaying the switch to the NK solver from ηrel = 10−5

to ηrel = 10−6 improves the performance of the NK solver.

proximation level breaks down faster than the R1 approximation level. Moreover, the
test with R0 also fails because the linear solutions in this test fail due to the increased
stiffness introduced by the additional terms.

Figure 9 shows the convergence history for the tests considered here. The relative
convergence plotted versus TauBench WUs shows the negative effect of a premature
switch to the NK solver. The NK solver uses a stronger PC to converge the linear
systems more tightly at the cost of more expensive linear iterations. However, in
this case, both the nonlinear convergence and the linear solver performance suffer

Table 6: Tests with the multiblock mesh of the CRM WB configuration. For each case,
we list the number of nonlinear iterations (NI), cumulative number of linear iterations
(LI), and thousands of work units (kWU) required to reach the target convergence.
The results show the robustness problems that arise with R0 and R2. Furthermore,
the NK solver fails when the switch is done prematurely, whereas a lower switch value
solves this problem.

ηrel = 10−5 ηrel = 10−6 ηrel = 10−12

Approximation level ηANK NI LI kWU NI LI kWU NI LI kWU

MF-R2 10−5 — — —

MF-R1 10−5 95 2484 61.24 98 2654 84.48 —

MF-R0 10−5 — — —

MF-R1 10−6 95 2484 62.27 119 3494 82.02 135 4801 258.75

33

Figure 10: Strut-braced wing PADRI configuration. Coefficient of pressure contours of
the solution and overset mesh active cells. The complex overset connectivity structure
makes it practically impossible to obtain coarser levels of this mesh.

from premature switching, resulting in a considerably longer runtime (up to the 10 000
iteration limit). These results justify the use of the R1 approximation as default with
the approximate matrix-free formulation. Although the exact formulation (R0) gives
better convergence rates for some portion of the ANK stage, the algorithm with R1 is
more robust and can prevent failures in badly behaved cases such as this one.

5.6 Effects of Coupling the Turbulence Model Equation

By default, we march the turbulence model in pseudo-time, separate from the flow
variables as described in Algorithm 3. However, the trade-off between improvements
in convergence when handling the equations in a coupled manner and the increased
stiffness of the linear systems with the coupled mode is not straightforward. To further
investigate this trade-off, we consider the strut-braced wing (SBW) configuration used
in the Platform for Aircraft Drag Reduction Innovation (PADRI) test case6 shown in
Figure 10. In this configuration, the wing-strut junction creates complex flow features:
a standing shock and a separation region aft of the shock, as shown in Figure 11. The
presence of separation increases the importance of the coupling between flow variables
and the turbulence model.

Secco et al. [56, 57] optimized the aerodynamic shape of the SBW geometry through
extensive use of overset meshes, and we use for this configuration the same baseline
mesh they generated, which contains 6.4 million cells. The overset mesh for this config-
uration contains complex connectivities, as shown in Figure 10 along with the coefficient
of pressure contours of the solution. As a result of this complex overset structure, gen-

6http://congress.cimne.com/padri-2017/frontal/Topics.asp, accessed June 2019

34

http://congress.cimne.com/padri-2017/frontal/Topics.asp

Figure 11: Converged flow solution near the wing-strut junction, emphasizing the
standing shock and the separation regions.

erating coarser levels of this mesh is practically impossible. Therefore we cannot use a
multigrid startup strategy and have to rely on the ANK solver for robust startup. In
addition to demonstrating the effects of coupling the turbulence model, this test case
shows the capabilities of the solver algorithm to treat unconventional configurations
such as the SBW. The flow conditions for this case are M = 0.72, Re = 2.3× 107, ref-
erence temperature Tref = 228.71 K, and angle of attack α = 1.0◦ . For this case, along
with the baseline turbulence model introduced earlier, we use the quadratic constitu-
tive relation introduced by Spalart [70]. With this modification, the turbulence model
is fully classified as SA-noft2-QCR2000. These tests were run on the Skylake nodes of
the Stampede2 supercomputer. We used one node per simulation, which contains 48
cores, and one WU on these processors corresponds to 2.98 s.

We conducted two tests: one with the default solver using the decoupled turbulence
method defined in Algorithm 3 and a second test with the coupled solver variant, where
the turbulence model variable is coupled to the flow variables in the linear system we
consider in each nonlinear iteration. Although the default algorithm converges without
difficulty, the coupled variation stalls before reaching ηrel = 10−5, as shown by Table 7
and Figure 12. Because of the complex flow features near the wing-strut junction, the
coupled algorithm fails to find an update vector that decreases the unsteady residual
norm. As a result, the coupled solver stalls because the backtracking line search returns
the minimum step size for the remaining iterations. This example shows that, even for a
case with tight coupling in the flow and turbulence model variables, having a decoupled
solver is beneficial when handling regions where the residual norms fluctuate.

Table 7: SBW configuration tests. For each case, we list the number of nonlinear
iterations (NI), cumulative number of linear iterations (LI), and thousands of work
units (kWU) required to reach the target convergence. Convergence fails when the
turbulence model variable is coupled to the flow variables in the implicit formulation.

ηrel = 10−5 ηrel = 10−12

Turbulence NI LI kWU NI LI kWU

Decoupled 76 915 7.72 95 1356 22.7

Coupled — —

35

0 50 100 150 200 250 300
Nonlinear iterations

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

Decoupled turbulence

Coupled turbulence

0 10 20 30 40 50
Thousands of TauBench work units

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
co

nv
er

ge
n

ce
(η

re
l)

Decoupled turbulence

Coupled turbulence

Total residual
Turbulence residual

Figure 12: Relative convergence versus number of nonlinear iterations and thousands of
TauBench WUs for the SBW configuration. The default algorithm converges without
difficulty, but the coupled variant stalls before reaching ηrel = 10−5.

5.7 Comparison with Multigrid Startup

The final group of tests uses CFD solutions to train surrogate models through a
data-driven approach, which requires thousands of consecutive simulations of two-
dimensional airfoils. Li et al. [71] developed a fast, data-driven approach for airfoil
analysis and optimization by using surrogate models and used more than 100 000 CFD
simulations to train their surrogate model. To demonstrate the effectiveness of the
proposed solver and compare with a multigrid startup procedure, we study the conver-
gence of a large set of consecutive CFD solutions with a subset of cases from the work
of Li et al. [71]. We focus on the set of subsonic airfoils obtained from the Webfoil
Database.7 This set consists of 1172 airfoil shapes obtained from the database and
pre-processed to obtain a smooth representation of the airfoils with mode shapes and
weights. For the details of this process, we refer the reader to the work done by Li
et al. [71]. All of these discretizations are structured two-dimensional geometries for
which creating coarser mesh levels is straightforward. We use these cases to compare
the performance of the ANK solver with that of a multigrid startup method.

We did four sets of tests, each considering all 1172 airfoil shapes, and studied the
overall performance of the solver algorithms. All airfoil meshes have the same size
(35 840 cells). In the first three sets of tests, we use the 3w, 4w, and 5w multigrid
schemes to reach ηrel = 10−5 relative convergence. With the multigrid approach, the
solver initializes the solution at the coarsest mesh level and moves through the finer
mesh levels as it reduces the residual norm by two orders of magnitude on each level.
After the solver reaches the finest mesh level, it executes the prescribed multigrid
solution cycle by using the D3ADI method as the smoother [63]. The CFL number

7http://webfoil.engin.umich.edu, accessed June 2019

36

http://webfoil.engin.umich.edu

with the multigrid tests is fixed at 5.0. In the fourth set of tests, we use the ANK
solver to reach ηrel = 10−5 relative convergence. For these tests, we reduce the ILU
fill level for the PCs in the ANK solver to unity and preserve the remaining default
parameters. The flow conditions are M = 0.45, Re = 6.5× 106, reference temperature
Tref = 310.93 K, and angle of attack α = 2.5◦ . The solutions are converged to ηrel =
10−12 by using the NK solver after the startup stage. Again, we used one Skylake
node of the Stampede2 supercomputer for each set of tests. Due to the embarrassingly
parallel nature of running a large number of small cases, we distributed 1172 airfoil
cases among 48 processors of a node, so each simulation used one Skylake core, where
one WU corresponds to 2.98 s.

Table 8 lists the arithmetic mean and standard deviation of the performance metrics
for each set of successful tests, along with the number of failed cases for each test. To
compute these statistics, we omit the results from the failed cases. In these tests, four
cases fail on each method due to failures in the mesh-generation algorithm, which is
external to ADflow. The remaining failed cases represent cases where the flow solver
terminates because it reaches 5000 cumulative linear iterations. For the multigrid
methods, the simulations are terminated when they reach 5000 nonlinear iterations,
where each multigrid cycle on the finest mesh is counted as one linear iteration. For
each method, the solver converges more than 99% of all 1172 airfoil shapes, which
are representative of a large design space of subsonic airfoil shapes. The average WUs
required to reach ηrel = 10−5 is reduced as the solver uses coarser levels in the multigrid

Table 8: Results with 1172 airfoil shapes. For each case, we list the number of non-
linear iterations (NI), cumulative number of linear iterations (LI), and thousands of
work units (kWU) required to reach the target convergence. The methods 3w, 4w, and
5w represent the respective multigrid startup strategy. AM and SD stand for arith-
metic mean and standard deviation of the respective metrics over the set of successful
simulations with the given startup method. We report only the number of solver fail-
ures and omit the four failures due to mesh generation for each method. The ANK
solver converges almost all airfoils with convergence rates comparable to a multigrid
approach, even though the ANK solver only requires the finest grid level.

ηrel = 10−5 ηrel = 10−12

Method Failures Value NI LI WU NI LI WU

3w 0
AM

SD

604.86

129.02

604.86

129.02

78.88

13.14

616.39

130.44

780.13

173.32

93.47

15.17

4w 5
AM

SD

197.42

45.94

197.42

45.94

29.62

5.74

204.65

47.16

340.92

78.25

41.28

7.22

5w 0
AM

SD

160.91

29.64

160.91

29.64

27.09

3.80

167.35

30.94

294.47

61.60

37.85

5.20

ANK 3
AM

SD

35.16

10.69

381.63

110.79

24.54

6.24

46.79

12.03

536.22

130.46

35.66

7.17

37

scheme, and the best performance is achieved with the ANK solver.
However, the residual computations on which the ANK and NK solvers operate

are vectorized, whereas the residual computations used with the multigrid methods
are not. This is due to the fact that it is easier to implement vectorized residual
computations within the ANK and NK solvers because we can treat these computations
as black boxes. Conversely, implementing vectorization for multigrid methods is more
challenging because details related to the coarse grid representations of the state must
be addressed. Due to vectorization, there is an acceleration of about 1.5 overall in the
ANK and NK solvers compared with the non-vectorized versions. The acceleration
is moderate because the residual computations are only responsible for half of the
computational cost of the ANK solver. Running the same tests with the ANK solver
and disabling the vectorization yields an average of 35.67 WUs to reach ηrel = 10−5,
which places the ANK solver performance between the performance levels of the 3w
and 4w multigrid methods. These results show that the ANK solver performs at a
level similar to that of a multigrid startup method, while only requiring the finest
mesh level. This enables the use of the ANK solver with overset meshes, whereas we
typically cannot generate coarser levels of the overset meshes for a multigrid startup
because of connectivity problems.

6 Conclusion
In this work, we describe two contributions to approximate Newton-based solvers.
First, we introduce the use of approximate residual computations for a matrix-free ap-
proximate Jacobian formulation. Second, we describe in detail our adaptive PC-lagging
algorithm. The proposed matrix-free approach enables the algorithm to use varying
levels of approximations and eliminates the lack of robustness that arises when the
Jacobian is lagged with matrix-based approaches. We describe in detail our implemen-
tation and explain how the approach is generalizable to a wide range of discretization
methods. We test the proposed algorithm with a range of problems of interest whose
results justify our implementation choices. The algorithm can handle challenging three-
dimensional geometries and is shown to be suitable for a data-driven study that requires
over one hundred thousand successive RANS simulations.

By using the open-source CFD solver ADflow, we demonstrate the trade-off between
the nonlinear convergence rate and the cost of each linear solution and study a range of
approximations in the matrix-free operations. When approximate residual formulations
are used in the matrix-free operations, the solver requires more nonlinear iterations than
when using the exact formulation, but the cost of each nonlinear iteration is reduced.
As a result, the use of the approximate formulations offsets the cost of additional
nonlinear iterations and yields higher nonlinear convergence rates during the initial
stages of convergence.

It remains unclear which approximation level performs best, despite having tested
a wide range of cases that would not only showcase our default approach but also
demonstrate the trade-offs between different cases. In spite of not achieving the best
performance for all cases, the approximation level R1 successfully converges all cases

38

in this study, along with many other test cases that we used while developing the
solver. To prevent the interruption of repeated automated runs, such as those required
in a design optimization loop, our priority is solver robustness. This approach also
reduces the cost of manual intervention, which is generally more costly than additional
computational time. Therefore, we select R1 as the default approximation level in the
matrix-free operations.

We describe in detail our adaptive PC-lagging algorithm and demonstrate the effects
of using a lagged PC by studying how the eigenvalue spectra of the preconditioned
systems evolve as we lag the PC. As expected, the PC effectiveness deteriorates as it is
lagged between nonlinear iterations. However, the rate at which the eigenvalue spectra
expand depends on the nonlinear convergence stage. Furthermore, we show that the
eigenvalue spectra resulting from linearization of the flow variables and the turbulence
model variable yield different characteristics during different stages of convergence.

The matrix-free operations use the varying levels of approximate residual formula-
tions directly in the underlying linear solver algorithm. We compute the matrix-based
approximate Jacobian for the PCs by using finite differences along with coloring accel-
eration techniques. As a result, no manual differentiation is required during the solver
implementation, and any change in the underlying residual formulation is directly re-
flected in the implicit formulation. This approach greatly reduces the implementation
effort and the ANK solver can be generalized to a wide range of discretization methods.

7 Acknowledgments
This work was supported by the National Science Foundation (award number 1435188).
Computations were performed in the Extreme Science and Engineering Discovery En-
vironment (XSEDE), which is supported by the National Science Foundation grant
number ACI-1548562, and the NASA High-End Computing (HEC) Program through
the NASA Advanced Supercomputing (NAS) Division at Ames Research Center. Spe-
cial thanks to Ney R. Secco for the SBW materials, Jichao Li for the airfoil database
resources, Krzysztof Fidkowski for his valuable suggestions, and Jason Hicken for re-
viewing an early version of this paper.

References
[1] Martins, J. R. R. A., and Lambe, A. B., “Multidisciplinary Design Optimization:

A Survey of Architectures,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049–2075.
doi:10.2514/1.J051895.

[2] Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic Shape
Optimization Investigations of the Common Research Model Wing Benchmark,”
AIAA Journal, Vol. 53, No. 4, 2015, pp. 968–985. doi:10.2514/1.J053318.

[3] Bons, N. P., He, X., Mader, C. A., and Martins, J. R. R. A., “Multimodality in
Aerodynamic Wing Design Optimization,” AIAA Journal, Vol. 57, No. 3, 2019,
pp. 1004–1018. doi:10.2514/1.J057294.

39

https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J053318
https://doi.org/10.2514/1.J057294

[4] Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable Parallel Ap-
proach for High-Fidelity Steady-State Aeroelastic Analysis and Derivative Compu-
tations,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 935–951. doi:10.2514/1.J052255.

[5] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint High-Fidelity Aerostruc-
tural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft,
Vol. 51, No. 1, 2014, pp. 144–160. doi:10.2514/1.C032150.

[6] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint Aerodynamic Shape Op-
timization Investigations of the Common Research Model Wing,” AIAA Journal,
Vol. 54, No. 1, 2016, pp. 113–128. doi:10.2514/1.J054154.

[7] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., “On the Influence of Op-
timization Algorithm and Starting Design on Wing Aerodynamic Shape Op-
timization,” Aerospace Science and Technology, Vol. 75, 2018, pp. 183–199.
doi:10.1016/j.ast.2018.01.016.

[8] Brooks, T. R., Kenway, G. K. W., and Martins, J. R. R. A., “Benchmark
Aerostructural Models for the Study of Transonic Aircraft Wings,” AIAA Journal,
Vol. 56, No. 7, 2018, pp. 2840–2855. doi:10.2514/1.J056603.

[9] He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J. R. R. A., “Robust
aerodynamic shape optimization—from a circle to an airfoil,” Aerospace Science
and Technology, Vol. 87, 2019, pp. 48–61. doi:10.1016/j.ast.2019.01.051.

[10] Witherden, F. D., Jameson, A., and Zingg, D. W., “The Design of Steady State
Schemes for Computational Aerodynamics,” Handbook of Numerical Analysis,
Vol. 18, 2017, pp. 303–349. doi:10.1016/bs.hna.2016.11.006.

[11] Hicken, J., and Zingg, D., “Globalization Strategies for Inexact-Newton Solvers,”
19th AIAA Computational Fluid Dynamics, American Institute of Aeronautics
and Astronautics, 2009. doi:10.2514/6.2009-4139.

[12] Allgower, E., and Georg, K., Introduction to Numerical Continuation Methods,
Classics in Applied Mathematics, Society for Industrial and Applied Mathematics,
2003. doi:10.1137/1.9780898719154.

[13] Kelley, C., and Keyes, D., “Convergence Analysis of Pseudo-Transient Continua-
tion,” SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 1998, pp. 508–523.
doi:10.1137/S0036142996304796.

[14] Bellavia, S., and Berrone, S., “Globalization strategies for Newton–Krylov
methods for stabilized FEM discretization of Navier–Stokes equations,” Jour-
nal of Computational Physics, Vol. 226, No. 2, 2007, pp. 2317–2340.
doi:10.1016/j.jcp.2007.07.021.

[15] Knoll, D. A., and Keyes, D. E., “Jacobian-free Newton–Krylov methods: a sur-
vey of approaches and applications,” Journal of Computational Physics, Vol. 193,
No. 2, 2004, pp. 357–397. doi:10.1016/j.jcp.2003.08.010.

40

https://doi.org/10.2514/1.J052255
https://doi.org/10.2514/1.C032150
https://doi.org/10.2514/1.J054154
https://doi.org/10.1016/j.ast.2018.01.016
https://doi.org/10.2514/1.J056603
https://doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.1016/bs.hna.2016.11.006
https://doi.org/10.2514/6.2009-4139
https://doi.org/10.1137/1.9780898719154
https://doi.org/10.1137/S0036142996304796
https://doi.org/10.1016/j.jcp.2007.07.021
https://doi.org/10.1016/j.jcp.2003.08.010

[16] Gropp, W., Keyes, D., McInnes, L. C., and Tidriri, M. D., “Globalized Newton-
Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD,” The Inter-
national Journal of High Performance Computing Applications, Vol. 14, No. 2,
2000, pp. 102–136. doi:10.1177/109434200001400202.

[17] Gropp, W. D., Kaushik, D. K., Keyes, D. E., and Smith, B. F., “High-performance
parallel implicit CFD,” Parallel Computing, Vol. 27, No. 4, 2001, pp. 337–362.
doi:10.1016/S0167-8191(00)00075-2.

[18] Hicken, J. E., and Zingg, D. W., “Parallel Newton-Krylov Solver for the Euler
equations Discretized Using Simultaneous Approximation Terms,” AIAA Journal,
Vol. 46, No. 11, 2008, pp. 2773–2786. doi:10.2514/1.34810.

[19] Chisholm, T. T., and Zingg, D. W., “A Jacobian-free Newton–Krylov algorithm
for compressible turbulent fluid flows,” Journal of Computational Physics, Vol.
228, No. 9, 2009, pp. 3490–3507. doi:10.1016/j.jcp.2009.02.004.

[20] Osusky, M., and Zingg, D. W., “Parallel Newton–Krylov–Schur Flow Solver for the
Navier–Stokes Equations,” AIAA Journal, Vol. 51, No. 12, 2013, pp. 2833–2851.
doi:10.2514/1.J052487.

[21] Brown, D. A., and Zingg, D. W., “Performance of a Newton–Krylov–Schur Algo-
rithm for Solving Steady Turbulent Flows,” AIAA Journal, Vol. 54, No. 9, 2016,
pp. 2645–2658. doi:10.2514/1.J054513.

[22] Hicken, J., Buckley, H., Osusky, M., and Zingg, D., “Dissipation-based continua-
tion: a globalization for inexact-Newton solvers,” 20th AIAA Computational Fluid
Dynamics Conference, American Institute of Aeronautics and Astronautics, 2011.
doi:10.2514/6.2011-3237.

[23] Brown, D. A., and Zingg, D. W., “A monolithic homotopy continua-
tion algorithm with application to computational fluid dynamics,” Journal
of Computational Physics, Vol. 321, No. Supplement C, 2016, pp. 55–75.
doi:10.1016/j.jcp.2016.05.031.

[24] Crivellini, A., and Bassi, F., “An implicit matrix-free Discontinuous Galerkin
solver for viscous and turbulent aerodynamic simulations,” Computers & Fluids,
Vol. 50, No. 1, 2011, pp. 81–93. doi:10.1016/j.compfluid.2011.06.020.

[25] Xia, Y., Luo, H., Frisbey, M., and Nourgaliev, R., “A set of parallel, implicit
methods for a reconstructed discontinuous Galerkin method for compressible
flows on 3D hybrid grids,” Computers & Fluids, Vol. 98, 2014, pp. 134–151.
doi:10.1016/j.compfluid.2014.01.023.

[26] Fidkowski, K. J., and Darmofal, D. L., “Review of Output-Based Error Estimation
and Mesh Adaptation in Computational Fluid Dynamics,” AIAA Journal, Vol. 49,
No. 4, 2011, pp. 673–694. doi:10.2514/1.J050073.

41

https://doi.org/10.1177/109434200001400202
https://doi.org/10.1016/S0167-8191(00)00075-2
https://doi.org/10.2514/1.34810
https://doi.org/10.1016/j.jcp.2009.02.004
https://doi.org/10.2514/1.J052487
https://doi.org/10.2514/1.J054513
https://doi.org/10.2514/6.2011-3237
https://doi.org/10.1016/j.jcp.2016.05.031
https://doi.org/10.1016/j.compfluid.2011.06.020
https://doi.org/10.1016/j.compfluid.2014.01.023
https://doi.org/10.2514/1.J050073

[27] Hartmann, R., Held, J., Leicht, T., and Prill, F., “Error Estimation and Adaptive
Mesh Refinement for Aerodynamic Flows,” ADIGMA - A European Initiative
on the Development of Adaptive Higher-Order Variational Methods for Aerospace
Applications, Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
Springer, Berlin, Heidelberg, 2010, pp. 339–353. doi:10.1007/978-3-642-03707-
8 24.

[28] Modisette, J. M., “An automated reliable method for two-dimensional Reynolds-
Averaged Navier-Stokes simulations,” Ph.D. thesis, Massachusetts Institute of
Technology, 2011. URL http://hdl.handle.net/1721.1/68406.

[29] Ceze, M., and Fidkowski, K., “Pseudo-transient Continuation, Solution Update
Methods, and CFL Strategies for DG Discretizations of the RANS-SA Equa-
tions,” 21st AIAA Computational Fluid Dynamics Conference, American Institute
of Aeronautics and Astronautics, 2013. doi:10.2514/6.2013-2686.

[30] Ceze, M., and Fidkowski, K. J., “Constrained pseudo-transient continuation,”
International Journal for Numerical Methods in Engineering, Vol. 102, No. 11,
2015, pp. 1683–1703. doi:10.1002/nme.4858.

[31] Burgess, N., and Glasby, R. S., “Advances in Numerical Methods for CREATE-
AV Analysis Tools,” 52nd Aerospace Sciences Meeting, AIAA SciTech Forum,
American Institute of Aeronautics and Astronautics, 2014. doi:10.2514/6.2014-
0417.

[32] Kenway, G. K. W., Mader, C. A., He, P., and Martins, J. R. R. A., “Effective
Adjoint Approaches for Computational Fluid Dynamics,” Progress in Aerospace
Sciences, Vol. 110, 2019, p. 100542. doi:10.1016/j.paerosci.2019.05.002.

[33] Nejat, A., and Ollivier-Gooch, C., “A high-order accurate unstructured fi-
nite volume Newton–Krylov algorithm for inviscid compressible flows,” Jour-
nal of Computational Physics, Vol. 227, No. 4, 2008, pp. 2582–2609.
doi:10.1016/j.jcp.2007.11.011.

[34] Asgharzadeh, H., and Borazjani, I., “A Newton–Krylov method with an approxi-
mate analytical Jacobian for implicit solution of Navier–Stokes equations on stag-
gered overset-curvilinear grids with immersed boundaries,” Journal of Computa-
tional Physics, Vol. 331, 2017, pp. 227–256. doi:10.1016/j.jcp.2016.11.033.

[35] Cavalca, D. F., Bringhenti, C., Campos, G. B., Tomita, J. T., and Silva, O. F. R.,
“Development and convergence analysis of an effective and robust implicit Euler
solver for 3D unstructured grids,” Journal of Computational Physics, Vol. 367,
2018, pp. 399–415. doi:10.1016/j.jcp.2018.04.005.

[36] Spalart, P., and Allmaras, S., “A One-Equation Turbulence Model for
Aerodynamic Flows,” Lé Recherche Aerospatiale, Vol. 1, 1994, pp. 5–21.
doi:10.2514/6.1992-439.

42

https://doi.org/10.1007/978-3-642-03707-8_24
https://doi.org/10.1007/978-3-642-03707-8_24
http://hdl.handle.net/1721.1/68406
https://doi.org/10.2514/6.2013-2686
https://doi.org/10.1002/nme.4858
https://doi.org/10.2514/6.2014-0417
https://doi.org/10.2514/6.2014-0417
https://doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1016/j.jcp.2007.11.011
https://doi.org/10.1016/j.jcp.2016.11.033
https://doi.org/10.1016/j.jcp.2018.04.005
https://doi.org/10.2514/6.1992-439

[37] Allmaras, S. R., Johnson, F. T., and Spalart, P. R., “Modifications and Clarifica-
tions for the Implementation of the Spalart-Allmaras Turbulence Model,” Big Is-
land, Hawaii, 2012. URL http://www.iccfd.org/iccfd7/assets/pdf/papers/

ICCFD7-1902_paper.pdf.

[38] Kenway, G. K. W., Secco, N., Martins, J. R. R. A., Mishra, A., and Duraisamy,
K., “An Efficient Parallel Overset Method for Aerodynamic Shape Optimiza-
tion,” Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, AIAA SciTech Forum, Grapevine, TX, 2017.
doi:10.2514/6.2017-0357.

[39] Jameson, A., Schmidt, W., and Turkel, E., “Numerical solution of the Euler equa-
tions by finite volume methods using Runge Kutta time stepping schemes,” 14th
Fluid and Plasma Dynamics Conference, American Institute of Aeronautics and
Astronautics, 1981. doi:10.2514/6.1981-1259.

[40] Lyu, Z., Kenway, G. K., Paige, C., and Martins, J. R. R. A., “Automatic Dif-
ferentiation Adjoint of the Reynolds-Averaged Navier–Stokes Equations with a
Turbulence Model,” 21st AIAA Computational Fluid Dynamics Conference, San
Diego, CA, 2013. doi:10.2514/6.2013-2581.

[41] Saad, Y., and Schultz, M., “GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Sta-
tistical Computing, Vol. 7, No. 3, 1986, pp. 856–869. doi:10.1137/0907058.

[42] Brown, P., and Saad, Y., “Hybrid Krylov Methods for Nonlinear Systems of Equa-
tions,” SIAM Journal on Scientific and Statistical Computing, Vol. 11, No. 3, 1990,
pp. 450–481. doi:10.1137/0911026.

[43] Balay, S., Buschelman, K., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Smith, B. F., and Zhang, H., “PETSc Web page,” , 2009. URL http:

//www.mcs.anl.gov/petsc.

[44] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Dener, A., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G.,
May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K., Sanan, P.,
Smith, B. F., Zampini, S., Zhang, H., and Zhang, H., “PETSc Users Manual,”
Tech. Rep. ANL-95/11 - Revision 3.10, Argonne National Laboratory, 2018. URL
http://www.mcs.anl.gov/petsc.

[45] Goldfarb, D., and Toint, P. L., “Optimal estimation of Jacobian and Hessian
matrices that arise in finite difference calculations,” Mathematics of Computation,
Vol. 43, No. 167, 1984, pp. 69–88. doi:10.1090/S0025-5718-1984-0744925-5.

[46] Dembo, R. S., Eisenstat, S. C., and Steihaug, T., “Inexact Newton Meth-
ods,” SIAM Journal on Numerical Analysis, Vol. 19, No. 2, 1982, pp. 400–408.
doi:10.1137/0719025.

43

http://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
http://www.iccfd.org/iccfd7/assets/pdf/papers/ICCFD7-1902_paper.pdf
https://doi.org/10.2514/6.2017-0357
https://doi.org/10.2514/6.1981-1259
https://doi.org/10.2514/6.2013-2581
https://doi.org/10.1137/0907058
https://doi.org/10.1137/0911026
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
https://doi.org/10.1090/S0025-5718-1984-0744925-5
https://doi.org/10.1137/0719025

[47] Eisenstat, S., and Walker, H., “Choosing the Forcing Terms in an Inexact Newton
Method,” SIAM Journal on Scientific Computing, Vol. 17, No. 1, 1996, pp. 16–32.
doi:10.1137/0917003.

[48] Bücker, H. M., Pollul, B., and Rasch, A., “On CFL evolution strategies for im-
plicit upwind methods in linearized Euler equations,” International Journal for
Numerical Methods in Fluids, Vol. 59, No. 1, 2009, pp. 1–18. doi:10.1002/fld.1798.

[49] Van Leer, B., and Mulder, W. A., “Relaxation Methods for Hyperbolic Con-
servation Laws,” {Numerical Methods for the Euler Equations of Fluid Dynam-
ics, F. Angrand, A. Dervieux, J. A. Desideri, and R. Glowinski, eds., Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1985, pp. 312–333.
URL https://www.researchgate.net/publication/265780696_Relaxation_

Methods_for_Hyperbolic_Conservation_Laws.

[50] Chauhan, S. S., Hwang, J. T., and Martins, J. R. R. A., “An automated selec-
tion algorithm for nonlinear solvers in MDO,” Structural and Multidisciplinary
Optimization, Vol. 58, No. 2, 2018, pp. 349–377. doi:10.1007/s00158-018-2004-5.

[51] Osusky, M., and Zingg, D. W., “Steady three-dimensional turbulent flow com-
putations with a parallel Newton-Krylov-Schur algorithm,” 52nd Aerospace
Sciences Meeting, American Institute of Aeronautics and Astronautics, 2014.
doi:10.2514/6.2014-0242.

[52] Kenway, G. K. W., and Martins, J. R. R. A., “Buffet Onset Constraint Formulation
for Aerodynamic Shape Optimization,” AIAA Journal, Vol. 55, No. 6, 2017, pp.
1930–1947. doi:10.2514/1.J055172.

[53] Bons, N. P., He, X., Mader, C. A., and Martins, J. R. R. A., “Multimodality in
Aerodynamic Wing Design Optimization,” 18th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Denver, CO, 2017. doi:10.2514/6.2017-
3753.

[54] van der Weide, E., Kalitzin, G., Schluter, J., and Alonso, J. J., “Unsteady
Turbomachinery Computations Using Massively Parallel Platforms,” Proceedings
of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006.
doi:10.2514/6.2006-421, AIAA 2006-0421.

[55] Madsen, M. H. A., Zahle, F., Sørensen, N. N., and Martins, J. R. R. A., “Multi-
point high-fidelity CFD-based aerodynamic shape optimization of a 10 MW wind
turbine,” Wind Energy Science, Vol. 4, 2019, pp. 163–192. doi:10.5194/wes-4-163-
2019.

[56] Secco, N. R., and Martins, J. R. R. A., “RANS-based Aerodynamic Shape Op-
timization of a Strut-braced Wing with Overset Meshes,” Journal of Aircraft,
Vol. 56, No. 1, 2019, pp. 217–227. doi:10.2514/1.C034934.

44

https://doi.org/10.1137/0917003
https://doi.org/10.1002/fld.1798
https://www.researchgate.net/publication/265780696_Relaxation_Methods_for_Hyperbolic_Conservation_Laws
https://www.researchgate.net/publication/265780696_Relaxation_Methods_for_Hyperbolic_Conservation_Laws
https://doi.org/10.1007/s00158-018-2004-5
https://doi.org/10.2514/6.2014-0242
https://doi.org/10.2514/1.J055172
https://doi.org/10.2514/6.2017-3753
https://doi.org/10.2514/6.2017-3753
https://doi.org/10.2514/6.2006-421
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.5194/wes-4-163-2019
https://doi.org/10.2514/1.C034934

[57] Secco, N. R., Jasa, J. P., Kenway, G. K. W., and Martins, J. R. R. A.,
“Component-based Geometry Manipulation for Aerodynamic Shape Optimiza-
tion with Overset Meshes,” AIAA Journal, Vol. 56, No. 9, 2018, pp. 3667–3679.
doi:10.2514/1.J056550.

[58] Liem, R. P., Martins, J. R. R. A., and Kenway, G. K., “Expected Drag
Minimization for Aerodynamic Design Optimization Based on Aircraft Opera-
tional Data,” Aerospace Science and Technology, Vol. 63, 2017, pp. 344–362.
doi:10.1016/j.ast.2017.01.006.

[59] Chen, S., Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aero-
dynamic Shape Optimization of the Common Research Model Wing-Body-
Tail Configuration,” Journal of Aircraft, Vol. 53, No. 1, 2016, pp. 276–293.
doi:10.2514/1.C033328.

[60] Brooks, T. R., Martins, J. R. R. A., and Kennedy, G. J., “High-fidelity Aerostruc-
tural Optimization of Tow-steered Composite Wings,” Journal of Fluids and
Structures, Vol. 88, 2019, pp. 122–147. doi:10.1016/j.jfluidstructs.2019.04.005.

[61] Burdette, D. A., and Martins, J. R. R. A., “Design of a Transonic Wing with an
Adaptive Morphing Trailing Edge via Aerostructural Optimization,” Aerospace
Science and Technology, Vol. 81, 2018, pp. 192–203. doi:10.1016/j.ast.2018.08.004.

[62] Liem, R. P., Kenway, G. K. W., and Martins, J. R. R. A., “Multimission Air-
craft Fuel Burn Minimization via Multipoint Aerostructural Optimization,” AIAA
Journal, Vol. 53, No. 1, 2015, pp. 104–122. doi:10.2514/1.J052940.

[63] Klopfer, G., Hung, C., Wijngaart, R. V. d., and Onufer, J., “A diagonalized di-
agonal dominant alternating direction implicit (D3ADI) scheme and subiteration
correction,” 29th AIAA, Fluid Dynamics Conference, American Institute of Aero-
nautics and Astronautics, 1998. doi:10.2514/6.1998-2824.

[64] Gleize, V., Dumont, A., Mayeur, J., and Destarac, D., “RANS simulations on
TMR test cases and M6 wing with the Onera elsA flow solver (Invited),” 53rd
AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astro-
nautics, 2015. doi:10.2514/6.2015-1745.

[65] Qin, N., Xu, X., and Richards, B. E., “Newton-like methods for fast high resolution
simulation of hypersonic viscous flows,” Computing Systems in Engineering, Vol. 3,
No. 1, 1992, pp. 429–435. doi:10.1016/0956-0521(92)90128-6.

[66] Swanson, R. C., and Turkel, E., “On central-difference and upwind schemes,”
Journal of Computational Physics, Vol. 101, No. 2, 1992, pp. 292–306.
doi:10.1016/0021-9991(92)90007-L.

[67] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors, and Differ-
ence Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357–372.
doi:10.1016/0021-9991(81)90128-5.

45

https://doi.org/10.2514/1.J056550
https://doi.org/10.1016/j.ast.2017.01.006
https://doi.org/10.2514/1.C033328
https://doi.org/10.1016/j.jfluidstructs.2019.04.005
https://doi.org/10.1016/j.ast.2018.08.004
https://doi.org/10.2514/1.J052940
https://doi.org/10.2514/6.1998-2824
https://doi.org/10.2514/6.2015-1745
https://doi.org/10.1016/0956-0521(92)90128-6
https://doi.org/10.1016/0021-9991(92)90007-L
https://doi.org/10.1016/0021-9991(81)90128-5

[68] Tinoco, E. N., Brodersen, O., Keye, S., and Laflin, K., “Summary of Data from
the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5,” 55th AIAA
Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics,
2017. doi:10.2514/6.2017-1208.

[69] Coder, J. G., Hue, D., Kenway, G., Pulliam, T. H., Sclafani, A. J., Serrano,
L., and Vassberg, J. C., “Contributions to the Sixth Drag Prediction Workshop
Using Structured, Overset Grid Methods,” Journal of Aircraft, 2017, pp. 1–14.
doi:10.2514/1.C034486.

[70] Spalart, P. R., “Strategies for turbulence modelling and simulations,” Inter-
national Journal of Heat and Fluid Flow, Vol. 21, No. 3, 2000, pp. 252–263.
doi:10.1016/S0142-727X(00)00007-2.

[71] Li, J., Bouhlel, M. A., and Martins, J. R. R. A., “Data-based Approach for Fast
Airfoil Analysis and Optimization,” AIAA Journal, Vol. 57, No. 2, 2019, pp. 581–
596. doi:10.2514/1.J057129.

46

https://doi.org/10.2514/6.2017-1208
https://doi.org/10.2514/1.C034486
https://doi.org/10.1016/S0142-727X(00)00007-2
https://doi.org/10.2514/1.J057129

	1 Introduction
	2 Governing Equations and Discretization
	3 Approximate Newton–Krylov Algorithm
	4 Computational Framework
	5 Results
	6 Conclusion
	7 Acknowledgments

