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On the Influence of Optimization Algorithm and
Initial Design on Wing Aerodynamic Shape Optimization

Yin Yu1, Zhoujie Lyu2, Zelu Xu3, Joaquim R. R. A. Martins4

Abstract Aerodynamic shape optimization is a useful tool in wing design, but the impact of
the choice of optimization algorithm and the multimodality of the design space in wing design
optimization is still poorly understood. To address this, we benchmark both gradient-based and
gradient-free optimization algorithms for computational fluid dynamics based aerodynamic shape
optimization problems based on the Common Research Model wing geometry. The aerodynamic
model solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras turbulence
model. The drag coefficient is minimized subject to lift, pitching moment, and geometry constraints,
with up to 720 shape variables and 11 twist variables for two mesh sizes. We benchmark six gradient-
based and three gradient-free algorithms by comparing both the accuracy of the optima and the
computational cost. Most of the optimizers reach similar optima, but the gradient-based methods
converge to more accurate solutions at a much lower computational cost. Since multimodality and
nonsmoothness of the design space are common arguments for the use of gradient-free methods,
we investigate these issues by solving the same optimization problem starting from a series of
randomly generated initial geometries, as well as a wing based on the NACA 0012 airfoil with
zero twist and constant thickness-to-chord ratio. All the optimizations consistently converge to
practically identical results, where the differences in drag are within 0.05%, and the shapes and
pressure distributions are very similar. Our overall conclusion is that the design space for wing
design optimization with a fixed planform is largely convex, with a very small flat region that is
multimodal because of numerical errors. However, this region is so small, and the differences in
drag so minor, that the design space can be considered unimodal for all practical purposes.

1 Introduction
The aerodynamic shape optimization of transonic aircraft wings has long been a difficult and
expensive task. Small changes in shape can have a large impact on aerodynamic performance, and
therefore the optimization requires hundreds of design variables Lyu and Martins (2014). Thus,
aerodynamic shape optimization based on computational fluid dynamics (CFD) can be costly.

Aerodynamic shape optimization problems can be solved with gradient-based or gradient-free
methods. Gradient-based methods are preferable when an efficient gradient evaluation is avail-
able Jameson (2003). The application of gradient-based optimization to this problem was pio-
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neered in the 1970s, with gradients computed using finite-difference approximations Hicks and
Henne (1978). As the number of design variables increases, the cost of this computation becomes
prohibitive. Adjoint methods were developed to address this issue; they provide a way to eval-
uate the gradients with a cost that is independent of the number of design variables. Peter and
Dwight Peter and Dwight (2010) reviewed these and other methods for computing aerodynamic
shape derivatives. Martins and Hwang Martins and Hwang (2013) generalized the adjoint method
and discussed its connection to other derivative evaluation methods.

Pironneau pioneered the use of adjoint-based gradient calculation in airfoil profile optimization
by deriving the adjoint for the Stokes equations Pironneau (1973) and for the incompressible Euler
equations Pironneau (1974). Jameson (1988) then made the adjoint method useful in the design of
transonic airfoils by developing an adjoint for inviscid compressible flow. The aerodynamic design
of transonic wings requires a model that can represent the shock-wave boundary layer interaction,
since there is a strong nonlinear coupling between airfoil shape, wave drag, and viscous effects.
Therefore, transonic wing optimization based on the Euler equation performs poorly when analyzed
in turbulent flow Lyu et al. (2013, 2015).

The adjoint method was later extended to the compressible Navier–Stokes equations with tur-
bulence models, making it possible to solve practical aerodynamic design problems. Jameson et
al. Jameson et al. (1998) optimized a wing-body configuration modeled with the compressible
Navier–Stokes equations using a continuous adjoint approach. They used a 590k-cell mesh and
achieved a shock-free solution at Mach 0.86. Anderson and Venkatakrishnan (1999) optimized air-
foil shapes using a discrete adjoint that included the linearization of the Spalart–Allmaras turbu-
lence model. Nielsen and Anderson (1999) further extended the approach to the three-dimensional
Reynolds-averaged Navier–Stokes (RANS) equations. They achieved an 8% drag reduction for the
ONERA M6 wing with thickness and camber design variables at two chordwise locations. Dwight
and Brezillon (2009) and Brezillon and Dwight (2012) optimized the DLR-F6 wing-body configu-
ration using a RANS solver and a discrete adjoint, achieving a 10-count drag reduction by varying
96 design variables.

Lyu et al. (2013) developed a discrete adjoint for the RANS equations and Spalart–Allmaras
turbulence model using automatic differentiation to construct the required derivative terms. They
used this adjoint implementation to perform aerodynamic shape optimizations of the ONERA M6
wing with 192 design variables for both the Euler and RANS models. They observed significant
differences between the optimal shapes obtained with Euler and RANS, which emphasized the im-
portance of including the viscous compressible effects in transonic aerodynamic shape design. The
framework developed by Lyu et al. (2013) has since been used in a variety of applications and stud-
ies Kenway and Martins (2017); Liem et al. (2017); Chen et al. (2016); Kenway and Martins (2016,
2015). Telidetzki et al. (2014) performed a series of high-fidelity aerodynamic shape optimiza-
tions using a parallel Newton–Krylov–Schur method based on the Euler or RANS equations. They
demonstrated the effectiveness of the gradient-based aerodynamic shape optimization methodology,
obtaining significant drag reductions in all their cases. Chen et al. (2016) performed RANS-based
aerodynamic shape optimization on a common research model (CRM) wing-body-tail configuration.
Elham (2015) presented a quasi-three-dimensional method for wing aerodynamic analysis and drag
prediction. They used a combination of the adjoint method, the chain rule for differentiation, and
automatic differentiation to compute the gradients. Drela (1998, 1993) performed a constrained
shape optimization on two-dimensional airfoils, using the Newton-based direct method to generate
sensitivity information from inviscid Euler equations.

The gradient-free methods are generally easier to implement and use, and several of them are
geared toward finding global optima. However, they incur a higher computational cost compared
with gradient-based methods, especially when costly high-fidelity simulations are involved. Genetic

2



algorithms (GA) and their derivatives are among the most widely used gradient-free methods
today Jones and Finch (1984); Marco et al. (1997). GAs are particularly suitable for problems
with discontinuous objective functions, discrete design variables, or multiple local optima, i.e.,
multimodal functions. He and Agarwal (2014) performed aerodynamic shape optimization of a
wind turbine blade airfoil using a multiobjective GA.

There have been a few studies of the performance of different optimizers for aerodynamic shape
optimization. Zingg et al. (2008) compared gradient-based methods and a GA in aerodynamic
airfoil optimization. They found that the GA used 5 to 200 times more function evaluations than
the gradient-based method to find the optimum design. They suggested that GAs are better suited
for low-fidelity preliminary design, while gradient-based methods are preferable for high-fidelity
detailed design. Obayashi and Tsukahara (1997) compared a gradient-based method with simulated
annealing and a GA on an airfoil lift maximization problem. The GA required the highest number
of function evaluations but achieved the best design.

Gradient-based methods can converge to a local minimum when the objective or constraint
functions involved are multimodal. Holst and Pulliam (2001) and Sasaki et al. (2001) both used GAs
for airfoil and wing optimization cases, and they found no evidence of multimodality. Chernukhin
and Zingg (2013) compared the performance of a gradient-based method, a GA, and a hybrid
approach on a two-dimensional airfoil shape optimization and three-dimensional wing optimizations
based on the Euler equations. While they concluded that the airfoil design problem was unimodal,
they found multiple local optima for the wing case. In addition to twist and airfoil shape variables,
the wing optimization cases included planform variables (chord variation, sweep, and dihedral).
The physical significance of these multiple local optima is compromised by the fact that no viscous
effects were considered. Therefore, variations in surface area and local chord do not affect drag as
they would in the real design problem, leading to a design space that is completely different from
the true physical one. Furthermore, dihedral has a weak influence on the aerodynamic forces, and
letting dihedral vary without a penalty on the viscous drag leads to designs that are not realistic.
A more recent study by Bons et al. (2017) has started to address multimodality with respect to
planform variables as well.

Lyu et al. (2015) solved the AIAA Aerodynamic Design Optimization Discussion Group (ADODG)
CRM wing using a gradient-based RANS solver1. This problem involves a lift-constrained drag min-
imization, where the design variables are the spanwise twist distribution and airfoil shapes. They
achieved a 8.5% drag reduction using a multilevel optimization approach, and they addressed mul-
timodality concerns by starting the same optimization problem from randomly generated initial
geometries. They observed multiple local optima around a small region, but these were close to-
gether and exhibited similar drag values. Other researchers have also tackled this problem. Dumont
and Méheut (2016) analyzed the optimal geometries obtained by Lyu et al. (2015) with their solver
and independently verified the performance of this design, adding further insight using their drag
decomposition tool. Lee et al. (2015) obtained similar results and did not report multiple local
minima for this problem. Shi-Dong et al. (2017) also solved the ADODG CRM wing and concluded
that all the results point to a unimodal design space for the CRM wing. Finally, Koo and Zingg
(2018) performed another study of the ADODG CRM case, and they concluded that it does not
have multiple local optima.

Motivated by the work cited above, our goals are twofold: to compare various gradient-based
and gradient-free optimizers, and to examine the issue of multiple local minima more closely. We
focus on the ADODG CRM design optimization mentioned above, which does not include planform
design variables Lyu et al. (2015). Once the planform is allowed to vary, many other issues arise,
and it is difficult to obtain a meaningful design optimization problem without considering other
aircraft design aspects, such as structural weight and stability. We benchmark several optimization
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algorithms using a wing twist optimization problem and a wing shape problem. Six of the optimizers
are gradient-based and three are gradient-free.

To examine the issue of multiple local minima, we perform various optimizations starting from
several random initial points. We also use an initial geometry that has the planform of a CRM
wing but with zero initial twist and a NACA 0012 airfoil. We go beyond the study of Lyu et al.
(2015) by trying different variations in the design variable set. We also look more closely at the
cluster of close local minima by using even smaller convergence tolerances and by performing a grid
refinement.

2 Numerical tools
We now describe the numerical methods and tools that are used for this study. These tools are a
subset of the multidisciplinary design optimization (MDO) framework of aircraft configurations with
high fidelity (MACH) Kenway et al. (2014). MACH can perform the simultaneous optimization of
aerodynamic shape and structural sizing variables considering aeroelastic deflections Kenway and
Martins (2014). In the present work, we use only the components of MACH that are relevant for
aerodynamic shape optimization: the geometric parametrization, mesh perturbation, CFD solver,
and optimization algorithm.

2.1 Geometric parametrization

We use a free-form deformation (FFD) volume approach to parametrize the wing geometry Kenway
et al. (2010). Although we did not study the effect of different parameterizations, Lee et al. (2017)
did a study that compared FFD volumes and B-splines. They found that the two parameterizations
converged to similar results, with drags within 0.2 counts of each other. Given such a small
difference, they concluded that the design space is very flat around the optimum, which, as we will
see, is consistent with our observations.

The FFD volume parametrizes the geometry changes rather than the geometry itself, resulting in
a more efficient and compact set of geometry design variables, thus making it easier to manipulate
complex geometries. We may embed any geometry inside the volume by performing a Newton
search to map the parameter space to the physical space. All the geometric changes are performed
on the outer boundary of the FFD volume. Any modification of this outer boundary indirectly
modifies the embedded objects. The key assumption of the FFD approach is that the geometry has
a constant topology throughout the optimization process, which is usually the case in wing design.
In addition, since FFD volumes are trivariate B-spline volumes, the derivatives of any point inside
the volume can be computed efficiently and accurately. Figure 1 shows the FFD volume and the
geometric control points used in the aerodynamic shape optimization. The shape design variables
are the displacement of all FFD control points in the vertical (z) direction.

2.2 Mesh perturbation

Since FFD volumes modify the geometry during the optimization, we must perturb the mesh for
the CFD to solve for the modified geometry. The mesh perturbation scheme used in this work is a
hybridization of the algebraic and the linear elasticity methods, developed by Kenway et al. (2010).
The idea behind the hybrid scheme is to apply a linear-elasticity-based perturbation scheme to a
coarse approximation of the mesh to account for large low-frequency perturbations, and to use the
algebraic warping approach to attenuate small high frequency perturbations. For the results in this
paper, the additional robustness of the hybrid scheme is not required, so we use only the algebraic
scheme.
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Figure 1: FFD volume showing the location of 192 control points (red spheres).

2.3 CFD solver

We use ADflow Lyu et al. (2013); van der Weide et al. (2006) as the CFD solver. It is a finite-volume,
cell-centered multiblock solver for the compressible Euler, laminar Navier–Stokes, and RANS equa-
tions (steady, unsteady, and time-periodic). ADflow provides options for a variety of turbulence
models with one, two, or four equations, and options for adaptive wall functions. The Jameson–
Schmidt–Turkel (JST) scheme Jameson et al. (1981) augmented with artificial dissipation is used
for the spatial discretization. The main flow is solved using an explicit multi-stage Runge–Kutta
method, along with a geometric multigrid. A segregated Spalart–Allmaras turbulence equation is
iterated with the diagonally dominant alternating direction implicit (DDADI) method.

To efficiently compute the gradients required for the optimization, we have developed and im-
plemented a discrete adjoint method for the Euler and RANS equations within ADflow Mader et al.
(2008); Lyu et al. (2013); Martins et al. (2016). The adjoint implementation supports both the full-
turbulence and frozen-turbulence modes, but in the present work we use the full-turbulence adjoint
exclusively. The adjoint is verified against the complex-step method Martins et al. (2003). We solve
the adjoint equations with preconditioned GMRES Saad and Schultz (1986) using PETSc Balay
et al. (1997, 2013a,b). We have previously performed extensive Euler-based aerodynamic shape
optimization Mader and Martins (2013); Lyu and Martins (2014) and aerostructural optimiza-
tion Kenway and Martins (2014); Liem et al. (2015). However, we have observed serious issues
with Euler-based optimal designs: while Euler-based optimization can provide some design insight,
the optimal Euler shapes are significantly different from those obtained with RANS Lyu et al.
(2013). Euler-optimized shapes tend to exhibit a sharp pressure recovery near the trailing edge,
which is nonphysical because such conditions near the trailing edge would cause separation. Thus,
RANS-based shape optimization is necessary to achieve realistic designs.

2.4 Optimization algorithms

A number of optimizers are studied in this paper. We use the pyOpt framework Perez et al. (2012),
which is an open-source framework that provides a common interface to all optimizers. In this
section, we briefly describe each optimizer used.

SNOPT implements a sequential quadratic programming (SQP) method Gill et al. (2002). To
solve the QP subproblems, it uses a smooth reduced-Hessian semidefinite QP solver with an
augmented Lagrangian merit function. It solves large-scale design problems with a smooth
objective and nonlinear constraints.

SLSQP is a sequential least squares programming algorithm Kraft (1988) that evolved from the
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least squares solver of Lawson and Hanson Lawson and Hanson (1987). It uses a quasi-Newton
Hessian approximation and an L1-test function in the line search algorithm. Kraft Kraft
(1994) applied this method to aerodynamic and robotic trajectory optimization.

PSQP is a preconditioned SQP method with a Broyden–Fletcher–Goldfarb–Shanno (BFGS) vari-
able metric update. It can handle large-scale problems with nonlinear constraints.

IPOPT implements a primal-dual interior-point algorithm Waechter and Biegler (2006) with a
filter line search method Fletcher and Leyffer (2002). The barrier problem is solved by
applying a damped Newton’s method to the primal-dual equations. The line search method
includes a second-order correction.

CONMIN solves linear or nonlinear constrained optimization problems using the method of fea-
sible directions Vanderplaats (1978). It minimizes the objective function until it reaches an
infeasible region. The optimization then continues by following the constraint boundaries in
a descent direction.

GCMMA is a modified version of the method of moving asymptotes, designed for nonlinear pro-
gramming and structural optimization Svanberg (1987). It solves a strictly convex approxi-
mating subproblem at each iteration. GCMMA guarantees convergence to a local minimum
from any feasible initial point.

ALPSO is a parallel augmented Lagrange multiplier particle swarm optimization (PSO) solver im-
plemented in Python Jansen and Perez (2011). PSO methods can solve nonsmooth objective
functions and are more likely to find the global minimum. Augmented Lagrange multipliers
are used to handle the constraints. ALPSO can be used for nonlinear, nondifferentiable, and
nonconvex problems. It can also dynamically adjust the number of iterations in the inner
steps to ensure the efficient solution of large-scale problems. Perez and Behdinan Perez and
Behdinan (2007) applied this method to a nonconvex constrained structural problem. Other
applications include the aeroservoelastic design optimization of a flexible wing Haghighat
et al. (2012) and the aerostructural optimization of nonplanar lifting surfaces Jansen et al.
(2010).

NSGA2 is a nondominated sorting-based multiobjective evolutionary algorithm Deb et al. (2002).
The optimizer enforces constraints by tournament selection. It can solve nonsmooth and
nonconvex multiobjective functions and tends to approach the global minimum.

NOMAD is a C++ implementation of the mesh adaptive direct search (MADS) algorithm Audet
et al. (2006) for blackbox optimization with nonlinear constraints Le Digabel et al. (2012);
Le Digabel (2011). It performs an adaptive search on a tower of underlying meshes to find a
better solution and also controls the refinement of the meshes.

3 Problem formulation
Our goal is to perform lift-constrained drag minimization of the NASA CRM wing using the RANS
equations as the aerodynamic model. In this section, we provide a detailed description of the
problem.

3.1 Baseline geometry

The baseline geometry is a wing with a blunt trailing edge extracted from the CRM wing-body
geometry. The NASA CRM geometry was developed for applied CFD validation studies Vassberg
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Grid level Grid size y+

L2 450,560 2.213
L3 56,320 8.409

Table 1: Grid size used in aerodynamic twist optimization

et al. (2008). The CRM is representative of a contemporary transonic commercial transport, with a
size similar to that of a Boeing 777. The CRM has 3.5 deg more quarter-chord wing sweep and 10.3%
less wing area than the Boeing 777-200. The CRM geometry has been optimized for aerodynamic
performance. However, several design features, such as an aggressive pressure recovery in the
outboard wing, were introduced into the design to make it more interesting for research purposes
and to protect intellectual property. This baseline geometry provides a reasonable initial point
for the optimization, while leaving room for further performance improvements. In addition, the
CRM was designed together with the fuselage of the full CRM configuration, so its performance
is degraded when only the wing is considered. The geometry and specifications are given by the
ADODG, and we repeat them here for convenience. The fuselage and tail are removed from the
original CRM, and the root of the remaining wing is moved to the symmetry plane.

This baseline geometry is shown in Figure 2. All the coordinates are scaled by the mean
aerodynamic chord (275.8 in). The resulting reference chord is 1.0, and the half span is 3.758151.
The moment reference point is at (x, y, z) = (1.2077, 0.0, 0.007669), while the reference area is
3.407014.

3.2 Mesh generation

We generate the mesh for the CRM wing using an in-house hyperbolic mesh generator. The mesh
is marched out from the surface mesh using an O-grid topology to a farfield located at a distance of
25 times the span (about 185 mean chords). The nominal cruise flow condition is Mach 0.85 with
a Reynolds number of 5 million based on the mean aerodynamic chord. The mesh we generated is
an L0-level grid that contains 28.8 million cells. We then coarsen it to the L2 level (450 thousand
cells) and the L3 level (56 thousand cells) for the optimization cases in this paper, as shown in
Figure 3 and Figure 4. The meshes were generated using a hyperbolic mesh generator. The mesh
size and y+max values under the nominal flight condition are listed in Table 3.2.

3.3 Optimization problem formulation

The aerodynamic shape optimization seeks to minimize the drag coefficient subject to a lift con-
straint (CL = 0.5) and a pitching moment constraint (CMy ≥ −0.17) at a cruise Mach of 0.85.

The shape changes are controlled by three sets of design variables: angle of attack, airfoil shape,
and twist variables. The angle of attack is primarily used to match the lift constraint. A total
of up to 192 shape variables are distributed on the lower and upper surfaces of the FFD volume,
as shown in Figure 1. We found this number of shape variables to be the best trade-off between
computational cost and accuracy in the optimal shape Lyu et al. (2015). We also use 10 sectional
twist design variables that are crucial in tailoring the spanwise twist distribution. The center of the
twist rotation is fixed at the reference axis, which is located at the quarter chord of each section.
Figure 5 shows how the design variables are distributed.
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Figure 2: Common Research Model wing geometry.

There are 750 thickness constraints imposed in a 25 chordwise by 30 spanwise grid of points
covering the full span and from 1% to 99.5% local chord. The control points at the trailing edge are
constrained to avoid any movement of this edge. The leading-edge control points at the wing root
are also constrained to maintain a constant incidence for the root section. The thickness is enforced
to be greater than 25% of the baseline thickness at each location. While this value is unrealistically
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Figure 3: L2 mesh: 450 thousand cells

Figure 4: L3 mesh: 56 thousand cells

small (the wing would either fail structurally or be too heavy), letting the optimizer change the
wing so much provides a better test of the optimization algorithms, shape parametrization, mesh
movement, and derivative computations. The internal volume is constrained to be greater than
or equal to the baseline volume. The pitching moment constraint is not applied to the cases in
Section 4, because it is too costly for the gradient-free methods.

4 Optimization algorithm benchmarking
All the optimizations are performed at the nominal flight condition (Mach 0.85, Re = 5×106), and
the flow is solved using the RANS equations. We applied the lift coefficient constraint CL = 0.5
and neglected the moment constraint in the original ADODG problem formulation to achieve a
reasonable run time for the gradient-free optimizations.
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Figure 5: Shape and twist design variables.

4.1 Aerodynamic twist optimization

In this problem, we exclude the shape variables and consider only eight twist design variables evenly
distributed on the wing, to limit the number of design variables so that we can run the gradient-free
optimizations. The coarser L3 grid is used to reduce the optimization run time. In addition, we
performed the optimization on the L2 grid for the gradient-based optimizers.

We compare the optimized twist, spanwise lift, and pressure distribution for each optimizer on
the L3 grid in Figure 6. All the optimizers except NSGA2 converge to a similar drag value; the
differences are within 0.1 drag counts (1 drag count = 10−4 × CD), and the corresponding twist
distributions are nearly identical.

The computational costs for the optimizers are compared in Table 2, where they are ordered from
fastest to slowest. The relative convergence tolerances for the ALPSO optimizer are 10−2 for the
objective and 10−3 for the constraints, while for the gradient-based methods, these tolerances are
10−5 and 10−4, respectively. The gradient-free optimizers need two to three orders of magnitude
more iterations than the gradient-based optimizers. In this case, the gradient-based optimizers
SNOPT, SLSQP, PSQP, and IPOPT perform well. GCMMA is slightly slower, and CONMIN is
much slower. Of the three gradient-free optimizers, NOMAD performs the best, requiring 16 times
the iterations of the best gradient-based optimizers, while NSGA2 performs the worst, requiring
more than 500 times the computational effort. NOMAD and ALPSO converge to the same optimum
as the gradient-based methods, but NSGA2 converges to a different twist distribution with a drag
that is 0.82 counts higher.

Figures 7 and 8 show the convergence history of each optimizer. We plot the convergence of
the gradient-based and gradient-free methods separately, since the numbers of iterations for the
former are two orders of magnitude lower. For the gradient-based methods, we plot the value of
the objective function with respect to the number of function evaluations. For the gradient-free
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Figure 6: Aerodynamic twist optimization comparison on the L3 grid.

methods, we plot only the best point of each iteration or generation.
We verify the optimization using the finer L2 grid. We use only the gradient-based methods

in this verification because of the prohibitive cost of the gradient-free methods. Figure 9 shows
the optimized results on the L2 grid. The shock on the wing cannot be removed completely with
only the twist design variables. The drag is reduced by 29 counts, and the difference in drag
between the optimizers is within 0.1 counts. Therefore, it appears that the twist problem has only
one optimum. The different grid resolution results in a similar optimized lift distribution but a
different optimized twist distribution, as shown in Figure 10. The optimized design increases lift at
the root and reduces lift at the tip, thus moving toward an elliptical lift distribution. However, since
the optimizers minimize the total drag with only eight twist design variables, the optimal trade-off
between induced drag with wave and viscous drag is not obvious, resulting in a nonelliptical lift
distribution.

In this study, we examined a twist design problem. We used eight design variables subject to a
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Optimizer Drag (counts) Iterations Proc-hours

SLSQP 221.16 23 2.56
IPOPT 221.15 40 2.69
PSQP 221.15 29 3.70
GCCMA 221.16 81 4.57
SNOPT 221.16 40 5.81
CONMIN 221.16 98 33.61
NOMAD 221.91 375 40.23
ALPSO 221.15 8128 1695.72
NSGA2 221.98 12757 2744.16

Table 2: Computational cost comparison for the twist optimization problem using the L3 grid.

Figure 7: Twist optimization convergence history of the gradient-free methods for the L3 grid Lyu
et al. (2014).

lift constraint. We compared the optimized results using different optimizers on two grid levels. All
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Figure 8: Twist optimization convergence history of the gradient-based methods for the L3 grid Lyu
et al. (2014).

the optimizers converged to similar optima. A single global minimum is observed. The gradient-
based methods converged significantly faster than the gradient-free methods, and thus they are
better choices for high-fidelity aerodynamic shape optimization.

4.2 Aerodynamic shape optimization

In this study, we use the same baseline geometry discussed above. However, we use a total of
192 shape design variables instead of 8 twist design variables. The lift, thickness, and volume
constraints are as stated in Section 3.3. This problem requires significantly more computational
power than the previous case, so we use the L2 grid and only four of the gradient-based optimizers.
The convergence tolerance is 10−6 for the objective and 10−4 for the constraints.

Figure 11 shows results from the four optimizers. The results from the baseline geometry are
shown in black. The drag is reduced by 4.84%, from 206.7 to 196.6 counts.

All the optimizers are able to completely eliminate the shock on the wing and achieve an
elliptical lift distribution. While this is not a desirable distribution in reality because of structural
considerations, convergence to this theoretical result provides a good validation of the methods.
For more practical design optimization, it is desirable to include structural stress constraints and
to optimize both the wing shape and the structural sizing to obtain wing designs that represent
optimal trade-offs between aerodynamic and structural performance Kennedy et al. (2014); Kenway
and Martins (2015); Martins et al. (2016).
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Figure 9: Aerodynamic twist optimization comparison on the L2 grid.

The baseline design has a strong shock, as evidenced by the closely spaced Cp contours, while
the optimized designs have parallel, equally spaced pressure contours. All the optimized shapes
are similar. The difference in the CD values from different optimizers is within 1 drag count. The
convergence history is shown in Figure 12; we see that SNOPT converges the fastest. A detailed
comparison of the computational time is given in Table 4.2.

5 Influence of initial design
In the previous sections, we concluded that gradient-based optimization algorithms are more suit-
able for high-fidelity aerodynamic shape optimization problems because gradient-free algorithms
require many more iterations to converge and thus incur an unacceptable computational cost for
even a moderate number of design variables. However, gradient-based algorithms converge to a
single minimum, and if the optimization problem is multimodal, these algorithms might not find
the best possible design.

As mentioned in the introduction, Lyu et al. (2015) found a cluster of multiple local minima
that were very close to each other. However, they tried only three different initial points, and
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Figure 10: Lift and twist distribution comparison of the twist optimized designs.

so they could only speculate on the nature of the cluster. To explore this further, we solve the
same ADODG CRM wing case starting from ten different geometries with combinations of random
initial twist distributions and airfoil shapes. In addition, we examine the effect of tightening the
optimality tolerance and refining the grid. We also solved the problem starting from a version of
the CRM wing with NACA 0012 airfoils and zero twist to see if it converged to the same design.

5.1 CRM wing optimization benchmark

As previously mentioned, the results in this paper focus on the ADODG CRM wing optimization
case Lyu et al. (2015), which does not include wing planform variables. In this section, we present
the reference results for the single-point aerodynamic shape optimization of the CRM wing as
defined by the ADODG. These results serve as a benchmark for the random initial cases that we
present in the following sections. The CRM wing is optimized by minimizing the drag coefficient
while enforcing both lift and moment constraints, and the CFD computations are performed on an
L2 grid (see Table 3.2).

Figure 13 shows a detailed comparison of the CRM baseline wing (in red) and the optimized
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Figure 11: Comparison of optimizer performance in aerodynamic shape optimization.

Optimizer Iterations Proc hours

SNOPT 92 224.98
SLSQP 116 306.38
PSQP 221 562.60
GCCMA 298 772.60

Table 3: Computational cost comparison of the shape optimization on the L2 grid

wing (in blue). The optimization reduced the drag from 264.6 counts to 195.9 counts. At the
optimum, the lift coefficient and the pitching moment coefficient are both at the target value. The
lift distribution of the optimized wing is even closer to the elliptical distribution, and thus the
induced drag of the optimized wing is closer to the theoretical minimum. The optimized wing
exhibits more twist at the root and tip, and less twist in the mid-wing sections, while the baseline
design has a near-linear twist distribution. The optimized thickness distribution is significantly
different from the baseline. To reduce wave drag, the optimizer dramatically decreases the airfoil
thickness on the outboard of the wing to the lower bound (25% of the original thickness), while
increasing the thickness near the root to satisfy the volume constraint. These results match those
of Lyu et al. (2015) for the single-point case with the L2 grid using 720 shape design variables.
We use 720 shape design variables and 10 twist design variables, and the wing twist is no longer
controlled solely by the shape design variables.

The optimizer satisfies the lift and moment constraints by changing both the angle of attack
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Figure 12: Convergence history of shape optimization for gradient-based methods on the L2
grid Lyu et al. (2014).

and the twist distribution. Without the twist design variables, the twist distribution is controlled
only through the shape variables by movement of the FFD control points in the vertical direction,
which can cause mesh failure if the optimal twist distribution differs too much from the initial
one. An independent set of twist design variables that rotate the airfoils (thus preserving the chord
lengths) makes it easier for the optimizer to reach the optimum twist, and this is crucial in cases
such as those discussed in Section 5.8, where the initial wing twist is set to zero.

5.2 Random initial twist

As a first set of cases, we allow only the twist design variables to vary. The initial designs are
generated by perturbing the twist design variables randomly. In Figure 15, we compare the results
for the three initial random twist cases, where each optimized result is color-coded. Despite the
poor initial geometries, the optimizer is able to smooth out the twist and achieve shock-free wings.
All the constraints are met, and the lift distribution is close to elliptical.

Overall, the optimal geometries for the three initial points are very similar. The minimum drag
for this case is much higher than that of the full benchmark case because only the twist design
variables can be varied, and there is no way to shape the airfoils. Among the three random twist
cases, the difference in drag is within 0.1 counts, and the difference in the Cp distribution is equally
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Figure 13: CRM wing optimization with shape and twist design variables.

Figure 14: The number of FFD control points is increased to 720 for a more refined optimal shape.

negligible. The twist distributions for the three cases are also practically identical. These results
support the hypothesis that there is only one global minimum in this problem.

5.3 Random initial shape

To further investigate the possibility of multimodality for this problem, we fix the twist design
variables, leaving only the shape variables to be varied. Although the optimizer cannot change the
twist distribution directly, it can do so indirectly through the airfoil shape variables by moving the
FFD control points in the vertical direction, effectively shearing the airfoils.

The random perturbation on the airfoil thickness results in a even worse initial design than
for the random twist cases. The jagged edges and wildly oscillating thickness distribution cause
an equally chaotic Cp distribution (see the left-hand side of Figure 16). The RANS solution for
this initial geometry is probably inaccurate because the flow separation is not modeled correctly.
Despite the rather poor initial design and the likely inaccurate solution, the gradients point in
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Figure 15: All three optimizations with random twist initial geometries converge to similar optimal
designs.

the right direction, and the optimizer smooths out the wing and eventually achieves shock-free
geometries.

Starting from wildly different initial designs, the three cases converge to similar optima, as
shown in Figure 16. The lift and moment constraints are satisfied, and the drag count is only
0.4 counts higher than that of the benchmark case. We provide a more detailed comparison of a
random initial case and the benchmark case in Section 5.4. Both the thickness distributions and
the twist distributions in the optimized results are consistent among the optima. Small differences
in the Cp distribution can be seen on the wing tips. The root and tip of the wing in case 3 are
shifted compared to the other two cases. However, this has little effect on the aerodynamics, as
shown in the Cp distributions. This indicates the possibility that the design space is multimodal.

5.4 Random initial twist and shape

We now use both twist and airfoil shape variables and apply random perturbations to both of these
sets of design variables to produce the initial geometries. As shown in Figure 17, the optimizer
converges to three extremely close geometries despite the great difference in the initial points. The
differences in drag are less than 0.1 count, and the drag values are closer to that of the nominal
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Figure 16: The optimizations starting from random shape variable perturbations converge to prac-
tically the same optimal shape.

case. All the optimized geometries have almost identical airfoil shape and twist distribution, with
negligible differences in the Cp distribution. The shift in the root and tip of the wing in case 3 still
exists, similarly to that shown in Figure 16.

A comparison of the second random initial case and the nominal CRM optimization case is
shown in Figure 18. Overall, the two optimization results are very close to each other. The drag in
the nominal case is 0.2 counts lower than that for the random initial case. In the root section, the
nominal optimized wing is slightly thicker than that in the random initial case, resulting in a slightly
better Cp distribution. The spanwise thickness and twist distributions are virtually identical.

To further investigate multimodality, we analyze the design space around the optimal points in
more detail. Although it is impossible to fully visualize the 730-dimensional design space, we can
visualize one-dimensional slices. We define these slices as the lines connecting the various optimal
points, and we run the CFD for a series of geometries corresponding to points along these lines.
For each point, we compute the corresponding optimization merit function value, as well as the
objective function and constraint violation, as shown in Figure 19. The merit function value is a
linear combination of the objective function and constraints Gill et al. (2007). A violation of the
constraints is factored into the merit function calculation by the addition of a weighted penalty
to the objective function value. As shown in Figure 19, between each pair of cases, the drag
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Figure 17: Comparison of the shape and twist optimization cases.

is monotonically increasing or decreasing. However, because of the weighted constraint violation
penalty, the merit function has a local minimum at each optimized geometry.

We conclude from these results that each initial point converged to a different optimum. How-
ever, these optima are extremely close to each other, both in terms of the drag value and the value
of the design variables. Our hypothesis is that this multimodality is not physical and is instead
an artifact of the CFD numerical errors. In the next section, we verify this by solving the same
problems with a smaller CFD convergence tolerance.

5.5 Effect of decreasing the convergence tolerance

To establish the nature of the multimodality observed in the previous section, we decrease the CFD
convergence tolerance from 10−6 to 10−8 and the adjoint solver convergence tolerance from 10−10

to 10−12, and we rerun the optimizations. Figure 20 shows that the minimum drag decreases by 0.1
counts. The twist distributions and Cp distributions are more alike than those shown in Figure 17.
The optimizer is also able to further improve the airfoil shape at the root and tip sections, resulting
in slightly different Cp distributions, while the vertical shift at the tip sections is reduced. The
fact that these results are now closer together reinforces the conclusion that these multiple local
minima are numerical rather than physical.
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Figure 18: The nominal and random initial optimizations including shape and twist variables
converge to practically the same optimum.

5.6 Effect of removing the angle-of-attack design variable

We now remove the angle of attack to establish if this design variable plays a role in the multi-
modality observed so far. We rerun the three random initial shape and twist optimization cases
with a fixed angle-of-attack value of 2.8 deg. We choose this value because it is close to the value
to which most of the optimization cases converge.

In the original ADODG case definition for aerodynamics shape optimization based on the CRM
wing, the design variables include both twist and angle of attack. In the optimization cases described
so far, we used both of these sets of design variables. The twist design variables rotate each section
of the control points in the FFD volume about the corresponding reference point on the reference
axis, while the angle-of-attack variable rotates all control points on the FFD volume about the same
reference point. Following the ADODG case definition, the trailing edge of the wing and the root
section are fixed, and only the leading edge of the wing is free to move. This limitation prevents
the optimizer from converging to an unrealistically large angle of attack while compensating with
negative twist on the wing.

However, due to the difference of definition between twist and angle of attack, even with the
same local incidence values (angle of attack plus twist), the geometries can be different. We can
see this in Figure 17, where the three sets of optimized results have very close objective function
values but slightly different combinations of angle of attack and twist distribution, especially near
the wing root section.

The results for cases with only shape and twist design variables are shown in Figure 21. The
three random initial cases converged to geometries with the same drag, lift, and moment. The drag
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Figure 19: Merit function results and breakdown show the existence of numerical local minima;
however, the differences in drag between the local minima are negligible.

values for these cases are very close to those seen in the cases where both angle of attack and twist
are design variables. We conclude that removing the angle-of-attack variable does not decrease the
drag. The twist distributions, however, are much closer compared to the previous cases, and the
difference in twist at the root section is completely eliminated. This means that there exist multiple
geometries with different combinations of angle of attack and twist that satisfy the optimization
tolerance. Fixing the angle of attack saves the optimizer from navigating a design space with more
flatness, which reduces the computational effort and the sources of local minima.

5.7 Effect of grid refinement

We now take the three optimized geometries and apply the same design variable values to a finer
mesh (L1) with a FFD volume of the same size. The same optimization problem is then resumed
on this finer mesh, starting from the geometries optimized using the coarser mesh (L2). A similar
approach of restarting an optimization with finer meshes has reduced the computational cost in
previous work Lyu et al. (2013). The optimization cases finish with identical optimized geometries,
and the drag count is reduced by 11.55 counts. A similar trend of drag reduction when refining the
mesh was seen by Lyu et al. (2015).

We perform the same one-dimensional slice analysis as in the L2 cases; see Figure 22. The L1
results show a similar trend of merit function change, but with a much smaller distance between
each pair of optima. The largest change in the merit function value among the three cases is a
drop by a factor of 5 (from 0.05% to 0.01%). The main reason is that the drags of the optimized
geometries become much closer to each other on the finer mesh. This reinforces the idea that the
cluster of local minima is due to the numerics, and that the radius of this cluster reduces as the
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Figure 20: Comparison of the shape and twist optimization cases with better convergence.

convergence tolerance decreases and the grids are refined.
Earlier in the history of the ADODG CRM wing benchmark, other researchers found multiple

solutions that were at the time assumed to be multiple local minima Dumont and Méheut (2016);
Osusky (2013); LeDoux et al. (2015). However, initial studies by Lyu et al. (2015) and a subsequent
result by Koo and Zingg (2018) contradict this assumption. The results presented herein provide
a more detailed analysis that reinforces the conclusion that the design space for this problem is
unimodal for practical purposes. We hypothesize that the other efforts that did not converge to the
same result might not have converged the solver, the adjoint, or the optimization well enough to get
results closer to ours. Accurate drag and lift computations, and accurate gradient computations
that are consistent with the solver, are crucial because there is a subtle trade-off between thinning
the outboard to reduce the drag, and thickening the inboard to meet the volume constraint, which
contributes to a flat design space Lyu et al. (2015). This trade-off requires an effective and well-
tuned optimizer, with appropriate design variable scaling, and an accurate and consistent adjoint
solver.

5.8 CRM with zero initial twist and NACA 0012 airfoil

In the results we have seen so far, the initial designs were random perturbations of the baseline
CRM geometry. However, these initial geometries are all based on the original CRM geometry,
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Figure 21: Optimizations without angle-of-attack design variable.

and therefore the results could be biased in some way by this common origin. To provide an initial
design with no relation to the CRM, we construct a design that can be considered a “blank slate”
that has no design rationale, but still looks like a wing. This design has the same planform as the
CRM wing, but instead of the carefully designed airfoil stack and twist distribution of the CRM,
it uses a NACA 0012 airfoil throughout and has constant twist and t/c distributions. We optimize
starting from this geometry using 192 shape design variables, and then we compare the results with
a CRM wing optimized using the same number of design variables.

Figure 23 shows that the initial NACA 0012 design exhibits a strong shock on the upper surface
of the wing, even though the initial lift coefficient is just over half of what we ultimately require.
Starting from this bad design, the optimizer is able to converge to a twist distribution similar to
that of the original CRM, and it achieves a shock-free wing design for which all constraints are
satisfied.

Figure 25 compares this result to the original optimization starting from the CRM. We can see
only small differences in the Cp distribution and airfoil shape. The difference in drag is around 0.4
counts. Although the optimizations start from two completely different geometries, they end up
close to each other, with only minor differences in the airfoil shape. There is a more significant
difference in the dihedral, but this does not significantly affect the aerodynamic performance. As
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Figure 22: Merit function results and breakdown of optimization results using a finer grid.

Figure 23: Optimized wing starting from CRM with NACA 0012 sections and no initial twist.
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Figure 24: Baseline geometry of CRM with zero twist and NACA 0012 airfoil.

in the previous optimizations, this points us toward the conclusion that the aerodynamic shape
optimization design space does not exhibit physically significant multimodality for a fixed wing
planform.

6 Conclusions
In this paper, we have examined the effect of using different optimization algorithms and starting
from different initial designs for aerodynamic shape optimizations of a fixed wing planform. To
examine the effect of using different optimization algorithms, we benchmarked the performance of
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Figure 25: Comparison of the optimization starting from the CRM with the optimization starting
from the NACA 0012 wing, showing that they find similar optima.

six gradient-based and three gradient-free optimizers for a single point wing aerodynamic shape
optimization problem. To examine the effect of starting with different initial designs, we solved
the same wing optimization problem using a gradient-based algorithm starting from a variety of
designs.

For the optimization algorithm benchmarking we used only eight twist variables and the coarsest
CFD grid because of the large number of evaluations required by the gradient-free optimization
algorithms. All the optimizers except NSGA2 converged to the reference optimum, with identical
twist distributions and only a 0.1 difference in the drag counts. The gradient-free methods were
several times more expensive than the gradient-based methods, ranging from four times more
expensive (NOMAD) to over 100 (NSGA2). Thus, gradient-based methods are a better choice
because they require many fewer CFD evaluations and are equally robust.

We also benchmarked four of the gradient-based algorithms separately for a higher dimensional
problem (192 design variables including twist and airfoil shape) using a finer grid. All the optimizers
converged to the same optimum, reducing the drag by 4.84%, from 206.7 to 196.6 counts. SNOPT
converged the fastest, using just under 225 processor-hours.

To examine the effect of starting from different initial designs, and the associated issue of
multimodality, we solved the wing aerodynamic shape optimization problem using SNOPT for the
medium grid (450 thousand cells) and up to 720 shape variables and 10 twist variables. We solved
the 14 cases listed in Table 5.8. The resulting shapes were practically identical, with drag values
within 0.1 counts.

Although these optima were the same for practical purposes, they did represent multiple local
minima from a numerical point of view. To analyze this phenomenon in more detail, we studied
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Initial shape Drag (counts)

CRM 195.9
Random twist 1 211.2
Random twist 2 211.2
Random twist 3 211.2

Random shape 1 196.3
Random shape 2 196.3
Random shape 3 196.3

Random twist and shape 1 196.2
Random twist and shape 2 196.2
Random twist and shape 3 196.2

Random twist and shape, no AoA 1 196.1
Random twist and shape, no AoA 2 196.1
Random twist and shape, no AoA 3 196.1

Untwisted NACA 0012 197.3

Table 4: Summary of optimization results

the effect of decreasing the convergence tolerances and refining the CFD grids. We observed that
the differences between the local minima decreased, further supporting the idea that they are due
to discretization and convergence limitations.

Finally, we solved the same optimization problem starting from a geometry that has the CRM
wing planform but with zero twist, constant t/c, and a NACA 0012 airfoil. We optimized the wing
with respect to 192 shape variables and 10 twist variables using a 450K-cell grid. The result of this
optimization was close to that of the nominal CRM optimization, with minor differences in airfoil
shape.

Overall, these results support the conclusion that the design space for wing design optimization
with a fixed problem is largely convex, with a small flat region that is multimodal. However, this
region is so small, and the differences in drag so minor, that the design space can be considered
unimodal for all practical purposes.
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