Physics 406: Homework 4

1. Two spin systems in contact: A result which we will use a lot in this course is Sterling's approximation for the logarithm of a factorial, which says that

$$
\ln n!\simeq n \ln n-n
$$

where the approximation becomes better and better as $n \rightarrow \infty$. We will see how to prove this result in a later lecture. For the moment we just assume it. (If you want to see the proof, it's given in Appendix A of Kittel and Kroemer.)
Now consider the spin system we looked at, composed of N "spins" that each point either up or down.
(a) Write down an expression for the multiplicity $g(N, s)$ of states that have a given value of the spin excess parameter s, defined by $2 s=N_{\uparrow}-N_{\downarrow}$. Hence write down an expression for the logarithm of the multiplicity as a function of s.
(b) Apply Sterling's approximation and show that for large N

$$
\begin{equation*}
\ln g=N \ln N-\left(\frac{1}{2} N+s\right) \ln \left(\frac{1}{2} N+s\right)-\left(\frac{1}{2} N-s\right) \ln \left(\frac{1}{2} N-s\right) \tag{1}
\end{equation*}
$$

(c) Noting that $\ln \left(\frac{1}{2} N+s\right)=\ln \left(\frac{1}{2} N\right)+\ln (1+2 s / N)$, expand to second order in $2 s / N$ and hence show that

$$
\begin{equation*}
g(N, s) \simeq 2^{N} \mathrm{e}^{-2 s^{2} / N} \tag{2}
\end{equation*}
$$

This is a Gaussian or normal distribution: the binomial distribution becomes a Gaussian distribution for large N.
(d) Now suppose we have two identical systems of N spins. Using Eq. (2), write down an expression for the total multiplicity of both systems together as a function of the spin excesses s_{1} and s_{2} of the two systems, assuming for the moment that the two systems are not in contact with one another. (To make the calculations easier, you can assume N is even.) Eliminate s_{2} in favor of the total spin excess $s=s_{1}+s_{2}$ and, by completing the square, show that for a given value of s the distribution of possible values of s_{1} is Gaussian.
(e) Now suppose that both systems are in a magnetic field of intensity B, so that they have energies $U_{1}=-2 m B s_{1}$ and $U_{2}=-2 m B s_{2}$, where m is the dipole moment of each spin. If the two systems are now in contact with one another, so that energy can flow between them, then s_{1} and s_{2} are no longer fixed, but the total energy must be conserved, so $s=s_{1}+s_{2}$ is constant. What is the most likely value of s_{1} ?
2. Entropy of a set of harmonic oscillators: Consider the ensemble that we discussed earlier of N quantum harmonic oscillators. Each can have energy $\varepsilon_{s}=s \hbar \omega$, where \hbar and ω are constants and s is a non-negative integer. As we showed in class, the multiplicity $g(N, n)$ of states of the entire ensemble that have total internal energy $U=n \hbar \omega$ is given by

$$
g(N, n)=\binom{N-1+n}{N-1} .
$$

(a) Write $g(N, n)$ in a form involving factorials and hence write down the dimensionless entropy σ of the system.
(b) When N is large we can, to a good approximation, replace $N-1$ by N. Apply Sterling's approximation and derive an approximate expression for σ for large N.
(c) Recalling the definition of the temperature τ in energy units, $\tau=\partial U / \partial \sigma$, differentiate to get an expression for τ in terms of the internal energy. (You have to consider n to be a continuous variable to do this calculation, which is strictly speaking not correct-it is an integer. Later in the course we'll see a better derivation of this result that doesn't require us to do this kludge.)
(d) Rearrange to show that

$$
U=\frac{N \hbar \omega}{\exp (\hbar \omega / \tau)-1}
$$

This is the internal energy of a set of N harmonic oscillators and, as we will show, is also the correct expression for the energy of a set of bosons (e.g., photons) in a quantum gas. From this expression we will later derive the famous black-body radiation spectrum of Rayleigh and Planck.
(e) What is the heat capacity of the system?
3. Partition function of a simple system: Suppose a simple system has states with three energies, $-\varepsilon, 0$, and $+\varepsilon$. The multiplicities of the states are $g(-\varepsilon)=1, g(0)=2$, and $g(\varepsilon)=1$. The system is put in contact with a thermal reservoir at temperature τ (in energy units) and allowed to come to equilibrium.
(a) Calculate the partition function Z of the system.
(b) Calculate the average internal energy of the system as a function of temperature.
(c) Show that the heat capacity is

$$
C=\frac{\varepsilon^{2}}{\tau^{2}[1+\cosh (\varepsilon / \tau)]}
$$

