
Physics 406: Summary of important results
This is a list of important equations and other results that you should know. You may take this list into
the final exam with you.
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Internal energy: dU � d̄Q � d̄W with d̄Q � T dS and:

d̄W ��� p dV (fluid pressure/volume system)
d̄W � f dL (spring or wire with force f and length L)
d̄W � V dq (capacitor with voltage V and charge q)
d̄W ��� B � dm (magnet with magnetization m in field B)
d̄W � γ dA (surface with surface tension γ and area A)

Thus for example, in a pressure/volume system dU � T dS � p dV . This applies for irreversible as well
as reversible changes, but the individual equalities d̄Q � T dS and d̄W �� pdV only apply for reversible
ones. Heat capacity at constant x (where x is any variable) is in general given by
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Potential functions and Maxwell relations: For pressure volume system

H � U � pV (enthalpy) � F � U � T S (free energy) � G � U � pV � T S (Gibbs energy) 

Similar expressions apply for other types of systems (non-pressure/volume systems). There is one
Maxwell relation for each potential function, derived by equating partial second derivatives. For in-
stance
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Each heat capacity is the derivative of the corresponding potential function:
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Heat engines:
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Efficiency of a reversible engine (T1 � T2):
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Isolated systems: All microstates equally likely. Most likely macrostate maximizes the Boltzmann
entropy S � k lng, where g is the multiplicity. When non-interacting systems are combined, entropy is
additive (i.e., extensive); multiplicity is multiplicative.

Fixed temperature systems: States s appear with Boltzmann probability

p � s � � e � εs � τ
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 38 � 10 � 23 JK � 1. Macroscopic thermodynamic quantities are then given by
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Sterling’s approximation: lnk! � k lnk � k.

Perfect gas: Density of states in three dimensions is

n � ε � � V � 2I � 1 �
4π2 � 2m
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where I is the spin of the particles. (I � 1
2 for fermions.)
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where ρ � N � V is the number density.

Photons and phonons: Density of states is

n � ω � � V
π2c3 ω2 dω (photons, c is speed of light) � n � ω � � 3V

2π2v3 ω2 dω (phonons, v is speed of sound) 

Systems with variable numbers of particles: Grand ensemble:
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Quantum gases: Number of particles in single-particle state with energy ε is

f � ε � � 1
e � ε � µ  #� τ � 1

(fermions) � f � ε � � 1
e � ε � µ  #� τ � 1

(bosons) 



