Physics 406: Summary of important results

This is a list of important equations and other results that you should know. You may take this list into the final exam with you.

Partial derivatives:

$$df = \frac{\partial f}{\partial x}\Big|_{y} dx + \frac{\partial f}{\partial y}\Big|_{x} dy, \qquad \frac{\partial x}{\partial y}\Big|_{z} = \left[\frac{\partial y}{\partial x}\Big|_{z}\right]^{-1}, \qquad \frac{\partial x}{\partial y}\Big|_{z} = -\frac{\partial x}{\partial z}\Big|_{y}\frac{\partial z}{\partial y}\Big|_{x}$$

Internal energy: dU = dQ + dW with dQ = T dS and:

$\mathrm{d}W = -p\mathrm{d}V$	(fluid pressure/volume system)
$\mathrm{d}W = f \mathrm{d}L$	(spring or wire with force f and length L)
$\mathrm{d}W = V\mathrm{d}q$	(capacitor with voltage V and charge q)
$\mathrm{d}W = -\mathbf{B} \cdot \mathrm{d}\mathbf{m}$	(magnet with magnetization m in field B)
$\mathrm{d}W = \gamma \mathrm{d}A$	(surface with surface tension γ and area A)

Thus for example, in a pressure/volume system dU = T dS - p dV. This applies for irreversible as well as reversible changes, but the individual equalities dQ = T dS and dW = -p dV only apply for reversible ones. Heat capacity at constant *x* (where *x* is any variable) is in general given by

$$C_x = T \frac{\partial S}{\partial T}\Big|_x$$
, e.g., $C_V = T \frac{\partial S}{\partial T}\Big|_V$ and $C_p = T \frac{\partial S}{\partial T}\Big|_p$.

Potential functions and Maxwell relations: For pressure volume system

H = U + pV (enthalpy), F = U - TS (free energy), G = U + pV - TS (Gibbs energy).

Similar expressions apply for other types of systems (non-pressure/volume systems). There is one Maxwell relation for each potential function, derived by equating partial second derivatives. For instance

$$\frac{\partial^2 U}{\partial V \partial S} = \frac{\partial^2 U}{\partial S \partial V} \qquad \Rightarrow \qquad \frac{\partial T}{\partial V}\Big|_S = -\frac{\partial p}{\partial S}\Big|_V$$

Each heat capacity is the derivative of the corresponding potential function:

$$C_V = \frac{\partial U}{\partial T}\Big|_V, \qquad C_p = \frac{\partial H}{\partial T}\Big|_p.$$

Heat engines:

Efficiency of a reversible engine $(T_1 > T_2)$:

$$\eta = \frac{W}{Q_1} = 1 - \frac{T_2}{T_1}, \qquad \eta_R = \frac{Q_2}{W}$$
 (refrigerator), $\eta_H = \frac{Q_1}{W}$ (heat pump).

Isolated systems: All microstates equally likely. Most likely macrostate maximizes the Boltzmann entropy $S = k \ln g$, where g is the multiplicity. When non-interacting systems are combined, entropy is additive (i.e., extensive); multiplicity is multiplicative.

Fixed temperature systems: States *s* appear with Boltzmann probability

$$p(s) = \frac{e^{-\varepsilon_s/\tau}}{Z}, \qquad Z = \sum_s e^{-\varepsilon_s/\tau},$$

where $\tau = kT$ and $k = 1.38 \times 10^{-23} \text{ JK}^{-1}$. Macroscopic thermodynamic quantities are then given by

$$U = \tau^2 \frac{\partial \ln Z}{\partial \tau} \Big|_V, \qquad F = -\tau \ln Z, \qquad C = \frac{\partial U}{\partial \tau} \Big|_V, \qquad \sigma = -\frac{\partial F}{\partial \tau} \Big|_V, \qquad p = -\frac{\partial F}{\partial V} \Big|_{\tau}.$$

Sterling's approximation: $\ln k! \simeq k \ln k - k$.

Perfect gas: Density of states in three dimensions is

$$n(\varepsilon) = \frac{V(2I+1)}{4\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \varepsilon^{1/2},$$

where *I* is the spin of the particles. ($I = \frac{1}{2}$ for fermions.)

$$Z = \frac{1}{N!} Z_1^N, \qquad Z_1 = \frac{V}{(2\pi\hbar^2/m\tau)^{3/2}}, \qquad pV = N\tau, \qquad \sigma = N(\frac{5}{2} - \ln[(2\pi\hbar^2/m\tau)^{3/2}\rho]).$$

where $\rho = N/V$ is the number density.

Photons and phonons: Density of states is

$$n(\omega) = \frac{V}{\pi^2 c^3} \omega^2 d\omega \quad \text{(photons, } c \text{ is speed of light)}, \quad n(\omega) = \frac{3V}{2\pi^2 v^3} \omega^2 d\omega \quad \text{(phonons, } v \text{ is speed of sound)}.$$

Systems with variable numbers of particles: Grand ensemble:

$$\begin{aligned} \mathcal{Z} &= \sum_{s} \mathrm{e}^{-(\varepsilon_{s} - \mu N_{s})/\tau}, \qquad U = \tau^{2} \frac{\partial \ln \mathcal{Z}}{\partial \tau}, \qquad \Omega = -\tau \ln \mathcal{Z}, \\ \sigma &= -\frac{\partial \Omega}{\partial \tau} \Big|_{V,\mu}, \qquad p = -\frac{\partial \Omega}{\partial V} \Big|_{\tau,\mu}, \qquad N = -\frac{\partial \Omega}{\partial \mu} \Big|_{V,\tau}. \end{aligned}$$

Quantum gases: Number of particles in single-particle state with energy ε is

$$f(\varepsilon) = \frac{1}{e^{(\varepsilon-\mu)/\tau} + 1}$$
 (fermions), $f(\varepsilon) = \frac{1}{e^{(\varepsilon-\mu)/\tau} - 1}$ (bosons).