Complex Systems 535/Physics 508: Homework 1

1. **Planar and acyclic graphs:** Here are three small graphs, one undirected, another directed, and the third bipartite:

Draw figures showing the following:

- (i) that graph (a) is not planar;
- (ii) that graph (b) is not cyclic;
- (iii) the bibliographic coupling graph of (b);
- (iv) the two one-mode projections of (c).
- 2. Eigenvalues of an acyclic digraph: Consider an acyclic digraph with no self-edges (i.e., no edges connecting vertices to themselves). We showed in class that the adjacency matrix of such a graph can be written in upper triangular form by a suitable labeling of the vertices.
 - (i) Show that all eigenvalues of the adjacency matrix of such an acyclic digraph are zero.
 - (ii) Write down an expression for the number of closed loops of length r in a graph in terms of the eigenvalues of the adjacency matrix.
 - (iii) Hence, or otherwise, show (conversely) that if all eigenvalues of the adjacency matrix are zero the graph must be acyclic.

- 3. Lowest eigenvalue of the Laplacian: Consider a connected graph (i.e., every vertex is reachable from every other) which is undirected with Laplacian $\mathbf{L} = \mathbf{D} \mathbf{A}$.
 - (i) What is the lowest eigenvalue of L and what is the corresponding eigenvector?
 - (ii) How many rows of the Laplacian are linearly independent?
 - (iii) Show that an undirected graph is connected if and only if $\lambda_2 > 0$, where λ_2 is the second-smallest eigenvalue of the Laplacian.

The eigenvalue λ_2 is called the *algebraic connectivity* of the graph, and will come up repeatedly in our study of networks.

- 4. Geodesic paths and the adjacency matrix: Consider the set of all paths from vertex s to vertex t on an undirected graph with adjacency matrix A. Let us give each path a weight equal to α^r , where r is the length of the path.
 - (i) Show that the sum of the weights of all the paths from *s* to *t* is given by Z_{st} , which is the *st* element of the matrix $\mathbf{Z} = (\mathbf{I} \alpha \mathbf{A})^{-1}$. What condition must α satisfy for the sum to converge?
 - (ii) Hence, or otherwise, show that the length ℓ_{st} of a geodesic path from s to t, if there is one, is

$$\ell_{st} = \lim_{\alpha \to 0} \frac{\partial \log Z_{st}}{\partial \log \alpha}.$$