
Complex Systems 535/Physics 508: Homework 4
species is preyed on by species is preyed on by

0 phytoplankton 6, 7, 10, 11, 12, 21, 22, 33 17 crustacean deposit feeder 18, 24, 25, 26, 28, 31
1 bacteria in suspended poc 6, 7, 8, 10, 11, 12, 21, 22, 18 blue crab 32
2 bacteria in sediment poc 13, 14, 15, 16, 17 19 fish larvae
3 benthic diatoms 16 20 alewife and blue herring 32
4 free bacteria 5 21 bay anchovy 26, 27, 29, 30, 31, 32
5 heterotrophic microflagel 6 22 menhaden 29, 31, 32
6 ciliates 7, 8, 10, 11, 12 23 shad
7 zooplankton 8, 9, 19, 20, 21, 22, 23 24 croaker
8 ctenophores 9 25 hogchoker
9 sea nettle 26 spot 29

10 other suspension feeders 18 27 white perch
11 mya arenaria 18, 25 28 catfish
12 oysters 29 bluefish
13 other polychaetes 24, 25, 26, 27, 28 30 weakfish 31
14 nereis 18, 24, 25, 26, 27, 28 31 summer flounder
15 macoma 18, 26 32 striped bass
16 meiofauna 33 dissolved organic carbon 4

1. Food webs and trophic levels: The table above gives the adjacency list for the food web of
predator-prey interactions between marine (i.e., salt-water) species in the Chesapeake Bay, a large
tidal bay on the Eastern Seaboard of the United States (D. Baird and R. E. Ulanowicz, The seasonal
dynamics of the Chesapeake Bay ecosystem. Ecological Monographs 59, 329–364 (1989)). You
can also download the same data from here:

http://www-personal.umich.edu/˜mejn/courses/2004/cscs535/chesapeake.adj

which might save you some typing time.

(i) Calculate the eigenvalues of the adjacency matrix. Hence make a statement about whether
this food web is cyclic or acyclic.

(ii) The standard way of calculating trophic levels is to assign to each species a trophic level
equal to the mean of the trophic levels of their prey, plus 1. Derive an expression for the
vector x of trophic levels in terms of the adjacency matrix A. The expression you get should
involve the directed graph Laplacian D � A, where D is the diagonal matrix of in-degrees.
This expression does not work for autotrophs—species with no prey. Such species are usually
given trophic level 1. Suggest a modification of your method that will correctly assign trophic
levels to these species, and hence to all species.

(iii) Apply your formula to the Chesapeake Bay network and calculate the trophic levels. Which
species is at the top of the food chain (i.e., has the highest trophic level)?

2. Computational complexity of sorting algorithms: A simple and stupid algorithm for sorting a
set of numbers is the “bubblesort.” You are given a set of n numbers that are to be sorted in as-
cending order. You go through them all in turn (except the last one) comparing each to the number
after it in the list. If the first number is greater than the second, you swap the two. Otherwise you
do nothing. If you repeat this whole process often enough, the numbers will eventually be sorted
in order.

(i) How many passes along the list will you have to make to sort the numbers in the worst case?
Hence what is the runtime of the algorithm to leading order in n?

1



(ii) A much better sorting algorithm is “mergesort.” If we have two lists of 1
2n numbers each,

and each is correctly sorted in ascending order, then we can make a single correctly sorted
list of all n numbers by comparing the smallest (i.e., first) items in each list and moving the
smaller of the two to a new list. Repeatedly doing this until all items in the two original lists
have been moved to the new list will give us a new list that is correctly sorted. How does the
number of operations involved in this merge process scale with n?

(iii) Assuming n is a power of 2, we can now start with n lists of 1 item each (which are, by
definition, sorted) and merge them repeatedly to make sorted lists of length 2, 4, 8, and so
on up to n. How many such sets of merges will be needed? Hence what is the runtime of
mergesort to leading order in n?

3. Complexity of simple network operations: State the time complexity of the following operations
in terms of the number of vertices n and edges m (with brief arguments why):

(i) Multiplying the adjacency matrix of a dense graph into an arbitrary vector.
(ii) Multiplying the adjacency matrix of a sparse graph into an arbitrary vector. (You can assume

that you also have the adjacency list of the sparse graph.)
(iii) Calculating the degree sequences of dense graphs and sparse graphs from their adjacency

matrices or lists.
(iv) Generating a degree sequence that is sorted in ascending order, for dense graphs and for

sparse graphs. (You can assume the number of edges in the dense graph is not o
�
n logn � .)

(v) Calculating the clustering coefficient of an undirected graph from an adjacency list.
(vi) Calculating the reciprocity of a digraph from an adjacency list.

4. Complexity of centrality measures: Consider the Katz centrality x � �
I � αA ��� 1 � y. Matrix

inverses take O
�
n3 � time in general, but for a sparse graph the inverse can be calculated more

quickly by expanding
�
I � αA ��� 1 � ∑∞

r � 0
�
αA � r, and performing the sum up to some finite number

of terms rmax, i.e., up to but not including the term r � rmax. The matrix error involved in doing
this is ∆ � ∑∞

rmax

�
αA � r.

(i) Assuming the network is sparse and symmetric, we can estimate the size of this error by
calculating the Frobenius norm divided by n:	

∆
	

n
� ∑i j ∆2

i j

n2 � 

Tr∆2

n2 �
which is the root-mean-square error on an element of

�
I � αA ��� 1. Show that the trace is

equal to

Tr∆2 � n

∑
i � 1 


�
αλi � rmax

1 � αλi � 2 �
where λi is the ith eigenvalue of the adjacency matrix.

(ii) Hence for given n, and assuming that αλi � 1 for all i, find an approximate expression for
the leading-order scaling of the runtime taken by the algorithm to calculate an answer to any
desired degree of precision (measured by

	
∆
	��

n) in terms of n, λ1, and α, where λ1 is the
leading eigenvalue.

(iii) For k-regular graphs how does the runtime scale? (You should find that this is indeed better
than the standard O

�
n3 � inversion algorithms, for given α.)

2


