Complex Systems 535/Physics 508: Homework 9

1. The small-world model: Consider the version of the small-world model in which one adds shortcuts to the one-dimensional lattice but never takes any edges away. Let p be the probably per edge on the underlying lattice of adding a shortcut, so that the expected number of shortcuts is $n r p$, where r is the maximum range of edges on the underlying lattice. You can assume that $r \ll n$ and that n is very large.
(i) What is the probability that a vertex has degree k ?
(ii) How many triangles are there in the network?
(iii) How many two-stars are there in the network, i.e., a vertex connected to an unordered pair of other vertices-count separately every unordered pair for each vertex. (On the midterm exam you showed that this number is $n r(2 r-1)$ when $p=0$.) You can assume that p is small enough that each vertex is attached to only zero or one shortcuts.
(iv) Hence show that the clustering coefficient for this version of the small-world network is

$$
\frac{3(r-1)}{2(2 r-1)+8 r p}
$$

in this limit. Confirm that this gives the correct result in the limit $p \rightarrow 0$.
2. Generating functions for growing graphs: Recall the rate equation for Price's model of a citation network in the limit of large n :

$$
\begin{aligned}
& p_{k}=\frac{c}{c+a}\left[(k-1+a) p_{k-1}-(k+a) p_{k}\right] \quad(\text { for } k>0) \\
& p_{0}=1-\frac{c}{c+a} p_{0}
\end{aligned}
$$

(i) Write down the special case of these equations for $c=a=1$.
(ii) Show that the degree distribution generating function $g(x)=\sum_{k=0}^{\infty} p_{k} x^{k}$ for this case satisfies the differential equation

$$
g(x)=1+\frac{1}{2}(x-1)\left[x g^{\prime}(x)+g(x)\right] .
$$

(iii) Show that the function

$$
h(x)=\frac{x^{3} g(x)}{(1-x)^{2}}
$$

satisfies

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{2 x^{2}}{(1-x)^{3}}
$$

(iv) Hence find a closed-form solution for the generating function $g(x)$. Confirm that your solution has the correct limiting values $g(0)=p_{0}$ and $g(1)=1$.
(v) Thus find a value for the mean in-degree of a vertex in Price's model. Is this what you expected?

