Physics 406: Summary of important results

This is a list of important equations and other results that you should know. You may take this list into the final exam with you.

Partial derivatives:

$$
\mathrm{d} f=\left.\frac{\partial f}{\partial x}\right|_{y} \mathrm{~d} x+\left.\frac{\partial f}{\partial y}\right|_{x} \mathrm{~d} y,\left.\quad \frac{\partial x}{\partial y}\right|_{z}=\left[\left.\frac{\partial y}{\partial x}\right|_{z}\right]^{-1},\left.\quad \frac{\partial x}{\partial y}\right|_{z}=-\left.\left.\frac{\partial x}{\partial z}\right|_{y} \frac{\partial z}{\partial y}\right|_{x} .
$$

Internal energy: $\mathrm{d} U=\mathrm{d} Q+\mathrm{d} W$ with $đ Q=T \mathrm{~d} S$ and:

$$
\begin{array}{ll}
\mathrm{d} W=-p \mathrm{~d} V & \text { (fluid pressure/volume system) } \\
\mathrm{d} W=f \mathrm{~d} L & \text { (spring or wire with force } f \text { and length } L \text {) } \\
\mathrm{d} W=V \mathrm{~d} q & \text { (capacitor with voltage } V \text { and charge } q \text {) } \\
\mathrm{d} W=\gamma \mathrm{d} A & \text { (surface with surface tension } \gamma \text { and area } A \text {) }
\end{array}
$$

Thus for example, in a pressure/volume system $\mathrm{d} U=T \mathrm{~d} S-p \mathrm{~d} V$. This applies for irreversible as well as reversible changes, but the individual equalities $₫ Q=T \mathrm{~d} S$ and $đ W=-p \mathrm{~d} V$ only apply for reversible ones. Heat capacity at constant x (where x is any variable) is in general given by

$$
C_{x}=\left.T \frac{\partial S}{\partial T}\right|_{x}, \quad \text { e.g., } \quad C_{V}=\left.T \frac{\partial S}{\partial T}\right|_{V} \quad \text { and } \quad C_{p}=\left.T \frac{\partial S}{\partial T}\right|_{p} .
$$

Potential functions and Maxwell relations: For a pressure/volume system

$$
H=U+p V \quad \text { (enthalpy) }, \quad F=U-T S \quad \text { (free energy) }, \quad G=U+p V-T S \quad \text { (Gibbs energy). }
$$

Similar expressions apply for other types of systems (non-pressure/volume systems). There is one Maxwell relation for each potential function, derived by equating partial second derivatives. For instance

$$
\frac{\partial^{2} U}{\partial V \partial S}=\left.\frac{\partial^{2} U}{\partial S \partial V} \quad \Rightarrow \quad \frac{\partial T}{\partial V}\right|_{S}=-\left.\frac{\partial p}{\partial S}\right|_{V}
$$

Each heat capacity is the derivative of the corresponding potential function:

$$
C_{V}=\left.\frac{\partial U}{\partial T}\right|_{V}, \quad C_{p}=\left.\frac{\partial H}{\partial T}\right|_{p} .
$$

Heat engines:

Efficiency of a reversible engine ($T_{1}>T_{2}$):

$$
\eta=\frac{W}{Q_{1}}=1-\frac{T_{2}}{T_{1}}, \quad \eta_{R}=\frac{Q_{2}}{W} \quad \text { (refrigerator) }, \quad \eta_{H}=\frac{Q_{1}}{W} \quad \text { (heat pump). }
$$

Isolated systems: All microstates equally likely. Most likely macrostate maximizes the Boltzmann entropy $S=k \ln g$, where g is the multiplicity. When non-interacting systems are combined, entropy is additive (i.e., extensive); multiplicity is multiplicative.

Fixed temperature systems: States s appear with Boltzmann probability

$$
p(s)=\frac{\mathrm{e}^{-\varepsilon_{s} / \tau}}{Z}, \quad Z=\sum_{s} \mathrm{e}^{-\varepsilon_{s} / \tau}
$$

where $\tau=k T$ and $k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$. Macroscopic thermodynamic quantities are then given by

$$
U=\left.\tau^{2} \frac{\partial \ln Z}{\partial \tau}\right|_{V}, \quad F=-\tau \ln Z, \quad C=\left.\frac{\partial U}{\partial \tau}\right|_{V}, \quad \sigma=-\left.\frac{\partial F}{\partial \tau}\right|_{V}, \quad p=-\left.\frac{\partial F}{\partial V}\right|_{\tau} .
$$

Sterling's approximation: $\ln k!\simeq k \ln k-k$.
Ideal gas: Density of states in three dimensions is

$$
n(\varepsilon)=\frac{V(2 I+1)}{4 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon^{1 / 2}
$$

where I is the spin of the particles. ($I=\frac{1}{2}$ for fermions.)

$$
Z=\frac{1}{N!} Z_{1}^{N}, \quad Z_{1}=\frac{V}{\left(2 \pi \hbar^{2} / m \tau\right)^{3 / 2}}, \quad p V=N \tau, \quad \sigma=N\left(\frac{5}{2}-\ln \left[\left(2 \pi \hbar^{2} / m \tau\right)^{3 / 2} \rho\right]\right)
$$

where $\rho=N / V$ is the number density.
Photons and phonons: Density of states is
$n(\omega)=\frac{V}{\pi^{2} c^{3}} \omega^{2} \mathrm{~d} \omega \quad$ (photons, c is speed of light), $\quad n(\omega)=\frac{3 V}{2 \pi^{2} v^{3}} \omega^{2} \mathrm{~d} \omega \quad$ (phonons, v is speed of sound).
Systems with variable numbers of particles: Grand ensemble:

$$
\begin{array}{rlr}
Z=\sum_{s} \mathrm{e}^{-\left(\varepsilon_{s}-\mu N_{s}\right) / \tau}, & U=\tau^{2} \frac{\partial \ln Z}{\partial \tau}, & \Omega=-\tau \ln Z \\
\sigma=-\left.\frac{\partial \Omega}{\partial \tau}\right|_{V, \mu}, & p=-\left.\frac{\partial \Omega}{\partial V}\right|_{\tau, \mu}, & N=-\left.\frac{\partial \Omega}{\partial \mu}\right|_{V, \tau} .
\end{array}
$$

Quantum gases: Number of particles in single-particle state with energy ε is

$$
f(\varepsilon)=\frac{1}{\mathrm{e}^{(\varepsilon-\mu) / \tau}+1} \quad \text { (fermions), } \quad f(\varepsilon)=\frac{1}{\mathrm{e}^{(\varepsilon-\mu) / \tau}-1} \quad \text { (bosons). }
$$

