
Physics 406: Summary of important results

This is a list of important equations and other results that you should know. You may take this list into
the final exam with you.
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Internal energy: dU = d̄Q+ d̄W with d̄Q = T dSand:

d̄W = −pdV (fluid pressure/volume system)
d̄W = f dL (spring or wire with forcef and lengthL)
d̄W = V dq (capacitor with voltageV and chargeq)
d̄W = γ dA (surface with surface tensionγ and areaA)

Thus for example, in a pressure/volume system dU = T dS− pdV. This applies for irreversible as well
as reversible changes, but the individual equalities dQ̄= T dSand d̄W =−pdV only apply for reversible
ones. Heat capacity at constantx (wherex is any variable) is in general given by
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Potential functions and Maxwell relations: For a pressure/volume system

H = U + pV (enthalpy), F = U −TS (free energy), G = U + pV−TS (Gibbs energy).

Similar expressions apply for other types of systems (non-pressure/volume systems). There is one
Maxwell relation for each potential function, derived by equating partial second derivatives. For in-
stance
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Each heat capacity is the derivative of the corresponding potential function:
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Heat engines:
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Efficiency of a reversible engine (T1 > T2):
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Isolated systems: All microstates equally likely. Most likely macrostate maximizes the Boltzmann
entropyS= k lng, whereg is the multiplicity. When non-interacting systems are combined, entropy is
additive (i.e., extensive); multiplicity is multiplicative.

Fixed temperature systems: Statess appear with Boltzmann probability

p(s) =
e−εs/τ

Z
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whereτ = kT andk = 1.38×10−23JK−1. Macroscopic thermodynamic quantities are then given by
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Sterling’s approximation: lnk! ≃ k lnk−k.

Ideal gas: Density of states in three dimensions is
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whereI is the spin of the particles. (I = 1
2 for fermions.)
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whereρ = N/V is the number density.

Photons and phonons: Density of states is

n(ω)=
V

π2c3 ω2dω (photons,c is speed of light), n(ω)=
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2π2v3 ω2dω (phonons,v is speed of sound).

Systems with variable numbers of particles: Grand ensemble:
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Quantum gases: Number of particles in single-particle state with energyε is

f (ε) =
1

e(ε−µ)/τ +1
(fermions), f (ε) =

1
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−1

(bosons).


