Physics 390: Homework 4

For full credit, show all your working.

1. Problem 6-16 in Tipler \& Llewellyn.
2. Uncertainty relation: Suppose that we measure the uncertainty in position and momentum by their standard deviations:

$$
\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}, \quad \sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}
$$

(a) Find σ_{x} and σ_{p} for the ground state of the 1 D infinite square well in terms of the length L of the well and the mass m of the particle.
(b) Find $\sigma_{x} \sigma_{p}$.
3. The simple harmonic oscillator: In class we showed that if $\psi(x)$ is a solution of the time-independent Schrödinger equation $H \psi=E \psi$ for the simple harmonic oscillator Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}
$$

then the function

$$
\psi_{-}=\left(\frac{\mathrm{d}}{\mathrm{~d} y}+y\right) \psi
$$

is a solution of the same equation with energy $\hbar \omega$ lower, i.e., of the equation $H \psi_{-}=$ $(E-\hbar \omega) \psi_{-}$.
(a) Show that

$$
\psi_{+}=\left(\frac{\mathrm{d}}{\mathrm{~d} y}-y\right) \psi
$$

is also a solution of the Schrödinger equation, but with energy $\hbar \omega$ higher than ψ.
(b) By repeated application of the operator $\mathrm{d} / \mathrm{d} y-y$ we can therefore make a ladder of states of higher and higher energies. The corresponding ladder of lower and lower energies for $\mathrm{d} / \mathrm{d} y+y$ stopped when we got to the ground state energy of $\frac{1}{2} \hbar \omega$. Does the up-going ladder also stop, or does it go up to infinite energy, and why?
4. Problem 6-57 in Tipler \& Llewellyn.

