Physics 390: Homework 6

For full credit, show all your working.

1. **Quantum mechanics of many particles:** The neutron and the neutral pion are two subatomic particles with no charge, so that they neither electrically repel nor attract other particles. Here are their properties:

particle	charge	spin	mass
neutron	0	$\frac{1}{2}$	$1836m_e$
pion	0	0	$264m_e$

where m_e is the electron mass.

- (a) Calculate the lowest energy that ten noninteracting neutrons can have if they are trapped in a three-dimensional cubic quantum well of size 10 fm on a side.
- (b) Calculate the corresponding energy for ten pions.

For both (a) and (b), explain the steps in your calculations and the effects of the spins of the particles.

- 2. Problem 7-75 in Tipler & Llewellyn.
- 3. The quantum harmonic oscillator at finite temperature: We previously studied the states of a single particle in a quadratic energy well—the quantum simple harmonic oscillator—finding that it has states of energy $E_n = (n + \frac{1}{2})\hbar\omega$, where n = 0, 1, 2... is a non-negative integer and ω is the angular frequency of oscillation of a classical particle in the same potential.

Suppose the well and the particle in it are at a finite temperature T. The partition function Z of the system is given by a sum over states s thus:

$$Z = \sum_{s} e^{-E_s/kT}.$$

(a) Show that the partition function for the simple harmonic oscillator is

$$Z = \frac{1}{1 - e^{-\hbar\omega/kT}}.$$

- (b) Hence find the thermal average energy $\langle E \rangle$ of the particle.
- (c) If $\omega = 10^{14} \, \text{s}^{-1}$ and $T = 300 \, \text{K}$, what is the probability that the particle will be in the ground state?

4. **Thermal occupation probabilities:** From observations of the spectrum of a certain star it is determined that about one in a million of the hydrogen atoms in the star is in its first excited state, the rest being in the ground state. (Other excited states can, to a good approximation, be ignored.) Allowing for that fact that the first excited state has a degeneracy of 4 (one $\ell = 0$ state and three $\ell = 1$ states) while the ground state has a degeneracy of only 1, what is the temperature of the star?