Physics 390: Relativity review

You should be familiar with the material on special relativity in Chapters 1 and 2 of Tipler \& Llewellyn. This sheet summarizes the most important results. In the following formulas

$$
\beta=\frac{v}{c}, \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}}=\frac{1}{\sqrt{1-v^{2} / c^{2}}},
$$

where c is the speed of light. Note that as v approaches the speed of light, $\beta \rightarrow 1$ and $\gamma \rightarrow \infty$.

1. Lorentz contraction: An object of length L moving with velocity v relative to an observer appears shortened in the direction of motion to length

$$
L^{\prime}=L / \gamma
$$

Note that as v approaches the speed of light $L^{\prime} \rightarrow 0$.
2. Time dilation: Two events that occur a time τ apart at the same location in a reference frame moving at velocity v relative to an observer appear a time τ^{\prime} apart to that observer, where

$$
\tau^{\prime}=\gamma \tau
$$

Note that $\tau^{\prime} \rightarrow \infty$ as $v \rightarrow c$. Also, make sure you understand the "twin paradox" and its resolution (Section 1.6).
3. Doppler shift: An approaching or receding light source of frequency f is observed to have a shifted frequency f^{\prime} given by

$$
\text { Approaching: } \quad f^{\prime}=\sqrt{\frac{1+\beta}{1-\beta}} f, \quad \text { Receding: } \quad f^{\prime}=\sqrt{\frac{1-\beta}{1+\beta}} f
$$

4. Relativistic mass: A body with rest mass m moving with velocity v has total relativistic mass γm. The kinetic energy gives rise to an increase in mass.
5. Energy: A body of mass m at rest has energy $m c^{2}$. If one could convert mass completely into energy (for example by annihilating with an identical body of antimatter), this is the amount of energy that would be produced. A moving body, which has relativistic mass γm, has total energy $\gamma m c^{2}$ and kinetic energy

$$
E_{k}=\gamma m c^{2}-m c^{2}=(\gamma-1) m c^{2} .
$$

You should check that this gives the familiar non-relativistic expression $E_{k}=\frac{1}{2} m v^{2}$ in the limit where $v \ll c$.

If energy is added to a body in any form (not just kinetic), it increases the mass of the body by an amount $\Delta E / c^{2}$, where ΔE is the energy added. For instance, chemical energy stored in chemical compounds gives them a total mass slightly in excess of the combined masses of their constituent parts.
6. Momentum: Relativistic momentum is given by $p=\gamma m v$.
7. Invariant mass: Energy, momentum, and mass are related by

$$
E^{2}=(p c)^{2}+\left(m c^{2}\right)^{2} .
$$

