
Complex Systems 535/Physics 508: Homework 7

1. The (wholly fictitious) Northern Gray-Tailed Grebe lives to reproductive age with prob-
ability p. If it does, it always has exactly two offspring. Depending on the value of p, a
particular Grebe may have either a finite or an infinite number of descendents in the limit
of long time. Let πs be the probability that the number of a Grebe’s descendents is finite
and equal to s.

(i) Show that the generating function for πs is

h(z) =
1−

√

1− 4p(1− p)z2

2pz2
.

(ii) Hence find the probability u that a Grebe has a finite number of descendents as a
function of p.

(iii) Find the critical value p = pc below which the number of descendents is definitely
finite.

(iv) Find the expected number of descendents a Grebe has when p < pc.

2. Consider a configuration model in which every vertex has the same degree k.

(i) What is the degree distribution pk? What are the generating functions g0 and g1 for
the degree distribution and the excess degree distribution?

(ii) Show that the giant component fills the whole network for all k ≥ 3.

(iii) What happens when k = 1?

(iv) Extra credit: What happens when k = 2?

3. Recall the rate equation for Price’s model of a citation network in the limit of large n:

pk =
c

c + a

[

(k− 1+ a)pk−1 − (k + a)pk
]

for k > 0,

p0 = 1−
c

c + a
p0.

(i) Write down the special case of these equations for c = a = 1.

(ii) Show that the degree distribution generating function g0(x) = ∑
∞
k=0 pkx

k for this
case satisfies the differential equation

g0(x) = 1+ 1
2(x− 1)

[

xg′0(x) + g0(x)
]

.

(iii) Show that the function

h(x) =
x3g0(x)

(1− x)2

satisfies
dh

dx
=

2x2

(1− x)3
.



(iv) Hence find a closed-form solution for the generating function g0(x). Confirm that
your solution has the correct limiting values g0(0) = p0 and g0(1) = 1.

(v) Thus find a value for the mean in-degree of a vertex in Price’s model. Is this what
you expected?

4. Consider the following simple model of a growing network. Vertices are added to a
network at a rate of one per unit time. Edges are added at a mean rate of β per unit time,
where β can be anywhere between zero and ∞. (That is, in any small interval ∆t of time,
the probability of an edge being added is β ∆t.) Edges are placed uniformly at random
between any pair of vertices that exist at that time. They are never moved after they are
first placed.

We are interested in the component structure of this model, which we will tackle using
a rate equation method. Let ak(n) be the fraction of vertices that belong to components
of size k when there are n vertices in the graph. That is, if we choose a vertex at random
from the n vertices currently in the graph, ak(n) is the probability the vertex will fall in a
component of size k.

(i) What is the probability that a newly appearing edge will fall between a component
of size r and another of size s? (You can assume that n is large and the probabil-
ity of both ends of an edge falling in the same component is small.) Hence what
is the probability that a newly appearing edge will join together two pre-existing
components to form a new one of size k?

(ii) What is the probability that a newly appearing edge joins a component of size k to a
component of any other size, thereby creating a new component of size larger than k?

(iii) Thus write down a rate equation that gives the fraction of vertices ak(n + 1) in com-
ponents of size k for n + 1 vertices, in terms of the values for n vertices.

(iv) The only exception to the previous result is that components of size 1 appear at a
rate of one per unit time. Write a separate rate equation for a1(n + 1).

(v) If a steady state solution exists for the component size distribution, show that it must
satisfy the equations

(1+ 2β)a1 = 1, (1+ 2βk)ak = βk
k−1

∑
j=1

ajak−j.

(vi) Multiply by zk and sum over k from 1 to ∞ and hence show that the generating
function g(z) = ∑k akz

k satisfies the ordinary differential equation

2β
dg

dz
=

1− g/z

1− g
.

(vii) Lots of extra credit: A humongous number of extra points go to anyone who can
find a nontrivial solution to this last equation in closed form for the appropriate
boundary conditions (g(0) = 0). Series expansion solutions count if the series coeffi-
cients are in closed form, or solutions making use of special functions, or parametric
solutions, meaning solutions where both g and z are given as functions of some third
variable. (I should point out that I don’t know of any solution to this equation, but I
don’t claim to be great at solving nonlinear equations.)


