Complex Systems 535/Physics 508: Homework 3

1. One can calculate the diameter of certain types of networks exactly:
(i) What is the diameter of a clique?
(ii) What is the diameter of a square portion of square lattice, with L edges (or equivalently $L+1$ vertices) along each side, like this:

What is the diameter of the corresponding hypercubic lattice in d dimensions with L edges along each side? Hence what is the diameter of such a lattice as a function of the number n of vertices?
(iii) A Cayley tree is a symmetric regular tree in which each vertex is connected to the same number k of others, until we get out to the leaves, like this:

(We have $k=3$ in this picture.)
Show that the number of vertices reachable in d steps from the central vertex is $k(k-$ $1)^{d-1}$ for $d \geq 1$. Hence find an expression for the diameter of the network in terms of k and the number of vertices n.
(iv) Which of the networks in parts (i), (ii), and (iii) displays the small-world effect, defined as having a diameter that increases as $\log n$ or slower?
2. Suppose a network has a degree distribution that follows the exponential form $p_{k}=$ $C \mathrm{e}^{-\lambda k}$, where C and λ are constants.
(i) Find C as a function of λ.
(ii) Calculate the fraction P of vertices that have degrees greater than or equal to k.
(iii) Calculate the fraction W of ends of edges that are attached to vertices of degree greater than or equal to k.
(iv) Hence show that for this degree distribution the Lorenz curve-the equivalent of Eq. (8.23) in the book-is given by

$$
W=P+\frac{1-\mathrm{e}^{\lambda}}{\lambda} P \ln P
$$

(v) What is the equivalent of the " $80-20$ " rule for such a network with $\lambda=1$? That is, what fraction of the "richest" nodes in the network have 80% of the "wealth"?
(vi) Show that the value of W is greater than one for some values of P in the range $0 \leq P \leq 1$. What is the meaning of these "unphysical" values?
3. A particular network is believed to have a degree distribution that follows a power law. A random sample of vertices is taken and their degrees measured. The degrees of the first twenty vertices with degrees 10 or greater are:

16	17	10	26	13
14	28	45	10	12
12	10	136	16	25
36	12	14	22	10

Estimate the exponent α of the power law and the error on that estimate.
4. Consider the following simple and rather unrealistic model of a network: each of n vertices belongs to one of g groups. The m th group has n_{m} vertices and each vertex in that group is connected to others in the group with independent probability $p_{m}=$ $A\left(n_{m}-1\right)^{-\beta}$, where A and β are constants, but not to any vertices in other groups. Thus this network takes the form of a set of disjoint groups or communities.
(i) Calculate the expected degree $\langle k\rangle$ of a vertex in group m.
(ii) Calculate the expected value \bar{C}_{m} of the local clustering coefficient for vertices in group m.
(iii) Hence show that $\bar{C}_{m} \propto\langle k\rangle^{-\beta /(1-\beta)}$. What value would β have to have for the expected value of the local clustering to fall off as $\langle k\rangle^{-0.75}$, as has been conjectured by some researchers?

