Complex Systems 535/Physics 508: Homework 8

Because of the Thanksgiving break you have two weeks to complete this homework instead of just one. It
is due in class on Thursday, November 29.

1. Consider the growing network model of Price, as described in Section 14.1.

(i) From the results given in the chapter write down an expression in terms of the pa-
rameters a and c for the expected in-degree of the ith vertex added to the network
just after the jth vertex is added, where i < j.

(ii) Hence show that the average probability of a directed edge from j to i in a network
with n vertices, where n > j, is
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2. Consider a model of a growing directed network similar to Price’s model described in
Section 14.1, but without preferential attachment. That is, vertices are added one by one
to the growing network and each has c outgoing edges, but those edges now attach to
existing vertices uniformly at random, without regard for degrees or any other vertex
properties.

(i) Derive master equations, the equivalent of Egs. (14.7) and (14.8), that govern the
distribution of in-degrees g in the limit of large network size.

(ii) Hence show that in the limit of large size the in-degrees have an exponential distri-
bution p, = Ce ™ with A = In(1+1/¢).

3. Consider a model network similar to the model of Barabasi and Albert described in Sec-
tion 14.2, in which undirected edges are added between vertices according to a preferen-
tial attachment rule, but suppose now that the network does not grow—it starts off with
a given number 1 of vertices and neither gains nor loses any vertices thereafter. In this
model, starting with an initial network of n vertices and some specified arrangement of
edges, we add at each step one undirected edge between two vertices, both of which are
chosen at random in direct proportion to degree k. Let py(m) be the fraction of vertices
with degree k when the network has m edges in total.

(i) Show that, when the network has m edges, the probability that the next edge added
will attach to vertex i is k; /m.

(ii) Write down a master equation giving py(m + 1) in terms of py_1(m) and p(m). Be
sure to give the equation for the special case of k = 0 also.

(iii) Eliminate m from the master equation in favor of the mean degree ¢ = 2m/n and
take the limit n — oo with ¢ held constant to show that pi(c) satisfies the differential
equation
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(iv) Define a generating function g(c,z) = Y3°, px(c) z* and show that it satisfies the

partial differential equation
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(v) Show that g(c,z) = f(c — c¢/z) is a solution of this differential equation, where f(x)
is any differentiable function of x.

(vi) The particular choice of f depends on the initial conditions on the network. Suppose
the network starts off in a state where every vertex has degree one, which means
¢ = 1and g(1,z) = z. Find the function f that corresponds to this initial condition
and hence find g(c, z) for all values of c and z.

(vii) Show that, for this solution, the degree distribution as a function of ¢ takes the form
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except for k = 0, for which po(c) = 0 for all c.

Note that the degree distributions in both this model and the model of question 1 de-
cay exponentially in k, implying that neither preferential attachment alone nor network
growth alone can, in general, account for a power-law degree distribution. One must
have both growth and preferential attachment to get a power law.

. Extra credit: Write a computer program in the language of your choice to simulate the
model of Barabasi and Albert and calculate its degree distribution using the fast algo-
rithm described in class. (You won't need to store the actual edges of the network itself—
only the degrees are needed to answer this question.) Use your program to generate the
degree sequence for a Barabasi-Albert network of ten million vertices with ¢ = 2 and
hence make a plot similar to Fig. 14.4 in the book of the average degree of a vertex as
a function of time 7, where T = i/n for the ith vertex. (You could do this for instance
by calculating an average in a sliding window, or simply by dividing the vertices into
groups of, say, 1000 each and averaging the degrees within each group.)

Turn in your plot and a copy of your program to get full credit. Extra points may be
awarded for particularly elegant programs. (Hint: If you do it right, it should not be a
complicated program. In my own program to solve the problem, which is written in C,
the main loop that does the actual simulation consists of five lines of code and the pro-
gram only takes about two seconds to generate a network of ten million vertices.)



