
APPENDIX D

CONVERGENCE OF MARKOV CHAIN MONTE

CARLO CALCULATIONS

THIS appendix outlines the proof that the Markov chain Monte Carlo pro-

cedure of Section 10.3.2 always converges to the Boltzmann distribution.

Recall that we start from any state of the system and repeatedly move to new

states, one after another, with the probability Tij of changing from state i to

state j satisfying the conditions

∑
j

Tij = 1 (D.1)

and
Tij

Tji
=

P(Ej)

P(Ei)
, (D.2)

where P(Ei) is the Boltzmann probability for a state with energy Ei. We wish

to prove that if we continue the chain of states for long enough, the probability

of being in state i will converge to P(Ei).

The proof has several parts. First let us define pi(t) to be the probability

that the Markov chain visits state i at step t. Then the probability that it visits

state j at the next step is given by

pj(t + 1) = ∑
i

Tijpi(t), (D.3)

or in vector notation

p(t + 1) = Tp(t), (D.4)

where p is the vector with elements pi and T is the matrix with elements Tji.

(Notice that it is Tji—the indices have to be “backwards” to make it work out.)

Thus the vector of probabilities is simply multiplied by a constant matrix on

each step, which means that

p(t) = Ttp(0). (D.5)
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Now let us expand the vector p(0) as a linear combination of the right eigen-

vectors vk of T thus:

p(0) = ∑
k

ckvk. (D.6)

Substituting this form into Eq. (D.5), we get

p(t) = Tt ∑
k

ckvk = ∑
k

ckλ
t
kvk = λ

t
1 ∑

k

ck

(

λk

λ1

)t

vk , (D.7)

where λk is the eigenvector corresponding to vk and λ1 is the eigenvector of

largest magnitude. Note that this argument only works if there is just a sin-

gle such eigenvector, i.e., if the leading eigenvalue is unique, which we will

assume for the moment to be the case. This point is discussed further below.

Nowwe consider what happens in the limit of long time. Dividing Eq. (D.7)

throughout by λ
t
1, taking the limit t → ∞, and noting that |λk/λ1| < 1 for all k

except k = 1 if the leading eigenvalue is unique, then all the terms in the sum

will tend to zero in the limit except for the k = 1 term, and we are left with

lim
t→∞

p(t)

λt
1

= c1v1. (D.8)

In other words, in the limit of long time the vector of probabilities p is simply

proportional to the leading eigenvector of the matrix T. Thus the probabilities

always converge to the same probability distribution in the end, given by the

leading eigevector. It remains to show that this leading eigenvector is, in fact,

the Boltzmann distribution.

That the Boltzmann distribution is an eigenvector of T is straightforward to

demonstrate. From Eq. (D.2) we have

∑
j

TjiP(Ej) = ∑
j

TijP(Ei) = P(Ei) ∑
j

Tij = P(Ei), (D.9)

where we have used Eq. (D.1) in the last equality. Thus if we set pi = P(Ei) we

have, in vector notation

Tp = p. (D.10)

In other words, p is indeed an eigenvector of T, with eigenvalue 1.

We also need to show that this is the leading eigenvector, which we do as

follows. First of all, we note that the eigenvector of Boltzmann probabilities in

Eq. (D.10) has all elements strictly positive, since the Boltzmann probabilities

are strictly positive. We also note that the left eigenvector corresponding to

eigenvalue 1 is the vector 1 = (1, 1, 1, . . .), the vector with all elements equal
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to 1. This is a result of Eq. (D.1), which in vector notation reads 1TT = 1T ,

so that 1T is indeed the left eigenvector with eigenvalue 1. This result in turn

implies that the (right) eigenvector of Boltzmann probabilities must be the only

eigenvector that has no negative elements, since all right eigenvectors with

other eigenvalues must be orthogonal to the left eigenvector (1, 1, 1, . . .), and

the only way to be orthogonal to a vector with all elements positive is to have

some negative elements.

Second, we showed in Eq. (D.8) that, upon repeated multiplication by the

matrix T, the vector p converges to a value proportional to the leading eigen-

vector of the matrix. Suppose that the starting value of p has all elements

nonnegative. For instance, we could choose one of them to be one and the

others all to be zero, which corresponds to the system being in a single definite

starting state. When we multiply such a vector by T we will get another vec-

tor with all elements nonnegative—we must because all the elements of T are

also nonnegative. Thus if we multiply by T repeatedly we will always have a

vector with nonnegative elements, and hence the leading eigenvector to which

we converge in the limit of long time must also have all elements nonnega-

tive. Since, as we have said, there is only one such vector, namely the vector

of Boltzmann probabilities, the vector to which we converge must be precisely

the Boltzmann probabilities.

This essentially completes the proof. The only remaining detail is that one

might, in principle, have more than one left/right eigenvector pair associated

with eigenvalue 1, in which case our argument above that only one eigenvector

has all elements positive breaks down. As we said earlier, we are assuming this

not to be the case; we assume that the leading eigenvalue is unique. We have

not however proved this to be the case. The reason why we haven’t is that, in

general, it’s not true. It is entirely possible to create a reasonable matrix of tran-

sition probabilities T with more than one leading eigenvector. However, if the

condition of ergodicity, discussed in Section 10.3.2, is enforced—the condition

that every state of the system is reachable from every other by an appropri-

ate sequence of moves—then the leading eigenvalue is normally unique, and

in practice the Markov chain Monte Carlo method converges reliably to the

Boltzmann distribution.

411


