
Physics 411: Homework 7

1. Low-pass filter: Here is a simple electronic circuit with one resistor and one capacitor:

VoutVin

0

C

R

This circuit acts as a low-pass filter: you send a signal in on the left and it comes out

filtered on the right.

Using Ohm’s law and the capacitor law and assuming that the output load has very high

impedance, so that a negligible amount of current flows through it, we can write down

the equations that govern this circuit as follows. Let I be the current that flows through R

and into the capacitor, and let Q be the charge on the capacitor. Then:

IR = Vin −Vout , Q = CVout , I =
dQ

dt
.

Substituting the second equation into the third, then substituting the resulting relation

into the first, we find that Vin −Vout = RC (dVout/dt), or equivalently

dVout

dt
=

1

RC

(

Vin −Vout

)

.

(a) Write a program (or modify one from the book) to solve this equation for Vout(t)
using the fourth-order Runge–Kutta method when in the input signal is a square-

wave with frequency 1 and amplitude 1:

Vin(t) =

{

1 if ⌊2t⌋ is even,

−1 if ⌊2t⌋ is odd,
(1)

where ⌊x⌋ means x rounded down to the next lowest integer. Use the program to

make plots of the output of the filter circuit from t = 0 to t = 10 when RC = 0.01,

0.1, and 1, with initial condition Vout(0) = 0. You will have to make a decision about

what value of h to use in your calculation. Small values give more accurate results,

but the program will take longer to run. Try a variety of different values and choose

one for your final calculations that seems sensible to you.

(b) Based on the graphs produced by your program, describe what you see and explain

what the circuit is doing.
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A program similar to the one you wrote is running inside your stereo or music player,

to create the effect of the “bass” control. In the old days, the bass control on a stereo

would have been connected to a real electronic low-pass filter in the amplifier circuitry,

but these days there is just a computer processor that simulates the behavior of the filter

in a manner similar to your program.

For full credit turn in a printout of your program and the plots it produces, along

with your answer to part (b).

2. The Lotka–Volterra equations: The Lotka–Volterra equations are a mathematical model

of predator–prey interactions between biological species. Let two variables x and y be

proportional to the size of the populations of two species, traditionally called “rabbits”

(the prey) and “foxes” (the predators). You could think of x and y as being the population

in thousands, say, so that x = 2 means there are 2000 rabbits. Strictly the only allowed

values of x and y would then be multiples of 0.001, since you can only have whole num-

bers of rabbits or foxes. But 0.001 is a pretty close spacing of values, so it’s a decent

approximation to treat x and y as continuous real numbers so long as neither gets very

close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their popula-

tion, but are eaten by the foxes at a rate proportional to both their own population and

the population of foxes:
dx

dt
= αx− βxy,

where α and β are constants. At the same time the foxes reproduce at a rate proportional

the rate at which they eat rabbits—because they need food to grow and reproduce—but

also die of old age at a rate proportional to their own population:

dy

dt
= γxy− δy,

where γ and δ are also constants.

(a) Write a program to solve these equations using the fourth-order Runge–Kuttamethod

for the case α = 1, β = γ = 0.5, and δ = 2, starting from the initial condition

x = y = 2. Have the program make a graph showing both x and y as a function

of time on the same axes from t = 0 to t = 30. (Hint: Notice that the differential

equations in this case do not depend explicitly on time t—in vector notation, the

right-hand side of each equation is a function f (r) with no t dependence. You may

nonetheless find it convenient to define a Python function f(r,t) including the time

variable, so that your program takes the same form as programs given in the book.)

(b) Describe in words what is going on in the system, in terms of rabbits and foxes.

For full credit turn in a printout of your program and the graph it produces, along

with your answer to part (b).
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3. Nonlinear pendulum: Building on the results from Example 8.6 on page 327 of the book,

calculate the motion of a nonlinear pendulum as follows.

(a) Write a program to solve the two first-order equations, Eqs. (8.45) and (8.46), using

the fourth-order Runge–Kutta method for a pendulum with a 10 cm arm. Use your

program to calculate the angle θ of displacement for several periods of the pendulum

when it is released from a standstill at θ = 179◦ from the vertical (i.e., pointing

almost exactly upward). Make a graph of θ as a function of time.

(b) Extend your program to create an animation of the motion of the pendulum. Your

animation should, at a minimum, include a representation of the moving pendu-

lum bob and the pendulum arm. (Hint: You will probably find the function rate

discussed in Section 3.5 useful for making your animation run at a sensible speed.

Also, you may want to make the step-size for your Runge–Kutta calculation smaller

than the framerate of your animation, i.e., do several Runge–Kutta steps per frame

on screen. This is certainly allowed and may help to make your calculation more

accurate.)

For full credit turn in a printout of your plot from part (a), your final program from

part (b), and a snapshot of your animation in action.

4. The double pendulum: The pendulum in the last question is nonlinear, but its movement

is nonetheless perfectly regular and periodic—there are no surprises. A double pendulum

on the other hand is completely the opposite—chaotic and unpredictable. A double pen-

dulum consists of a normal pendulum with another pendulum hanging from its end:

θ1

θ2

m

Pivot

m

For simplicity let us ignore friction, and assume that both pendulums have bobs of the

same mass m and massless arms of the same length ℓ. The position of the arms at any

moment in time is uniquely specified by the two angles θ1 and θ2. The equations of

motion for the angles are most easily derived using the Lagrangian formalism, as follows.

The heights of the two bobs, measured from the level of the pivot are

h1 = −ℓ cos θ1, h2 = −ℓ(cos θ1 + cos θ2),
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so the potential energy of the system is

V = mgh1 + mgh2 = −mgℓ(2 cos θ1 + cos θ2),

where g is the acceleration due to gravity. The (linear) velocities of the two bobs are given

by

v1 = ℓθ̇1, v22 = ℓ
2
[

θ̇21 + θ̇22 + 2θ̇1θ̇2 cos(θ1 − θ2)
]

,

where θ̇ means the derivative of θ with respect to time t. (If you don’t see where the

second velocity equation comes from, it’s a good exercise to derive it for yourself from

the geometry of the pendulum.) Now the total kinetic energy is

T = 1
2mv21 + 1

2mv22 = mℓ
2
[

θ̇21 + 1
2 θ̇22 + θ̇1θ̇2 cos(θ1 − θ2)

]

,

and the Lagrangian of the system is

L = T −V = mℓ
2
[

θ̇21 + 1
2 θ̇22 + θ̇1θ̇2 cos(θ1 − θ2)

]

+ mgℓ(2 cos θ1 + cos θ2).

Then the equations of motion are given by the Euler–Lagrange equations

d

dt

(

∂L

∂θ̇1

)

=
∂L

∂θ1
,

d

dt

(

∂L

∂θ̇2

)

=
∂L

∂θ2
,

which in this case give

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇22 sin(θ1 − θ2) + 2
g

ℓ
sin θ1 = 0,

θ̈2 + θ̈1 cos(θ1 − θ2) − θ̇21 sin(θ1 − θ2) +
g

ℓ
sin θ2 = 0,

where the mass m has cancelled out.

These are second-order equations, but we can convert them into first-order ones by the

usual method, defining new variables ω1 and ω2 thus:

θ̇1 = ω1, θ̇2 = ω2.

In terms of these variables our equations of motion become

2ω̇1 + ω̇2 cos(θ1 − θ2) + ω2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

ω̇2 + ω̇1 cos(θ1 − θ2) − ω2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0.

Finally we have to rearrange these into the standard form of Eq. (8.28) with a single

derivative on the left-hand side of each one, which gives

ω̇1 = −
ω2

1 sin(2θ1 − 2θ2) + 2ω2
2 sin(θ1 − θ2) + (g/ℓ)

[

sin(θ1 − 2θ2) + 3 sin θ1
]

3− cos(2θ1 − 2θ2)
,

ω̇2 =
4ω2

1 sin(θ1 − θ2) + ω2
2 sin(2θ1 − 2θ2) + 2(g/ℓ)

[

sin(2θ1 − θ2) − sin θ2
]

3− cos(2θ1 − 2θ2)
.

(This last step is quite tricky and involves some trigonometric identities. You may find it

useful to go through the derivation for yourself.)

These two equations, along with the equations θ̇1 = ω1 and θ̇2 = ω2, give us four first-

order equations which between them define the motion of the double pendulum.
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(a) Derive an expression for the total energy E = T + V of the system in terms of the

variables θ1, θ2, ω1, and ω2.

(b) Write a program using the fourth-order Runge–Kutta method to solve the equations

of motion for the case where ℓ = 40 cm, with the initial conditions θ1 = θ2 = 90◦

and ω1 = ω2 = 0. Use your program to calculate the total energy of the system

assuming that the mass of the bobs is 1 kg each, and make a graph of energy as a

function of time from t = 0 to t = 100 seconds.

Because of energy conservation, the total energy should be constant over time (ac-

tually it should be zero for this particular set of initial conditions), but you will find

that it is not perfectly constant because of the approximate nature of the solution of

the differential equation. Choose a suitable value of the step size h to ensure that the

variation in energy is less than 10−5 Joules over the course of the calculation.

(c) Make a copy of your program and modify the copy to create a second program that

does not produce a graph, but instead makes an animation of the motion of the

double pendulum over time. At a minimum, the animation should show the two

arms and the two bobs.

For full credit turn your plot of the energy from part (b), your final program from

part (c), and a snapshot of your animation in action.
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