
Physics 411: Homework 2

1. The semi-empirical mass formula revisited: As we saw in last week’s homework, the

nuclear binding energy B of an atomic nucleus with atomic number Z and mass num-

ber A can be calculated to a good approximation using the semi-empirical mass formula:

B = a1A− a2A
2/3

− a3
Z2

A1/3
− a4

(A− 2Z)2

A
+

a5
A1/2

,

where, in units of millions of electron volts, the constants are a1 = 15.67, a2 = 17.23,

a3 = 0.75, a4 = 93.2, and

a5 =







0 if A is odd,

12.0 if A and Z are both even,

−12.0 if A is even and Z is odd.

Last week you wrote a program using this formula to calculate the binding energy B and

binding energy per nucleon B/A for given A and Z.

(a) Starting from that program, modify it so that it takes as input just a single value of

the atomic number Z and then goes through all values of A from A = Z to A = 3Z,

to find the one that has the largest binding energy per nucleon. This is the most

stable nucleus with the given atomic number. (We expect the most stable nucleus

to have A in the vicinity of 2Z because most nuclei have about as many neutrons as

protons, so going through the values of A from Z to 3Z should be enough to find the

most stable one.) Have your program print out the value of A for this most stable

nucleus and the value of the binding energy per nucleon.

(b) Modify your program again so that, instead of taking Z as input, it runs through

all values of Z from 1 to 100 and prints out the most stable value of A for each one,

along with the corresponding binding energy per nucleon. At what value of Z does

the maximum binding energy per nucleon occur? (The true answer, in real life, is

Z = 28, which is nickel. You should find that the semi-empirical mass formula gets

the answer roughly right, but not exactly.)

(c) Modify your program one final time to make a graph of the binding energy per

nucleon for the most stable nucleus, as a function of Z for values of Z from 1 to 100.

For full credit turn in a printout of your final program from part (c), your answer to

the question in part (b), and your graph from part (c).

2. Plotting experimental data:

(a) In the on-line resources you will find a file called sunspots.txt, which contains the

observed number of sunspots on the Sun for each month since January 1749. The file

contains two columns of numbers, the first being the month and the second being

the sunspot number. Write a program that reads in the data and makes a graph of

sunspots as a function of time.

1



(b) The file stm.txt contains a grid of values from scanning tunneling microscope mea-

surements of the (111) surface of silicon. A scanning tunneling microscope (STM) is

a device that measures the surface of a solid at the atomic level by tracking a sharp

tip over the surface and measuring quantum tunneling current as a function of posi-

tion. The end result is a grid of values that represent the height of the surface and the

file stm.txt contains just such a grid of values. Write a program that reads the data

contained in the file and makes a density plot of the values. Use the various options

and variants you have learned about to make a picture that shows the structure of

the silicon surface clearly.

For full credit turn in printouts of your two programs and printouts of your plots.

3. Visualizing lattices: Example 4.2 in the book gives a program that creates a computer

visualization of a simple cubic lattice. Using that program as a starting point, or starting

from scratch if you prefer, do the following:

(a) A sodium chloride crystal has sodium and chlorine atoms arranged on a cubic lat-

tice but the atoms alternate between sodium and chlorine, so that each sodium is

surrounded by six chlorines and each chlorine is surrounded by six sodiums. Create

a visualization of the sodium chloride lattice using two different colors to represent

the two types of atoms. (If you print out the result in black-and-white, make sure to

use colors that are clearly distinguishable.)

(b) The face-centered cubic (fcc) lattice, which is the most common lattice in naturally

occurring monatomic crystals, consists of a cubic lattice with atoms positioned not

only at the corners of each cube but also at the center of each face, like this:

Create a visualization of an fcc lattice with a single species of atom (such as occurs

in metallic iron, for instance).

For full credit turn in a printout of your program for part (b) and printouts of the

two pictures you created.

Hint: Printing out 3D graphics can be a little tricky. The simplest way to do it is to run

the program and then take a screenshot of the window containing the graphics. On a

PC running Windows hold down ALT and then press the “Print Screen” button to take a

screenshot of the current active window. On a Mac hold down Command and Shift and

press the number 4, then press the space bar, then click on a window to take a screenshot

of that window. Once you have your screenshot you can paste it into a document and

print it out.

2



4. Visualization of the solar system: The innermost six planets of our solar system revolve

around the Sun in roughly circular orbits that all lie approximately in the same (ecliptic)

plane. Here are some basic parameters:

Radius of object Radius of orbit Period of orbit

Object (km) (millions of km) (days)

Mercury 2440 57.9 88.0

Venus 6052 108.2 224.7

Earth 6371 149.6 365.3

Mars 3386 227.9 687.0

Jupiter 69173 778.5 4331.6

Saturn 57316 1433.4 10759.2

(a) Write down equations for the coordinates x, y of a planet in the plane of the ecliptic

at time t, assuming that it lies on the x-axis at t = 0 and travels in a circular orbit

with radius R.

(b) Using the facilities provided by the visual package, create an animation of the solar

system that shows the following:

i. The Sun and planets as spheres in their appropriate positions and with sizes

proportional to their actual sizes. Because the radii of the planets are tiny com-

pared to the distances between them, it will be hard to see them clearly if you

display themwith their correct proportionate sizes. Instead, therefore, represent

the planets by spheres with radii c1 times larger than the proportionate values

and choose a value for c1 that makes the planets visible. You’ll also need to find

a good radius for the Sun. Choose any value that gives a clear visualization.

(It doesn’t work to scale the radius of the Sun by the same factor you use for

the planets, because it’ll come out looking way too large. So just use whatever

works.) For added realism, you may also want to make your spheres different

colors. For instance, Earth could be blue and the Sun could be yellow.

ii. The motion of the planets as they move around the Sun (by making the spheres

of the planets move). In the interests of alleviating boredom, construct your

program so that time in the animation runs a factor of c2 faster than actual time.

Find a value of c2 that makes the motion of the orbits easily visible but not un-

reasonably fast. Use the rate function to make your animation run smoothly.

For full credit turn in a copy of your program and a snapshot showing the animation

it produces.

5. Recursion: A useful feature of user-defined functions is recursion, the ability of a function

to call itself. For example, consider the following definition of the factorial n! of a positive

integer n:

n! =

{

1 if n = 1,

n× (n− 1)! if n > 1.

3



This constitutes a complete definition of the factorial which allows us to calculate the

value of n! for any positive integer. We can employ this definition directly to create a

Python function for factorials, like this:

def factorial(n):

if n==1:

return 1

else:

return n*factorial(n-1)

Note how, if n is not equal to 1, the function calls itself to calculate the factorial of n− 1.

This is recursion. If we now say “print(factorial(5))” the computer will correctly

print the answer 120.

(a) The Catalan numbers Cn are a sequence of integers 1, 1, 2, 5, 14, 42, 132. . . that play an

important role in quantum mechanics and the theory of disordered systems. (They

were central to Eugene Wigner’s proof of the so-called semicircle law.) They can be

defined as follows:

Cn =







1 if n = 0,

4n− 2

n + 1
Cn−1 if n > 0.

Write a Python function, using recursion, that calculates Cn. Use your function to

calculate and print C100.

(b) Euclid showed that the greatest common divisor g(m, n) of two nonnegative integers

m and n satisfies

g(m, n) =

{

m if n = 0,

g(n,mmod n) if n > 0.

Write a Python function g(m,n) that employs recursion to calculate the greatest com-

mon divisor of m and n using this formula. Use your function to calculate and print

the greatest common divisor of 108 and 192.

For full credit turn in copies of your two programs and the answers you calculated

using them.

4


