
Physics 411: Homework 3

Because of the cancellation of class on January 28, this homework is a double-length homework

covering two week’s material, and you have two weeks to do it. It is due in class on Thursday,

February 13.

1. Quadratic equations:

(a) Write a program that takes as input three numbers, a, b, and c, and prints out the

two solutions to the quadratic equation ax2 + bx+ c = 0 using the standard formula

x =
−b±

√
b2 − 4ac

2a
.

Use your program to compute the solutions of 0.001x2 + 1000x + 0.001 = 0.

(b) There is another way to write the solutions to a quadratic equation. Multiplying top

and bottom of the solution above by −b ∓
√
b2 − 4ac, show that the solutions can

also be written as

x =
2c

−b∓
√
b2 − 4ac

.

Add further lines to your program to print these values in addition to the earlier

ones and again use the program to solve 0.001x2 + 1000x + 0.001 = 0. What do you

see? How do you explain it?

(c) Using what you have learned, modify your program so that it calculates both roots

of a quadratic equation accurately in all cases.

For full credit turn in your answers to part (b), a copy of your final program, and a

printout of it in action, showing the solution of the equation 0.001x2 + 1000x + 0.001 = 0.

This is a good example of how computers don’t always work the way you expect them

to. If you simply apply the standard formula for the quadratic equation, the computer

will sometimes get the answer wrong. In practice the method you have worked out here

is the correct way to solve a quadratic equation on a computer, even though it’s more

complicated than the standard formula. If you were writing a program that involved

solving many quadratic equations this method might be a good candidate for a user-

defined function.

2. Calculating derivatives: Suppose we have a function f (x) and we want to calculate its

derivative at a point x. We can do that with pen and paper if we know the mathematical

form of the function, or we can do it on the computer by making use of the definition of

the derivative:
d f

dx
= lim

δ→0

f (x + δ) − f (x)

δ
.

On the computer we can’t actually take the limit as δ goes to zero, but we can get a

reasonable approximation just by making δ small.

1

(a) Write a program that defines a function f(x) returning the value x(x− 1), then cal-

culates and prints the derivative of the function at the point x = 1 using the formula

above with δ = 10−2. Calculate the true value of the same derivative analytically

and compare with the answer your program gives. The two will not agree perfectly.

Why not?

(b) Repeat the calculation for δ = 10−4, 10−6, 10−8, 10−10, 10−12, and 10−14. You should

see that the accuracy of the calculation initially gets better as δ gets smaller, but then

gets worse again. Why is this?

For full credit, turn in a printout of your program, the results from the various cal-

culations, and your answer to the question in part (b).

We will look at numerical derivatives in more detail later in the course, when we will

study techniques for dealing with these issues.

3. Heat capacity of a solid: Debye’s theory of solids gives the heat capacity of a solid at

temperature T to be

CV = 9VρkB

(

T

θD

)3 ∫ θD/T

0

x4ex

(ex − 1)2
dx,

where V is the volume of the solid, ρ is the number density of atoms, kB is Boltzmann’s

constant, and θD is the so-called Debye temperature, a property of solids that depends on

their density and speed of sound.

(a) Write a Python function cv(T) that calculates CV for a given value of the tempera-

ture, for a sample consisting of 1000 cubic centimeters of solid aluminum, which has

a number density of ρ = 6.022 × 1028 m−3 and a Debye temperature of θD = 428 K.

Use the trapezoidal rule to evaluate the integral with N = 1000 sample points. Hint:

The value of the integrand at x = 0 is zero.

(b) Use your function to make a graph of the heat capacity as a function of temperature

from T = 5 K to T = 500 K.

For full credit turn in a printout of your program and the plot it produces.

4. Simpson’s rule:

(a) Write a program to calculate an value for the integral
∫ 2

0 (x4 − 2x + 1) dx from Ex-

ample 5.1, but using Simpson’s rule with ten slices instead of the trapezoidal rule.

(b) Run the program and compare your result to the known correct value of 4.4. What

is the fractional error on your calculation?

(c) Modify the program to use a hundred slices instead, then a thousand. Note the

improvement in the result. How do the results compare with those from Example 5.1

for the trapezoidal rule with the same number of slices?

For full credit turn in a printout of your program, plus your results and a brief dis-

cussion of how they compare with the trapezoidal rule.

2

5. Diffraction gratings: Light with wavelength λ is incident on a diffraction grating of total

width w, gets diffracted, is focused by a lens of focal length f , and falls on a screen:

x
In

ci
d

en
t

li
g

h
t

Grating Lens
Screen

f

Theory tells us that the intensity of the diffraction pattern on the screen, a distance x from

the central axis of the system, is given by

I(x) =

∣

∣

∣

∣

∫ w/2

−w/2

√

q(u) ei2πxu/λ f du

∣

∣

∣

∣

2

,

where q(u) is the intensity transmission function of the diffraction grating at a distance u

from the central axis.

(a) Consider a grating with transmission function q(u) = sin2 αu. What is the separation

of the “slits” in this grating, expressed in terms of α?

(b) Write a Python function q(u) that returns the transmission function q(u) = sin2 αu

as above at position u for a grating whose slits have separation 20 µm.

(c) Use your function in a program to calculate and graph the intensity of the diffraction

pattern produced by such a grating having ten slits in total, if the incident light has

wavelength λ = 500 nm. Assume the lens has a focal length of 1 meter and the

screen is 10 cm wide. Use Simpson’s rule for the integral. Decide for yourself how

many sample points to use, so as to get an accurate answer. What criteria play into

this decision?

Notice that the integrand in the equation for I(x) is complex, so you will have to

use complex variables in your program. As mentioned in Section 2.2.5 of the book,

there is a version of the math package for use with complex variables called cmath. In

particular you may find the exp function from cmath useful because it can calculate

the exponentials of complex arguments.

(d) Now modify your program to create a visualization of how the diffraction pattern

would look on the screen using a density plot. Your plot should look something like

this:

3

(e) Modify your program further to make pictures of the diffraction patterns produced

by gratings with the following profiles:

i. A transmission profile that obeys q(u) = sin2 αu sin2 βu, with α as before and

the same total grating width w, and β = 1
2 α.

ii. Two “square” slits, meaning slits with 100% transmission through the slit and

0% transmission everywhere else. Calculate the diffraction pattern for non-

identical slits, one 10 µm wide and the other 20 µm wide, with a 60 µm gap

between the two.

For full credit turn in a printout of your program from part (d), your graph from

part (c), and the three density plots from parts (d) and (e).

6. Suppose a plane wave of wavelength λ, such as a sound wave, is blocked by an object

with a straight edge, represented by the solid line at the bottom of this figure:

z

x

The wave will be diffracted at the edge and the resulting intensity at the position (x, z)
marked by the dot is given by near-field diffraction theory to be

I =
I0
8

(

[

2C(u) + 1
]2

+
[

2S(u) + 1
]2

)

,

where I0 is the intensity of the wave before diffraction and

u = x

√

2

λz
, C(u) =

∫ u

0
cos 1

2 πt2 dt, S(u) =
∫ u

0
sin 1

2 πt2 dt.

Write a program to calculate I/I0 and make a plot of it as a function of x in the range −5 m

to 5 m for the case of a sound wave with wavelength λ = 1 m, measured z = 3 m past

the straight edge. Calculate the integrals using any method of your choice. You should

find significant variation in the intensity of the diffracted sound—enough that you could

easily hear the effect if sound were diffracted, say, at the edge of a tall building.

For full credit turn in a printout of your final program and the plot it produces.

4

7. Consider the integral

I =
∫ 1

0
sin2

√
100x dx

(a) Write a program that uses the adaptive trapezoidal rule method described in Sec-

tion 5.3 of the book—particularly Eq. (5.34)—to calculate the value of this integral

to an approximate accuracy of ǫ = 10−6 (i.e., correct to six digits after the decimal

point). Start with one single integration slice and work up from there to two, four,

eight, and so forth. Have your program print out the number of slices, its estimate

of the integral, and its estimate of the error on the integral, for each value of the

number of slices N, until the target accuracy is reached. (Hint: You should find the

result is around I = 0.45.)

(b) Now modify your program to evaluate the same integral using Romberg integra-

tion. Have your program print out a triangular table of values, as on page 161 of

the book, of all the Romberg estimates of the integral. Calculate the error on your

estimates using Eq. (5.49) and again continue the calculation until you reach an ac-

curacy of ǫ = 10−6. You should find that the Romberg method reaches the required

accuracy considerably faster than the trapezoidal rule alone.

For full credit turn in a copy of your final program from part (b) and printouts of the

output of the programs from parts (a) and (b), showing that the Romberg method reaches

the required accuracy in fewer steps than the adaptive trapezoidal method.

8. A more advanced adaptive method for the trapezoidal rule: In Problem 7(a) above

you used the adaptive version of the trapezoidal rule in which the number of steps is

increased—and the width h of the slices correspondingly decreased—until the calcula-

tion gives a value for the integral accurate to some desired level. Although this method

varies h, it still calculates the integral at any individual stage of the process using slices

of equal width throughout the domain of integration. In this exercise we’ll look at a more

sophisticated form of the trapezoidal rule that uses different step sizes in different parts

of the domain, which can be useful particularly for poorly behaved functions that vary

rapidly in certain regions but not others. Remarkably, this method is not much more

complicated to program than the ones we’ve already seen, if one knows the right tricks.

Here’s how the method works.

Suppose we wish to evaluate the integral I =
∫ b
a f (x) dx and we want an error of no more

than ǫ on our answer. To put that another way, if we divide up the integral into N slices

of width h then we require an accuracy per slice of

ǫ

N
=

h

b− a
ǫ = hδ,

where δ = ǫ/(b− a) is the target accuracy per unit interval.

We start by evaluating the integral using the trapezoidal rule with just a single slice of

width h1 = b− a. Let us call the estimate of the integral from this calculation I1. Usually

I1 will not be very accurate, but that doesn’t matter. Next we make a second estimate I2 of

the integral, again using the trapezoidal rule but now with two slices of width h2 = 1
2h1

5

each. Equation (5.28) tells us that the error on this second estimate is 1
3(I2 − I1) to leading

order. If the absolute value of this error is smaller than the required accuracy ǫ then our

calculation is complete and we need go no further. I2 is a good enough estimate of the

integral.

Most likely, however, this will not be the case; the accuracy will not be good enough. If

so, then we divide the integration interval into two equal parts of size 1
2(b− a) each, and

we repeat the process above in each part separately, calculating estimates I1 and I2 using

one and two slices respectively, estimating the error, and checking to see if it is less than

the required accuracy, which is now 1
2(b− a)δ = 1

2 ǫ.

We keep on repeating this process, dividing each slice in half and in half again, as many

times as necessary to achieve the desired accuracy in every slice. Different slices may be

divided different numbers of times, and hence we may end up with different sized slices

in different parts of the integration domain. The method automatically uses whatever

size and number of slices is appropriate in each region.

(a) Write a program using this method to calculate the integral

I =
∫ 10

0

sin2 x

x2
dx,

to an accuracy of ǫ = 10−4. Start by writing a function to calculate the integrand

f (x) = (sin2 x)/x2. Note that the limiting value of the integrand at x = 0 is 1. You’ll

probably have to include this point as a special case using an if statement.

The best way to perform the integration itself is to make use of the technique of

recursion, the ability of a Python function to call itself, which we looked at in Home-

work 2. Write a function step(x1,x2,f1,f2) that takes as arguments the beginning

and end points x1, x2 of a slice and the values f (x1), f (x2) of the integrand at those

two points, and returns the value of the integral from x1 to x2. This function should

evaluate the two estimates I1 and I2 of the integral from x1 to x2, calculated with

one and two slices respectively, and the error 1
3(I2 − I1). If this error meets the target

value, which is (x2 − x1)δ, then the calculation is complete and the function simply

returns the value I2. If the error fails to meet the target, then the function calls it-

self, twice, to evaluate the integral separately on the first and second halves of the

interval and returns the sum of the two results. (And then those functions can call

themselves, and so forth, subdividing the integral as many times as necessary to

reach the required accuracy.)

Hint: If you’ve done the calculation right, you should get a value of around 1.5 for

the integral.

Further comment: As icing on the cake, when the error target is met and the func-

tion returns a value for the integral in the current slice, it can, in fact, return a slightly

better value than the estimate I2. Since you will already have calculated the value

of the integrand f (x) at x1, x2, and the midpoint xm = 1
2(x1 + x2) in order to evalu-

ate I2, you can use those results to compute the improved Simpson’s rule estimate,

Eq. (5.7), for this slice. You just return the value 1
6h[f (x1) + 4 f (xm) + f (x2)] instead

of the trapezoidal rule estimate 1
4h[f (x1)+ 2 f (xm)+ f (x2)] (where h = x2 − x1). This

6

involves very little extra work, but gives a value that is more accurate by two orders

in h. (Technically, this is an example of the method of “local extrapolation.” We’ll

discuss local extrapolation again when we study adaptive methods for the solution

of differential equations later in the semester.)

(b) Why does the function step(x1,x2,f1,f2) take not only the positions x1 and x2 as

arguments, but also the values f (x1) and f (x2)? Since we know the function f (x),

we could just calculate these values from x1 and x2. Nonetheless, it is a smart move

to include the values of f (x1) and f (x2) as arguments to the function. Why?

For full credit turn in your final program and a printout of it in action, showing

clearly your final value for the integral.

7

