
Physics 411: Homework 5

This homework is due the first Tuesday after the break, Tuesday March 11.

1. The QR algorithm: In this exercise you’ll write a program to calculate the eigenvalues

and eigenvectors of a real symmetric matrix using the QR algorithm. The first challenge

is to write a program that finds the QR decomposition of a matrix. Then we’ll use that

decomposition to find the eigenvalues.

As we discussed in class, the QR decomposition expresses a real square matrix A in the

form A = QR, where Q is an orthogonal matrix and R is an upper-triangular matrix.

Given an N × N matrix A we can compute the QR decomposition as follows.

Let us think of the matrix as a set of N column vectors a0 . . . aN−1 thus:

A =





| | | · · ·
a0 a1 a2 · · ·
| | | · · ·



 ,

where we have numbered the vectors in Python fashion, starting from zero, which will be

convenient whenwriting the program. We nowdefine two new sets of vectors u0 . . . uN−1

and q0 . . . qN−1 as follows:

u0 = a0, q0 =
u0

|u0|
,

u1 = a1 − (q0 · a1)q0, q1 =
u1

|u1|
,

u2 = a2 − (q0 · a2)q0 − (q1 · a2)q1, q2 =
u2

|u2|
,

and so forth. The general formulas for calculating ui and qi are

ui = ai −
i−1

∑
j=0

(qj · ai)qj, qi =
ui

|ui|
.

(a) Show, by induction or otherwise, that the vectors qi are orthonormal, i.e., that they

satisfy

qi · qj =

{

1 if i = j,

0 if i 6= j.

Now, rearranging the definitions of the vectors, we have

a0 = |u0| q0,

a1 = |u1| q1 + (q0 · a1)q0,

a2 = |u2| q2 + (q0 · a2)q0 + (q1 · a2)q1,

and so on. Or we can group the vectors qi together as the columns of a matrix and write

all of these equations as a single matrix equation

A =





| | | · · ·
a0 a1 a2 · · ·
| | | · · ·



 =





| | | · · ·
q0 q1 q2 · · ·
| | | · · ·









|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·



 .
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(If this looks complicated it’s worth multiplying out the matrices on the right to verify for

yourself that you get the correct expressions for the ai.)

Notice now that the first matrix on the right-hand side of this equation, the matrix with

columns qi, is orthogonal, because the vectors qi are orthonormal, and the second matrix

is upper triangular. In other words, we have found the QR decomposition A = QR. The

matrices Q and R are

Q =





| | | · · ·
q0 q1 q2 · · ·
| | | · · ·



 , R =





|u0| q0 · a1 q0 · a2 · · ·
0 |u1| q1 · a2 · · ·
0 0 |u2| · · ·



 .

(b) Write a Python function that takes as its argument a real square matrixA and returns

the two matrices Q and R that form its QR decomposition. As a test case, try out

your function on the matrix

A =









1 4 8 4

4 2 3 7

8 3 6 9

4 7 9 2









.

Check the results by multiplying Q and R together to recover the original matrix A

again.

(c) Using your function, write a complete program to calculate the eigenvalues and

eigenvectors of a real symmetric matrix using the QR algorithm. Continue the cal-

culation until the magnitude of every off-diagonal element of the matrix is smaller

than 10−6. Test your program on the example matrix above. You should find that

the eigenvalues are 1, 21, −3, and −8.

For full credit turn in your proof from part (a), a printout of your program, and a

printout if it in action, showing the results it gives for the test matrix.

2. Asymmetric quantumwell: Quantummechanics can be formulated as a matrix problem

and solved on a computer using linear algebra methods. Suppose, for example, we have

a particle of mass M in a one-dimensional quantum well of width L:

x = 0 x = L

V(x)
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But it’s not a square well like the examples you’ve probably seen before. Suppose instead

that the potential V(x) varies somehow inside the well, as sketched in the figure. We can-

not solve such problems analytically in general, but we can solve them on the computer.

In a pure state of energy E, the spatial part of thewavefunction obeys the time-independent

Schrödinger equation Ĥψ(x) = Eψ(x), where the Hamiltonian operator Ĥ is given by

Ĥ = −
h̄2

2M

d2

dx2
+V(x).

For simplicity, let’s assume that the walls of the well are infinitely high, so that the wave-

function is zero outside the well, which means it must go to zero at x = 0 and x = L. In

that case, the wavefunction can be expressed as a Fourier sine series thus:

ψ(x) =
∞

∑
n=1

ψn sin
πnx

L
,

where ψ1,ψ2, . . . are the Fourier coefficients.

(a) Noting that, for m, n positive integers

∫ L

0
sin

πmx

L
sin

πnx

L
dx =

{

L/2 if m = n,

0 otherwise,

show that the Schrödinger equation Ĥψ = Eψ implies that

∞

∑
n=1

ψn

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx = 1

2LEψm.

Hence, defining a matrix H with elements

Hmn =
2

L

∫ L

0
sin

πmx

L
Ĥ sin

πnx

L
dx

=
2

L

∫ L

0
sin

πmx

L

[

−
h̄2

2M

d2

dx2
+V(x)

]

sin
πnx

L
dx,

show that Schrödinger’s equation can be written in matrix form asHψ = Eψ, where

ψ is the vector (ψ1,ψ2, . . .). Thus ψ is an eigenvector of theHamiltonian matrixHwith

eigenvalue E. If we can calculate the eigenvalues of this matrix, then we know the

allowed energies of the particle in the well.

(b) For the case V(x) = ax/L, evaluate the integral in Hmn analytically and so find a

general expression for the matrix element Hmn. Show that the matrix is real and

symmetric. You’ll probably find it useful to know that

∫ L

0
x sin

πmx

L
sin

πnx

L
dx =



















0 if m 6= n and both even or both odd,

−

(

2L

π

)2
mn

(m2 − n2)2
if m 6= n and one is even, one is odd,

L2/4 if m = n.
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Write a Python function to evaluate your expression for Hmn for arbitrary m and n

when the particle in the well is an electron, the well has width 5 Å, and a = 10 eV.

(The mass and charge of an electron are 9.1094× 10−31 kg and 1.6022× 10−19C re-

spectively.)

(c) The matrix H is in theory infinitely large, so we cannot represent it exactly on the

computer. But we can get a pretty accurate solution for the first few eigenvalues by

cutting off the matrix after the first few elements. Using the function you wrote for

part (b) above, write a program to create a 10× 10 array of the elements of H up

to m, n = 10. Calculate the eigenvalues of this matrix using the appropriate function

from numpy.linalg and hence print out, in units of electron volts, the first ten energy

levels of the quantumwell, within this approximation. You should find, for example,

that the ground-state energy of the system is around 5.84 eV. (Hint: Bear in mind

that matrix indices in Python start at zero, while the indices in standard algebraic

expressions, like those above, start at one. You will need to make allowances for this

in your program.)

(d) Modify your program to use a 100× 100 array instead and again calculate the first

ten energy eigenvalues. Comparing with the values you calculated in part (c), what

do you conclude about the accuracy of the calculation?

For full credit turn in your derivations from parts (a) and (b), a printout of your final

program from part (c), your results from parts (c) and (d), and your conclusions from

part (d).

3. The Lagrange point: There is a magical point between the Earth and the Moon, called

the L1 Lagrange point, at which a satellite will orbit the Earth in perfect synchrony with

the Moon, staying always in between the two. This works because the inward pull of the

Earth and the outward pull of the Moon combine to create exactly the needed centripetal

force that keeps the satellite in its orbit. Here’s the setup:

m

R

r

Satellite
Earth MoonM

(a) Assuming circular orbits, and assuming that the Earth is much more massive than

either the Moon or the satellite, show that the distance r from the center of the Earth

to the L1 point satisfies
GM

r2
−

Gm

(R− r)2
= ω2r,
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where M and m are the Earth and Moon masses, G is Newton’s gravitational con-

stant, and ω is the angular velocity of both the Moon and the satellite.

(b) The equation above is a fifth-order polynomial equation in r (also called a quintic

equation). Such equations cannot be solved exactly in closed form, but it’s straight-

forward to solve them numerically. Write a program to solve for the distance r from

the Earth to the L1 point. You can use any of the methods we have studied—the re-

laxation method, binary search, Newton’s method, and the secant method all work

well for this problem. Compute a solution accurate to at least four significant figures.

The values of the various parameters are:

G = 6.674× 10−11m3 kg−1 s−2,

M = 5.974× 1024 kg,

m = 7.348× 1022 kg,

R = 3.844× 108m,

ω = 2.662× 10−6 s−1.

You will also need to choose a suitable starting value for r, or two starting values if

you use the binary search or secant methods.

For full credit turn in a copy of your program and your result for the distance r.

4. The temperature of a light bulb: An incandescent light bulb is a simple device—it con-

tains a resistive filament, usually made of tungsten, heated by the flow of electricity until

it becomes hot enough to radiate thermally. Essentially all of the power consumed by

such a bulb is radiated as electromagnetic energy, but some of the radiation is not in the

visible wavelengths, which means it is useless for lighting purposes.

Let us define the efficiency of a light bulb to be the fraction of the radiated energy that

falls in the visible band. It’s a good approximation to assume that the radiation obeys the

Planck radiation law, meaning that the power radiated per unit wavelength λ obeys

I(λ) = 2πAhc2
λ−5

ehc/λkBT − 1
,

where A is the surface area of the filament, T is the temperature, h is Planck’s constant, c is

the speed of light, and kB is Boltzmann’s constant. The visible wavelengths run from λ1 =

390 nm to λ2 = 750 nm, so the total energy radiated in the visible window is
∫ λ2

λ1
I(λ) dλ

and the total energy at all wavelengths is
∫ ∞

0 I(λ) dλ. Dividing one expression by the

other and substituting for I(λ) from above, we get an expression for the efficiency η of

the light bulb thus:

η =

∫ λ2

λ1
λ−5/(ehc/λkBT − 1) dλ

∫ ∞

0 λ−5/(ehc/λkBT − 1) dλ
,
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where the leading constants and the area A have canceled out. Making the substitution

x = hc/λkBT, this can also be written as

η =

∫ hc/λ1kBT
hc/λ2kBT

x3/(ex − 1) dx
∫ ∞

0 x3/(ex − 1) dx
=

15

π4

∫ hc/λ1kBT

hc/λ2kBT

x3

ex − 1
dx,

where we have made use of the known exact value of the integral in the denominator.

(a) Write a Python function that takes a temperature T as its argument and calculates the

value of η for that temperature from the formula above. The integral in the formula

cannot be done analytically, but you can do it numerically using any method of

your choice. (For instance, Gaussian quadrature with 100 sample points works fine.)

Use your function to make a graph of η as a function of temperature between 300K

and 10 000K. You should see that there is an intermediate temperature where the

efficiency is a maximum.

(b) Calculate the temperature of maximum efficiency of the light bulb to within 1K

using golden ratio search. What efficiency does the bulb achieve at this temperature?

(c) Is it practical to run a tungsten-filament light bulb at the temperature you found? If

not, why not?

For full credit turn in a printout of your final (golden-ratio search) program, your

plot from part (a), and your results and discussion from parts (b) and (c).
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