
Physics 411: Homework 6

1. Fourier transforms of example waveforms: In the on-line resources you will find files

called piano.txt and trumpet.txt, which contain data representing the waveform of a

single note, played on, respectively, a piano and a trumpet.

(a) Write a program that loads a waveform from one of these files, plots it, then cal-

culates its discrete Fourier transform and plots the magnitudes of the first 10 000

coefficients in a manner similar to Fig. 7.4 in the book. Note that you will have to

use a fast Fourier transform for the calculation because there are too many samples

in the files to do the transforms the slow way in any reasonable amount of time.

Apply your program to the piano and trumpet waveforms and discuss briefly what

one can conclude about the sound of the piano and trumpet from the plots of Fourier

coefficients.

(b) Both waveforms were recorded at the industry-standard rate of 44 100 samples per

second and both instruments were playing the same musical note when the record-

ings were made. From your Fourier transform results calculate what note they were

playing. (Hint: The musical note middle C has a frequency of 261Hz.)

For full credit turn in your plots of the Fourier coefficients for each of the two wave-

forms, your conclusions about what you observed, and your calculation and results from

part (b).

2. Fourier filtering and smoothing: In the on-line resources you’ll find a file called dow.txt.

It contains the daily closing value for each business day from late 2006 until the end of

2010 of the Dow Jones Industrial Average, which is a measure of average prices on the

US stock market.

Write a program to do the following:

(a) Read in the data from dow.txt and plot them on a graph.

(b) Calculate the coefficients of the discrete Fourier transform of the data using the func-

tion rfft from numpy.fft, which produces an array of 1
2N + 1 complex numbers.

(c) Now set all but the first 10% of the elements of this array to zero (i.e., set the last 90%

to zero but keep the values of the first 10%).

(d) Calculate the inverse Fourier transform of the resulting array, zeros and all, using

the function irfft, and plot it on the same graph as the original data. You may need

to vary the colors of the two curves to make sure they both show up on the graph.

Comment on what you see. What is happening when you set the Fourier coefficients

to zero?

(e) Modify your program so that it sets all but the first 2% of the coefficients to zero

and run the calculation again. Make a plot that shows all three curves on the same

axes—the raw data, the 10% curve, and the 2% curve.

1



The particular data set studied here is special in one sense: the value of the Dow at the

end of the period was almost the same as at the start, so the function is, roughly speaking,

periodic. In the on-line resources there is another file called dow2.txt, which also contains

data on the Dow but for a different time period, from 2004 until 2008. Over this period

the value changed considerably from a starting level around 9000 to a final level around

14000.

(f) Modify your program to read the data from dow2.txt and perform the Fourier anal-

ysis again, plotting just two curves this time, for the raw data and the “2%” version.

You should see that there is now an additional artifact in the 2% curve. At the be-

ginning and end of the plot you should see large deviations away from the true

function. These occur because the function is required to be periodic—its last value

must be the same as its first—so it needs to deviate substantially from the correct

value to make the two ends of the function meet. In some situations (including this

one) this behavior is unsatisfactory. We would prefer not to introduce artifacts of

this kind.

(g) Modify your program to repeat the same analysis using a discrete cosine transform.

Transform the data and again discard all but the first 2% of the coefficients, then

invert the transform and plot the result. You should see a significant improvement,

with less distortion of the function at the ends of the interval. This occurs because, as

we discussed in class, the cosine transform does not force the value of the function

to be the same at both ends. Hint: You can use the functions from the file dcst.py

in the on-line resources to perform the transforms if you wish—just place the file

in your working folder and then import the functions using a from statement. The

function dct does the cosine transform and idct does the inverse transform.

It is because of the artifacts introduced by the strict periodicity of the DFT that the cosine

transform is favored for many technological applications, such as audio compression.

The artifacts can degrade the sound quality of compressed audio and the cosine trans-

form generally gives better results.

For full credit turn in a printout of your program from part (e), a plot showing all

three curves it calculates on the same axes (raw data, 10%, and 2%), and your answer

to the question in part (d). Also turn in your two plots from parts (f) and (g) showing

your analysis of the second data set using the DFT and the DCT respectively (or you can

combine (f) and (g) into a single plot if you prefer).

3. Image compression: In this problem you will write your own program to do JPEG-style

compression of a photographic image.

First download the file house.txt from the course web site. (This file is not in the on-line

resources—you’ll find it separately listed on the web site.) The file contains data for a

picture of a house in simple grid form—a two-dimensional array of numbers representing

the intensity of pixels in the image.

(a) Write a Python program that reads the data in the file into a two-dimensional array

and then makes a density plot of the array, showing the picture on the screen. You

2



should use the gray-scale color scheme for your density plot, so you get a sensible

looking black-and-white photograph.

(b) Now create another two-dimensional array of floats of the same size as the picture

array and initially empty. Go through the picture array in 16× 16 blocks and perform

a 2D discrete cosine transform of the data in each block, producing a 16× 16 array

of (real) Fourier coefficients, and then store those coefficients in the corresponding

block of the new array. You can perform the DCTs using the function dct2 from the

file dcst.py. To get the 16× 16 blocks you’ll need to do two-dimensional “slicing”

on the arrays—see page 67 in the book if you want a reminder of how to do this.

When you’re finished with all the blocks, you will have a new array of the same size

as the old one, entirely full of Fourier coefficients.

(c) Now go through the Fourier coefficients one by one and set to zero every coefficient

whose absolute value is less than 10. In other words every coefficient in the range

from −10 to +10 should get set to zero.

(d) When we send a picture over the Internet, we transmit the Fourier coefficients, not

the picture itself, and we only need to transmit the coefficients that are nonzero.

Count how many coefficients get set to zero in your calculation and use this to cal-

culate and print a figure for howmuch you have compressed the image—howmuch

smaller is the set of numbers you would have to send over the Internet than the orig-

inal set from the file house.txt? This figure is called the compression ratio.

(e) When the Fourier coefficients are received at the other end, the receiver performs an

inverse transform to recover the image. Although we are not actually transmitting

our picture in this case, we can still perform this second part of the calculation to see

what we would get. Add lines to your program to go once more through the array

of Fourier coefficients in 16 × 16 blocks and perform an inverse 2D DCT on each

one, storing the results back in the original data array again (or in a third, new array,

if you prefer). This is the “decompression” of the image. You can use the function

idct2 for the inverse DCTs.

(f) Make a density plot of the decompressed image. You should find that it is essentially

indistinguishable from the original picture, even though the image was compressed

quite lot—a significant number of the Fourier coefficients were discarded by setting

them to zero.

(g) Increase the threshold value below which the coefficients get set to zero. Instead of

10, try 20, or 50, or 100 or more. See how large a compression ratio you can achieve

and still have the picture look pretty much the same.

For full credit turn in a printout of your final program and the “before” and “after”

images it produces, along with your answer for part (d) and your findings from part (g).

3



4. A low-pass filter: Here is a simple electronic circuit with one resistor and one capacitor:

VoutVin

0

C

R

This circuit acts as a low-pass filter: you send a signal in on the left and it comes out

filtered on the right.

Using Ohm’s law and the capacitor law and assuming that the output load has very high

impedance, so that a negligible amount of current flows through it, we can write down

the equations governing this circuit as follows. Let I be the current that flows through R

and into the capacitor, and let Q be the charge on the capacitor. Then:

IR = Vin −Vout , Q = CVout , I =
dQ

dt
.

Substituting the second equation into the third, then substituting the result into the first

equation, we find that Vin −Vout = RC (dVout/dt), or equivalently

dVout

dt
=

1

RC

(

Vin −Vout

)

.

(a) Write a program to solve this equation for Vout(t) using the fourth-order Runge–

Kutta method when the input signal is a square-wave with frequency 1 and ampli-

tude 1:

Vin(t) =

{

1 if ⌊2t⌋ is even,

−1 if ⌊2t⌋ is odd,
(1)

where ⌊x⌋ means x rounded down to the next lowest integer. Use the program to

make plots of the output of the filter circuit from t = 0 to t = 10 when RC = 0.01,

0.1, and 1, with initial condition Vout(0) = 0. You will have to make a decision about

what value of h to use in your calculation. Small values give more accurate results,

but the program will take longer to run. Try a variety of different values and choose

one for your final calculations that seems sensible to you.

(b) Based on the graphs produced by your program, describe what you see and explain

what the circuit is doing.

A program similar to the one you wrote is running inside most sound systems and music

players, to create the effect of the “bass” control. In the old days, the bass control on

a stereo would have been connected to a real electronic low-pass filter in the amplifier

circuitry, but these days there is just a computer processor that simulates the behavior of

the filter in a manner similar to your program.

4



For full credit turn in a printout of your program and the plots it produces, along

with your answer to part (b).

5. The Lotka–Volterra equations: The Lotka–Volterra equations are a mathematical model

of predator–prey interactions between biological species. Let two variables x and y be

proportional to the size of the populations of two species, traditionally called “rabbits”

(the prey) and “foxes” (the predators). You could think of x and y as being the population

in thousands, say, so that x = 2 means there are 2000 rabbits. Strictly the only allowed

values of x and y would then be multiples of 0.001, since you can only have whole num-

bers of rabbits or foxes. But 0.001 is a pretty close spacing of values, so it’s a decent

approximation to treat x and y as continuous real numbers so long as neither gets very

close to zero.

In the Lotka–Volterra model the rabbits reproduce at a rate proportional to their popula-

tion, but are eaten by the foxes at a rate proportional to both their own population and

the population of foxes:
dx

dt
= αx− βxy,

where α and β are constants. At the same time the foxes reproduce at a rate proportional

the rate at which they eat rabbits—because they need food to grow and reproduce—but

also die of old age at a rate proportional to their own population:

dy

dt
= γxy− δy,

where γ and δ are also constants.

(a) Write a program to solve these equations using the fourth-order Runge–Kuttamethod

for the case α = 1, β = γ = 0.5, and δ = 2, starting from the initial condition

x = y = 2. Have the program make a graph showing both x and y as a function

of time on the same axes from t = 0 to t = 30. (Hint: Notice that the differential

equations in this case do not depend explicitly on time t—in vector notation, the

right-hand side of each equation is a function f (r) with no t dependence. You may

nonetheless find it convenient to define a Python function f(r,t) including the time

variable, so that your program takes the same form as programs given in the book.)

(b) Describe in words what is going on in the system, in terms of rabbits and foxes.

For full credit turn in a printout of your program and the graph it produces, along

with your answer to part (b).

5


