
Physics 411: Homework 7

1. The Lorenz equations: One of the most celebrated sets of differential equations in physics

is the Lorenz equations:

dx

dt
= σ(y− x),

dy

dt
= rx− y− xz,

dz

dt
= xy− bz,

where σ, r, and b are constants. (The names σ, r, and b are odd, but traditional—they are

always used in these equations for historical reasons.)

These equations were first studied by Edward Lorenz in 1963, who derived them from

a simplified model of weather patterns. The reason for their fame is that they were one

of the first incontrovertible examples of deterministic chaos, the occurrence of apparently

random motion even though there is no randomness built into the equations. We encoun-

tered a different example of chaos in the logistic map on the first midterm exam.

(a) Write a program to solve the Lorenz equations for the case σ = 10, r = 28, and b = 8
3

in the range from t = 0 to t = 50 with initial conditions (x, y, z) = (0, 1, 0). Have

your program make a plot of y as a function of time. Note the unpredictable nature of

the motion. (Hint: If you base your program on previous ones you’ve written, or on

programs from the book, be careful. This problem has parameters r and b with the

same names as variables in previous programs—make sure to give your variables

new names, or use different names for the parameters, to avoid introducing errors

into your code.)

(b) Modify your program to produce a plot of z against x. You should see a picture of

the famous “strange attractor” of the Lorenz equations, a lop-sided butterfly-shaped

plot that never repeats itself.

For full credit turn in a copy of your final program and the two plots you made.

2. The pendulum and the double pendulum: In class we wrote a short program using

the fourth-order Runge–Kutta method to calculate the motion of the nonlinear (simple)

pendulum.

(a) Write your own version of that program, or recreate the one we made in class—most

of the details are in Example 8.6 on page 349 of the book if you want a reminder.

Then extend your program to create an animation of the motion of the pendulum.

Your animation should, at a minimum, include a representation of the moving pen-

dulum bob and the pendulum arm. (Hint: You will probably find the function rate

discussed in Section 3.5 of the book useful for making your animation run at a sen-

sible speed. Also, you may want to make the step-size for your Runge–Kutta cal-

culation smaller than the framerate of your animation, i.e., do several Runge–Kutta

steps per frame on screen. This is certainly allowed and may help to make your

calculation more accurate.)

Once you have mastered the simple pendulum, your next challenge is to write a program

to do the double pendulum, which is significantly more complicated.
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Although it is nonlinear, the simple pendulum’s movement is nonetheless perfectly reg-

ular and periodic—there are no surprises. A double pendulum, on the other hand, is

completely the opposite—chaotic and unpredictable. A double pendulum consists of a

normal pendulum with another pendulum hanging from its end. For simplicity let us

ignore friction, and assume that both pendulums have bobs of the same mass m and

massless arms of the same length ℓ. Thus the setup looks like this:

θ1

θ2

m

Pivot

m

The position of the arms at any moment in time is uniquely specified by the two angles

θ1 and θ2. The equations of motion for the angles can be derived using the Lagrangian

formalism, as follows.

The heights of the two bobs, measured from the level of the pivot are

h1 = −ℓ cos θ1, h2 = −ℓ(cos θ1 + cos θ2),

so the potential energy of the system is

V = mgh1 + mgh2 = −mgℓ(2 cos θ1 + cos θ2),

where g is the acceleration due to gravity. The (linear) velocities of the two bobs are given

by

v1 = ℓθ̇1, v2
2 = ℓ

2
[

θ̇
2
1 + θ̇

2
2 + 2θ̇1θ̇2 cos(θ1 − θ2)

]

,

where θ̇ means the derivative of θ with respect to time t. (If you don’t see where the

second velocity equation comes from, it’s a good exercise to derive it for yourself from

the geometry of the pendulum.) Now the total kinetic energy is

T = 1
2mv2

1 + 1
2mv2

2 = mℓ
2
[

θ̇
2
1 + 1

2 θ̇
2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

,

and the Lagrangian of the system is

L = T −V = mℓ
2
[

θ̇
2
1 + 1

2 θ̇
2
2 + θ̇1θ̇2 cos(θ1 − θ2)

]

+ mgℓ(2 cos θ1 + cos θ2).

Then the equations of motion are given by the Euler–Lagrange equations

d

dt

(

∂L

∂θ̇1

)

=
∂L

∂θ1
,

d

dt

(

∂L

∂θ̇2

)

=
∂L

∂θ2
,
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which in this case give

2θ̈1 + θ̈2 cos(θ1 − θ2) + θ̇
2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

θ̈2 + θ̈1 cos(θ1 − θ2) − θ̇
2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0,

where the mass m has canceled out.

These are second-order equations, but we can convert them into first-order ones by the

usual method, defining two new variables, ω1 and ω2, thus:

θ̇1 = ω1, θ̇2 = ω2.

In terms of these variables our equations of motion become

2ω̇1 + ω̇2 cos(θ1 − θ2) + ω
2
2 sin(θ1 − θ2) + 2

g

ℓ
sin θ1 = 0,

ω̇2 + ω̇1 cos(θ1 − θ2) − ω
2
1 sin(θ1 − θ2) +

g

ℓ
sin θ2 = 0.

Finally we have to rearrange these into the standard form with a single derivative on the

left-hand side of each one, which gives

ω̇1 = −

ω2
1 sin(2θ1 − 2θ2) + 2ω2

2 sin(θ1 − θ2) + (g/ℓ)
[

sin(θ1 − 2θ2) + 3 sin θ1

]

3 − cos(2θ1 − 2θ2)
,

ω̇2 =
4ω2

1 sin(θ1 − θ2) + ω2
2 sin(2θ1 − 2θ2) + 2(g/ℓ)

[

sin(2θ1 − θ2) − sin θ2

]

3 − cos(2θ1 − 2θ2)
.

(This last step is quite tricky and involves some trigonometric identities. If you’re not

certain of how the calculation goes you may find it useful to go through the derivation

for yourself.)

These two equations, along with the equations θ̇1 = ω1 and θ̇2 = ω2, give us four first-

order equations which between them define the motion of the double pendulum.

(b) Derive an expression for the total energy E = T + V of the system in terms of the

variables θ1, θ2, ω1, and ω2, plus the constants g, ℓ, and m.

(c) Write a program using the fourth-order Runge–Kutta method to solve the equations

of motion for the case where ℓ = 40 cm, with the initial conditions θ1 = θ2 = 90◦

and ω1 = ω2 = 0. Use your program to calculate the total energy of the system

assuming that the mass of the bobs is 1 kg each, and make a graph of energy as a

function of time from t = 0 to t = 100 seconds.

Because of energy conservation, the total energy should be constant over time (ac-

tually it should be zero for this particular set of initial conditions), but you will find

that it is not perfectly constant because of the approximate nature of the solution of

the differential equation. Choose a suitable value of the step size h to ensure that the

variation in energy is less than 10−5 Joules over the course of the calculation.
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(d) Modify your program to make an animation of the motion of the double pendulum

over time. At a minimum, the animation should show the two arms and the two

bobs. Hint: You will probably find that the value of h needed to get the required ac-

curacy in your solution gives a frame-rate much faster than any that can reasonably

be displayed in your animation, so you won’t be able to display every time-step of

the calculation in the animation. Instead you will have to arrange the program so

that it updates the animation only once every several Runge–Kutta steps.

For full credit turn in a printout of your final program for the double pendulum,

your calculation from part (b), your graph of the energy as a function of time from part (c),

and screenshots showing your two animations in action, for the simple pendulum and the

double pendulum.

3. Cometary orbits: Many comets travel in highly elongated orbits around the Sun. For

much of their lives they are far out in the solar system, moving very slowly, but on rare

occasions their orbit brings them close to the Sun for a fly-by and for a brief period of

time they move very fast indeed:

Sun

Comet

slow herefast here

This is a classic example of a system for which an adaptive step size method is useful,

because for the large periods of time when the comet is moving slowly we can use long

time-steps, so that the program runs quickly, but short time-steps are crucial in the brief

but fast-moving period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force be-

tween the Sun, with mass M at the origin, and a comet of mass m with position vector r

is GMm/r2 in direction −r/r (i.e., the direction towards the Sun), and hence Newton’s

second law tells us that

m
d2r

dt2
= −

(

GMm

r2

)

r

r
.

Canceling the m and taking the x component we have

d2x

dt2
= −GM

x

r3
,

and similarly for the other two coordinates. We can, however, throw out one of the coor-

dinates because the comet stays in a single plane as it orbits. If we orient our axes so that
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this plane is perpendicular to the z-axis, we can forget about the z coordinate and we are

left with just two second-order equations to solve:

d2x

dt2
= −GM

x

r3
,

d2y

dt2
= −GM

y

r3
,

where r =
√

x2 + y2.

(a) Turn these two second-order equations into four first-order equations, using the

methods you have learned.

(b) Write a program to solve your equations using the fourth-order Runge–Kutta method

with a fixed step size. You will need to look up the mass of the Sun and New-

ton’s gravitational constant G. As an initial condition, take a comet at coordinates

x = 4 billion kilometers and y = 0 (which is somewhere out around the orbit of

Neptune) with initial velocity vx = 0 and vy = 500 m s−1. Make a graph showing

the trajectory of the comet (i.e., a plot of y against x).

Choose a fixed step size h that allows you to accurately calculate at least two full

orbits of the comet. Since orbits are periodic, a good indicator of an accurate calcu-

lation is that successive orbits of the comet lie on top of one another on your plot.

If they do not then you need a smaller value of h. Give a short description of your

findings. What value of h did you use? What did you observe in your simulation?

How long did the calculation take?

(c) Make a copy of your program and modify the copy to do the calculation using an

adaptive step size. Set a target accuracy of δ = 1 kilometer per year in the position

of the comet and again plot the trajectory. What do you see? How do the speed,

accuracy, and step size of the calculation compare with those in part (b)?

(d) Modify your program to place dots on your graph showing the position of the comet

at each Runge–Kutta step around a single orbit. You should see the steps getting

closer together when the comet is close to the Sun and further apart when it is far

out in the solar system.

Calculations like this can be extended to cases where we have more than one orbiting

body—see Exercise 8.16 in the book for an example. We can include planets, moons,

asteroids, and others. Analytic calculations are impossible for such complex systems, but

with careful numerical solution of differential equations we can calculate the motions of

objects throughout the entire solar system.

For full credit turn in a copy of your final (adaptive) program, your answers to the

calculations and questions in parts (a), (b), and (c), and your plot from part (d).
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