
Physics 411: Homework 8

Note that you should do only one of questions 3 and 4, not both.

1. Poisson’s equation for the electrostatic potential: Poisson’s equation governs the elec-

trostatic potential in the presence of a charge density ρ:

∇
2φ = −

ρ

ǫ0
. (1)

Here ǫ0 is the permittivity of empty space (and we are assuming that we are in empty

space). For simplicity, consider this equation in two dimensions, in a square box 1 meter

along each side. All the walls of the box are at voltage zero, but there are two square

charges in the box, one positive, one negative, thus:

0 volts

20 cm

20 cm

The two charges are each 20 cm on a side and 20 cm from the walls of the box and have

uniform charge density ±1 Cm−2.

Write a Python program to solve for the potential φ on a grid of points within the box

using the relaxation method and make a density plot of the result. Work in units where

ǫ0 = 1 and continue the iteration until your solution for the electric potential changes by

less than 10−6 V per step at every grid point.

For full credit turn in a printout of your program and the plot it produces.

2. Thermal diffusion in the Earth’s crust: A classic example of a diffusion problem with

a time-varying boundary condition is the diffusion of heat into the crust of the Earth, as

surface temperature varies with the seasons. Suppose the mean daily temperature at a

particular point on the surface varies as:

T0(t) = A + B sin
2πt

τ
,

where τ = 365 days, A = 10◦C and B = 12◦C. At a depth of 20 m below the surface

almost all annual temperature variation is ironed out and the temperature is, to a good

1



approximation, a constant 11◦C (which is higher than the mean surface temperature of

10◦C—temperature increases with depth, due to heating from the hot core of the planet).

The thermal diffusivity of the Earth’s crust varies somewhat from place to place, but for

our purposes we will treat it as constant with value D = 0.1 m2 day−1.

Write a program to calculate the temperature profile of the crust as a function of depth

up to 20 m and time up to 10 years. Start with temperature everywhere equal to 10◦C,

except at the surface and the deepest point, choose values for the number of grid points

and the time-step h, then run your program for the first nine simulated years, to allow

it to settle down into whatever pattern it reaches. Then for the tenth and final year plot

four temperature profiles taken at 3-month intervals on a single graph to illustrate how

the temperature changes as a function of depth and time.

For full credit turn in a printout of your program and the plot it produces.

3. The Schrödinger equation and the Crank–Nicolson method:

Do only one of Questions 3 and 4. The choice of which to do is up to you. They are both

worth the same number of points.

Perhaps the most important partial differential equation, at least for physicists, is the

Schrödinger equation. In this problem you will use the Crank–Nicolson method to solve

the full time-dependent Schrödinger equation and hence develop a picture of how a

wavefunction evolves over time.

We will look at the Schrödinger equation in one dimension. The techniques for calculat-

ing solutions in two or three dimensions are basically the same as for one dimension, but

the calculations take much longer on the computer, so in the interests of speed we’ll stick

with one dimension. In one dimension the Schrödinger equation for a particle of mass M

with no potential energy reads

−
h̄2

2M

∂2ψ

∂x2
= ih̄

∂ψ

∂t
.

For simplicity, let’s put our particle in a box with impenetrable walls, so that we only

have to solve the equation in a finite-sized space. The box forces the wavefunction ψ to

be zero at the walls, which we’ll put at x = 0 and x = L, so that the box has size L.

Replacing the second derivative in the Schrödinger equation with a finite difference and

applying Euler’s method, we get the FTCS equation

ψ(x, t + h) = ψ(x, t) + h
ih̄

2ma2

[

ψ(x + a, t) + ψ(x − a, t)− 2ψ(x, t)
]

,

where a is the spacing of the spatial grid points and h is the size of the time-step. (Be

careful not to confuse the time-step h with Planck’s constant h̄.) Performing a similar step

in reverse, we get the implicit equation

ψ(x, t + h)− h
ih̄

2ma2

[

ψ(x + a, t + h) + ψ(x − a, t + h)− 2ψ(x, t + h)
]

= ψ(x, t).

2



And taking the average of these two, we get the Crank–Nicolson form for the Schrödinger

equation:

ψ(x, t + h)− h
ih̄

4ma2

[

ψ(x + a, t + h) + ψ(x − a, t + h)− 2ψ(x, t + h)
]

= ψ(x, t) + h
ih̄

4ma2

[

ψ(x + a, t) + ψ(x − a, t)− 2ψ(x, t)
]

.

This gives us a set of simultaneous equations, one for each grid point.

The boundary conditions on our problem tell us that ψ = 0 at x = 0 and x = L for all t

and in between these points we have grid points at a, 2a, 3a, and so forth. Let us arrange

the values of ψ at these points into a vector

ψ(t) =











ψ(a, t)
ψ(2a, t)
ψ(3a, t)

...











.

Then the Crank–Nicolson equations can be written in the form

Aψ(t + h) = Bψ(t),

where the matrices A and B are both tridiagonal:

A =















a1 a2

a2 a1 a2

a2 a1 a2

a2 a1
. . .















, B =















b1 b2

b2 b1 b2

b2 b1 b2

b2 b1
. . .















,

with

a1 = 1 + h
ih̄

2ma2
, a2 = −h

ih̄

4ma2
, b1 = 1 − h

ih̄

2ma2
, b2 = h

ih̄

4ma2
.

(Note the different signs and the factors of 2 and 4 in the denominators.)

The equation Aψ(t + h) = Bψ(t) has precisely the form Ax = v of the simultaneous

equation problems we studied earlier in the semester and can be solved using the same

methods. Specifically, since the matrix A is tridiagonal in this case, we can use the fast

tridiagonal version of Gaussian elimination that we looked at in Section 6.1.6.

Consider an electron (mass M = 9.109× 10−31 kg) in a box of length L = 10−8 m. At time

t = 0 the wavefunction of the electron takes the form of a Gaussian wave packet thus:

ψ(x, 0) = exp

[

−
(x − x0)

2

2σ2

]

eiκx,

where

x0 =
L

2
, σ = 1 × 10−10 m, κ = 5 × 1010 m−1,

and ψ = 0 on the walls at x = 0 and x = L.

3



(a) Write a program to apply the Crank–Nicolson method to solve the Schrödinger

equation for this electron and calculate the vector ψ(t) of values of the wavefunc-

tion, given the initial wavefunction above and using N = 1000 spatial slices with

a = L/N. Your program will have to perform the following steps. First, given

the vector ψ(0) at t = 0, you will have to multiply by the matrix B to get a vec-

tor v = Bψ. Because of the tridiagonal form of B, this is fairly simple. The ith

component of v is given by

vi = b1ψi + b2(ψi+1 + ψi−1). (2)

You will also need a value for the time-step h. A reasonable choice is h = 10−18 s.

Second you will have to solve the linear system Ax = v for x, which gives you

the new value of ψ. You could do this using a standard linear equation solver like

the function solve in numpy.linalg, but since the matrix A is tridiagonal a better

approach is to use the fast solver for banded matrices given in Appendix E of the

book, which can be imported from the file banded.py (which you can find in the

on-line resources).

Third, once you have the code in place to solve the equations, extend your program

to perform the same operations repeatedly, and hence solve for ψ at a sequence of

time-steps with separation h. Note that the matrix A is independent of time, so it

doesn’t change from one step to another. You can set up the matrix just once and

then keep on reusing it for every step.

(b) Extend your program to make an animation of the wavefunction by displaying the

real part of the wavefunction at each time-step. You can use the function rate from

the package visual to ensure a smooth frame-rate for your animation.

There are various ways you could do the animation. A simple one would be to

place a small sphere at each grid point whose vertical position represents the value

of the real part of the wavefunction. A more sophisticated approach would be

to use the curve object in the visual package—see the on-line documentation at

www.vpython.org for details. A convenient feature of the curve object is that you can

specify its set of x positions and y positions separately as arrays. In this exercise the x

positions only need to specified once, since they never change, while the y positions

will need to be specified anew each time you take a time-step.

Depending on what coordinates you use for measuring x, you may need to scale the

values of the wavefunction by an additional constant to make them a reasonable size

on the screen. (If you measure your x position in meters then a scale factor of about

10−9 works well for the wavefunction.)

(c) Run your animation for a while and describe what you see. Write a few sentences

explaining in physics terms what is going on in the system.

For full credit turn in a printout of your final program and a snapshot of the anima-

tion it produces, along with your explanation of what you discovered upon running the

program.

4



4. The Schrödinger equation and the spectral method: Do either this problem or the pre-

vious one, but not both—the choice of which one to do is yours.

In this problem you’ll write a program to solve the time-dependent Schrödinger equation

−
h̄2

2M

∂2ψ

∂x2
= ih̄

∂ψ

∂t
,

using the spectral method for the same system as in problem 3, a single particle in one

dimension in a box of length L with impenetrable walls. You may find it useful to read

through problem 3, since it contains some discussion of the physics that is not repeated

here.

The wavefunction necessarily goes to zero on the walls of the box and hence one possible

solution of the equation is

ψk(x, t) = sin

(

πkx

L

)

eiEt/h̄,

where the energy E can be found by substituting into the Schrödinger equation, giving

E =
π2h̄2k2

2ML2
.

As with the vibrating string of Section 9.3.4 in the book, we can write a full solution as

a linear combination of such individual solutions, which on the grid points xn = nL/N

takes the value

ψ(xn, t) =
1

N

N−1

∑
k=1

bk sin

(

πkn

N

)

exp

(

i
π2h̄k2

2ML2
t

)

,

where the bk are some set of (possibly complex) coefficients that specify the exact shape

of the wavefunction and the leading factor of 1/N is optional but convenient. (It makes

the definition compatible with the standard discrete sine transform.)

Since the Schrödinger equation (unlike the wave equation) is first order in time, we need

only a single initial condition on the value of ψ(x, t) to specify the coefficients bk although,

since the coefficients are in general complex, we will need to calculate both real and imag-

inary parts of each coefficient.

As in problem 3 we consider an electron (mass M = 9.109× 10−31 kg) in a box of length L =
10−8 m. At time t = 0 the wavefunction of the electron has the form

ψ(x, 0) = exp

[

−
(x − x0)

2

2σ2

]

eiκx,

where

x0 =
L

2
, σ = 1 × 10−10 m, κ = 5 × 1010 m−1,

and ψ = 0 on the walls at x = 0 and x = L.

5



(a) Write a program to calculate the values of the coefficients bk, which for convenience

can be broken down into their real and imaginary parts as bk = αk + iηk. Divide the

box into N = 1000 slices and create two arrays containing the real and imaginary

parts of ψ(xn, 0) at each grid point. Perform discrete sine transforms on each array

separately and hence calculate the values of the αk and ηk for all k = 1 . . . N − 1.

To perform the discrete sine transforms, you can use the fast transform function dst

from the package dcst, which you can find in the on-line resources in the file named

dcst.py. The function takes an array of N real numbers and returns the discrete sine

transform as another array of N numbers.1

(b) Putting bk = αk + iηk in the solution above and taking the real part we get

Re ψ(xn, t) =
1

N

N−1

∑
k=1

[

αk cos

(

π2h̄k2

2ML2
t

)

− ηk sin

(

π2h̄k2

2ML2
t

)]

sin

(

πkn

N

)

.

This is an inverse sine transform with coefficients equal to the quantities in the

square brackets. Extend your program to calculate the real part of the wavefunc-

tion ψ(x, t) at an arbitrary time t using this formula with the inverse discrete sine

transform function idst, also from the package dcst. Test your program by making

a graph of the wavefunction at time t = 10−16 s.

(c) Extend your program further to make an animation of the wavefunction over time,

similar to that described in part (b) of problem 3 above. A suitable time interval for

each frame of the animation is about 10−18 s.

(d) Run your animation for a while and describe what you see. Write a few sentences

explaining in physics terms what is going on in the system.

For full credit turn in a printout of your final program and a snapshot of the anima-

tion it produces, along with your explanation of what you discovered upon running the

program.

1Note that the first element of the input array should in principle always be zero for a sine transform, but if
it is not the dst function will simply pretend that it is. Similarly the first element of the returned array is always
zero, since the k = 0 coefficient of a sine transform is always zero. So in effect, the sine transform really only takes
N − 1 real numbers and transforms them into another N − 1 real numbers.

6


