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Physics 390: The quantum simple harmonic oscillator

The energy eigenstates of the simple harmonic oscillator satisfy
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where we have made use of Eqs. (1) and (2) in the second and fourth

lines respectively. Now multiplying by h̄/mω and differentiating

again we get
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where we have used Eq. (3) to eliminate dψ
−
/dx. Rearranging this

expression and collecting terms, we find that
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As noted, the quantity in square brackets is none other than ψ
−

and

hence we find that
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But this is simply the Schrödinger equation again. It tells us that if the

original wavefunction ψ was a solution of the Schrödinger equation,

then so too isψ
−

defined by Eq. (2), but with a different energy E− h̄ω,

exactly h̄ω lower than the original energy.

Thus if we can find one solution to the Schrödinger equation, with

any energy E, then we can immediately find another one with energy

E− h̄ω. But now we can repeat the process and hence find a state with

an energy h̄ω lower still, and so forth. In this way we can get a whole

“ladder” of solutions to the Schrödinger equation with energies h̄ω

apart. We simply keep applying Eq. (2). (We can also go in the

opposite direction and increase energy by h̄ω, extending the ladder

in the upward direction as well—see this week’s homework set.)

There is, however, a catch. The energy cannot go on decreasing

forever: the energy of the simple harmonic oscillator is a sum of

nonnegative quantities, so it is itself nonnegative. But how can this

be, when we have just shown that we can go on decreasing the energy

by steps of h̄ω for as long as we like? The answer is that at some

point there must be a solution ψ of the equation for which the trick

above does not work and Eq. (2) does not generate another solution

with lower energy. How could this happen mathematically? Well, it

happens if
h̄

mω

dψ
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+ xψ = 0. (7)

In this case, ψ
−

still technically satisfies Eq. (6) (because both sides

will be zero), but we don’t get a new solution with lower energy.

If we multiply Eq. (7) by h̄/mω and differentiate, we get
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where we have used Eq. (7) to eliminate dψ/dx. Now we multiply

this equation by − 1
2 mω2 and rearrange to get
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This is just the Schrödinger equation again, and so we see that this

wavefunction, the wavefunction of the state at the bottom of the

ladder, which is the ground state of the simple harmonic oscillator, has

energy E = 1
2 h̄ω.

Thus, by a process of deduction, we conclude that the energy levels

of the simple harmonic oscillator start at 1
2 h̄ω and go up in steps of

h̄ω, so that the nth energy level has energy

En =

(

n + 1
2

)

h̄ω. (10)

As a final trick, we can also solve for the actual wave function of

the ground state, by solving the differential equation (7). Separating

the variables and integrating gives

∫
dψ

ψ
= −

mω

h̄
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x dx, (11)

or

ψ(x) = A exp(−mωx2/2h̄), (12)

where A is a normalization constant. You can check that this agrees

with the answer claimed in the book (Eq. (6-58) in Tipler & Llewellyn).


