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Physics 390: The quantum simple harmonic oscillator

The energy eigenstates of the simple harmonic oscillator satisfy Hψ =

Eψ with

H =
p2

2m
+

1
2 mω2x2, (1)

where p is the quantum momentum operator

p = −ih̄
d

dx
. (2)

To make things a bit simpler, we change variables to y = x
√

mω/h̄, so

that

H = −
h̄2

2m

mω

h̄

d2

dy2
+

mω

2

h̄

mω
y2
= −

h̄ω

2

[

d2

dy2
− y2
]

. (3)

Then the Schrödinger equation becomes

[

d2

dy2
− y2
]

ψ = −
2E

h̄ω
ψ. (4)

Now here’s the trick. Notice that for any function f (y)

[(

d

dy
− y
)(

d

dy
+ y
)

− 1
]

f =
(

d

dy
− y
)(d f

dy
+ y f

)

− f

=
d2 f

dy2
+ f + y

d f

dy
− y

d f

dy
− y2 f − f

=

[

d2

dy2
− y2
]

f (5)

Similarly you can show that

[(

d

dy
+ y
)(

d

dy
− y
)

+ 1
]

f =
[

d2

dy2
− y2
]

f . (6)

Using Eq. (5) we can write Eq. (4) as

[(

d

dy
− y
)(

d

dy
+ y
)

− 1
]

ψ = −
2E

h̄ω
ψ, (7)

or equivalently

(

d

dy
− y
)(

d

dy
+ y
)

ψ =
(

1 −
2E

h̄ω

)

ψ. (8)

Now we operate on both sides with the operator d/dy + y to get

(

d

dy
+ y
)(

d

dy
− y
)(

d

dy
+ y
)

ψ =
(

1 −
2E

h̄ω

)(

d

dy
+ y
)

ψ, (9)

and then make use of Eq. (6) to write this as

[

d2

dy2
− y2 − 1

](

d

dy
+ y
)

ψ =
(

1 −
2E

h̄ω

)(

d

dy
+ y
)

ψ, (10)

or
[

d2

dy2
− y2
](

d

dy
+ y
)

ψ =
(

2 −
2E

h̄ω

)(

d

dy
+ y
)

ψ. (11)

Now we multiply both sides by − 1
2 h̄ω and make use of Eq. (3) again

to get

H
(

d

dy
+ y
)

ψ = (E − h̄ω)
(

d

dy
+ y
)

ψ. (12)

It’s a lot of algebra, but the final result is interesting. If we define a

new function ψ′ by

ψ′ =
(

d

dy
+ y
)

ψ, (13)

then Eq. (12) can be written as

Hψ′ = (E − h̄ω)ψ′. (14)

In other words, ψ′ is a solution of the Schrödinger equation, but with

an energy that’s h̄ω less than the energy for ψ.

What this means is that if we can find one solution to the

Schrödinger equation, with any energy E, then we can immediately

find another one with energy E−h̄ω by applying the operator d/dy+y.

This operator is called a “lowering operator”—it generates a new so-

lution of lower energy from the old one.
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But now we can repeat the process and apply the same operator

again to ψ′ and get ψ′′, which has energy h̄ω lower still, and so

forth. In this way we can get a whole “ladder” of solutions to the

Schrödinger equation with energies h̄ω apart. In theory we can also

go in the opposite direction and increase energy by h̄ω, extending the

ladder in the upward direction as well.

There is, however, a catch. The energy cannot go on decreasing

forever: the energy of the simple harmonic oscillator, Eq. (1), is a sum

of nonnegative quantities, so it is itself nonnegative. But how can this

be, when we have just shown that we can go on decreasing the energy

by steps of h̄ω for as long as we like? The answer is that at some point

there must be a solution ψ of the equation for which the trick above

does not work and the operator d/dy + y does not generate another

solution with lower energy. How could this happen mathematically?

Well, it happens if
(

d

dy
+ y
)

ψ = 0. (15)

Technically, such a function still satisfies Eq. (12) (because both sides

will be zero), but we don’t get a new solution with lower energy.

If we take this equation and operate on both sides with d/dy − y

and use Eq. (5) again, we get

(

d

dy
− y
)(

d

dy
+ y
)

ψ =
[

d2

dy2
− y2

+ 1
]

ψ = 0. (16)

Then multiplying both sides by − 1
2 h̄ω and making use of (3) we get

Hψ = 1
2 h̄ωψ. (17)

Comparing with the standard Schrödinger equation Hψ = Eψ, we

see that the state at the bottom of the ladder—the ground state of the

simple harmonic oscillator—has energy E = 1
2 h̄ω.

Thus, by a process of deduction, we conclude that the energy levels

of the simple harmonic oscillator start at 1
2 h̄ω and go up in steps of

h̄ω, so that the nth energy level has energy

En =

(

n + 1
2

)

h̄ω. (18)

As a final trick, we can also solve for the actual wave function of

the ground state, by solving the differential equation (15). Separating

the variables and integrating gives

∫

dψ

ψ
= −

∫

y dy, (19)

or

ψ = A exp(−y2/2) = A exp(−mωx2/2h̄), (20)

where A is a normalization constant. You can check that this agrees

with the answer claimed in the book (Eq. (6-58) in Tipler & Llewellyn).


