

• The overall probability for producing a charge q_e by radiation of energy E is the convolution of the energy deposition probability, P(e,E)de, and the charge dispersion probability, $P(q_e,e)dq_{e'}$.

$$p(q_e, E)dE = \left[\int_{0}^{E} p(q_e, e)p(e, E)de\right]de$$

- For monoenergetic radiation of energy Ei, the charge signal from N_i detected photons is deduced from integration of the charge production probability.

$$Q_e = N_i \int_{a}^{q_{\text{max}}} q_e p(q_e, E_i) dq_e = N_i \overline{Q}_E$$

• This is equivalent to considering the average deposited charge from the discrete sum of all events.

$$Q_e = N_i \frac{\sum_{i=1}^{N_i} q_n}{N_i}$$

IOE 481 - 2019

V.A.3.e leakage current noise
• The leakage current contributes to the signal
in relation to the signal integration time, t_{int} . $Q_l = i_l t_{int}$
 While the signal can be corrected to eliminate the leakage current contribution, their remains an added noise from the number of electrons associated with the collected leakage current.
$n_{le} = Q_l / 1.602E$ -19 $\sigma_{le} = (Q_l / 1.602E$ -19) ^{1/2}

NICOS / DTOC	491	2010

Polycrystalline I HgI ₂ , and lead been investigat semi-conductor high x-ray abso	mercuric iodide, F ed as lar materia rption. 2003	c iodide, PbI ₂ , have rge area Ils with	HgI	2, Sel	lin2001	
 Relative to a-Se, imp Charge collection collection 	proved abso nsistent wi	orption (high) th Hecht rela	Z) and r tion.	reduce	ed Weff.	
 Relative to a-Se, imp Charge collection collection 	proved absonsistent wi	orption (high) th Hecht rela	Z) and r tion.	reduce	ed Weff.	7
Relative to a-Se, imp Charge collection col Atomic Number (Z)	proved abso nsistent wi Poly-HgI ₂ 80, 53	orption (high) th Hecht rela Poly-Pbl ₂ 82,53	Z) and r tion. a-Se 34		ed Weff.	7
Relative to a-Se, imp Charge collection co Atomic Number (Z) Energy Band Gap (Eg) eV	proved abso nsistent wi Poly-HgI ₂ 80, 53 2.1	orption (high) th Hecht rela <u>Poly-Pbl</u> 2 82,53 2.3	Z) and r tion. <u>a-Se</u> <u>34</u> 2.2	reduce	ed Weff.	7
Relative to a-Se, imp Charge collection co Atomic Number (Z) Energy Band Gap (Eg) eV Effective Charge Pair Formation Energy (W), eV	Poly-HgI2 80, 53 2.1 -5	Poly-Phi ₂ 82,53 2.3 -5.5	Z) and r tion. a-Se 34 2.2 -42	reduce	ed Weff.]
Relative to a-Se, imp Charge collection co Atomic Number (Z) Energy Band Gap (E) eV Effective Charge Pair Formation Energy (W), eV Mobility Life-time Product (µ7) em ² V	Poly-Hgl ₂ 80,53 2.1 -5 1.5x10 ⁻⁵	Poly-Pbl ₂ 82,53 2.3 -5.5 (hole) 1.8x10 ⁶ (electron) 7x10 ³	Z) and r ttion. <u>a-Se</u> <u>34</u> 2.2 -42 10 ⁶ - 10 ³	educe 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	ed Weff.	

27

V.A.3.f -CdTe, CdZnTe (CZ, CZT)

- The heterogeneous material structure of PbI₂ prohibits consistent measures of the charge from each x-ray.
- The lower resistivity of CZT prohibits its use as an integrating x-ray detector. However, the crystalline nature of CZT makes it attractive for photon counting detectors and radioisotope imaging cameras.

V.A.4.b - Scintillation material properties								
From: van Eijk 2002, pg 89								
	Density (g cm ⁻³)	ρZ^4_{eff} (10 ⁶)	Attenuation length at 511 keV (mm)/ prob. phot. eff. (%)	Hygro- scopicity	Light yield (photons/ MeV)	Decay time (ns)	Emission maximum (nm)	
CsI:Na	4.51	38	22.9/21	Yes	40 000	630	420	
CsI:Tl	4.51	38	22.9/21	Slightly	66 000	$800 -> 6 \times 10^3$	550	
CaWO ₄	6.1	89	13.6/32	No	20 000 ^b		420	
YTaO ₄ :Nb	7.5	96	11.8/29	No	40 000 ^b		410	
Gd ₂ O ₂ S:Tb	7.3	103	12.7/27	No	60 000 ^b	1×10^{6}	545	
Gd2O2S:Pr,Ce,F	7.3	103	12.7/27	No	35 000 ^b	4×10^{3}	510	
Gd ₂ O ₂ S:Pr (UFC)	7.3	103	12.7/27	No	50 000 ^b	3×10^{3}	510	
Y _{1.34} ,Gd _{0.60} O ₃ :(Eu,Pr) _{0.06} ^c (Hilight)	5.9	44	17.8/16	No	42 000 ^b	1×10^{6}	610	
Gd3Ga5O12:Cr,Ce	7.1	58	14.8/18	No	40 000 ^b	140×10^{3}	730	
CdWO ₄	7.9	134	11.1/29	No	20 000 ^b	5×10^{3}	495	
Lu2O3:Eu,Tb	9.4	211	8.7/35	No	30 000 ^b	$>10^{6}$	611	
NER5/BIOE 481 - 2019 48								

From: van Eijk 2002, pg 89							
	Density (g cm ⁻³)	ρZ^4_{eff} (10 ⁶)	Attenuation length at 511 keV (mm)/ prob. phot. eff. (%)	Hygro- scopicity	Light yield (photons/ MeV)	Decay time (ns)	Emission maximum (nm)
CaHfO3:Ce	7.5	139	11.6/30	No	$\sim \! 10.000^{b}$	40	390
SrHfO3:Ce	7.7	122	11.5/28	No	$\sim 20\ 000^{b}$	40	390
BaHfO3:Ce	8.4	142	10.6/30	No	$\sim 10.000^{b}$	25	400
NaI:TI	3.67	24.5	29.1/17	Yes	41 000	230	410
LaCl3:Ce	3.86	23.2	27.8/14	Yes	46 000	25 (65%)	330
LaBr3:Ce	5.3	25.6	21.3/13	Yes	61 000	35 (90%)	358
Bi4Ge3O12 (BGO)	7.1	227	10.4/40	No	9 000	300	480
Lu2SiO5:Ce (LSO)	7.4	143	11.4/32	No	26 000	40	420
Gd2SiO5:Ce (GSO)	6.7	84	14.1/25	No	8 000	60	440
YAIO3:Ce (YAP)	5.5	7	21.3/4.2	No	21 000	30	350
LuAlO3:Ce (LuAP)	8.3	148	10.5/30	No	12 000	18	365
Lu2Si2O7:Ce (LPS)	6.2	103	14.1/29	No	30 000	30	380

ERS/BIOE 481 - 2019

(Arbitrary Vertical Axis Units)

53

V.A.4.c - Indirect conversion efficiency									
Conversion of gamma energy to electrons.									
• photons/keV(NaI) 40									
 Light collection efficiency 	.50								
Photo-conversion efficiency (PMT) .20									
 Thus for 140 keV gamma rays (Tc 99m), we will collect 4 electrons/keV for a total of 560 electrons. 									
 The standard deviation in the signal associated with 560 electrons is 4.2% (i.e. 1/N[‡]) which corresponds to a FWHM of about 9.7%. 									
 This is typical of the energy resolution of nuclear medicine Anger cameras using NaI crystals and PMT detectors. 									
ERS/BIOE 481 - 2019	54								

