

Theorem first presented in LO VII.B.2 - Central Slice Theorem - proof The central slice theorem is easily proven by considering the values of the Fourier transform of an object, O(x,y), along the $\omega_v = 0$ axis, $\mathfrak{I}(\omega_x,\omega_y) = \iint O(x,y) \cdot e^{-2\pi i (\omega_x x + \omega_y y)} dx dy$ $\mathfrak{I}(\omega_x, 0) = \int \left(\int O(x, y) dy \right) \cdot e^{-2\pi i (\omega_x x)} dx$ $\mathfrak{I}(\omega_x, 0) = \int (P(r, 0)) e^{-2\pi i (\omega_x x)} dx$ The inner integration reduces to the projection in a direction parallel to the y axis ($\theta=0$). Other directions can be considered by a simple rotation of the object. Barrett & Swindell, 1981, Pg 384 11

ERS/BIOE 481 - 2019

	N	64	128	256	512	1024]
Γ	Trad.	$1 \cdot 10^8$	$2\cdot 10^9$	$3\cdot 10^{10}$	$5\cdot 10^{11}$	$9\cdot 10^{12}$	1
	Fast	$2 \cdot 10^8$	$2 \cdot 10^9$	$2 \cdot 10^{10}$	$2 \cdot 10^{11}$	$1\cdot 10^{12}$	1
tion as a fui for fast back	nctrion projecti	of $N = N$ ion when .	$N_x = N_y$ N = 1024	= 2N _z = 1 4 is extrapo	$N_t = N_q =$ lated.	= N _θ /2. Τ	backpr he esti
tion as a fu for fast back • Henr Filter	nctrion projecti rik Tui red B	of $N = N$ ion when N rbell, C	$N_x = N_y$ N = 1024 one-Bec	$= 2N_z = 1$ 4 is extrapo am Reco PhD Dis	$N_t = N_q =$ lated.	$= N_{\theta}/2. T$ ion Usin	backpr The esti
tion as a fin for fast back • Henr Filter Linko	nctrion projecti rik Tui red Bo pping (of N = N ion when rbell, C ackproj Univers	$V_x = N_y$ N = 1024 one-Bec ection, ity, Sw	= 2Nz = 1 4 is extrapo am Reco PhD Dis reden, Fe	$N_t = N_q$ = lated. nstruct ssertati ebruary	ion Usin on no. 6 , 2001	backpr The esti 9 72,

Line Number	Floating Point Operations Required per Step	Total Times Step is Executed	Total Floating Point Operations Required		
3	7 .	NyNu	7N, N,		
11	1	N ₀ N _y N _y	N ₀ N _u N _u		
17	$9(2N_u \log_2(2N_u))$	$N_{\theta}(N_{y}/2)$	$9N_{\theta}N_{y}N_{y}\log_{2}(2N)$		
19	2	$N_{\theta}(N_{y}/2)(2N_{y})$	$2N_{\theta}N_{v}N_{u}$		
21	$9(2N_u \log_2(2N_u))$	$N_{\theta}(N_{y}/2)$	$9N_{\theta}N_{y}N_{y}\log_{2}(2N_{y})$		
26	3	$N_{\theta}N_{y}N_{x}$	3NoNyNz		
27	3	$N_{\theta}N_{y}N_{x}$	$3N_{\theta}N_{y}N_{x}$		
28	2	$N_{\theta}N_{y}N_{x}$	$2N_{\theta}N_{y}N_{x}$		
29	2	N ₀ N _y N _x	$2N_{\theta}N_{y}N_{x}$		
30	1 The heavy	$N_{\theta}N_{y}N_{x}$	NeNyNx		
31	1 lifting is in the	$N_{\theta}N_{y}N_{x}$	$N_{\theta}N_{y}N_{x}$		
32	2 column	N ₀ N _u N _x	$2N_{\theta}N_{u}N_{\tau}$		
34	2 backprojection	$N_{\theta}N_zN_yN_x$	$2N_{\theta}N_{z}N_{y}N_{x}$		
36	1	$N_{\theta}N_zN_yN_x$	$N_{\theta}N_zN_yN_x$		
37	8	$N_{\theta}N_{z}N_{y}N_{x}$	$8N_{\theta}N_zN_yN_x$		
38	1	$N_{\theta}N_zN_yN_x$	$N_{\theta}N_{z}N_{y}N_{z}$		

