

- CT scanner devices are periodically calibrated using a phantom to determine the reference signal Io.
- The projection, $P(r, \theta)$, is determined using correction factors for x-ray spectral hardening and scattered radiation.

| VII - Computed Tomography | |
| :--- | :--- | :--- |
| A) X-ray Computed Tomography | $\ldots($ L11) |
| B) CT Reconstruction Methods | $\ldots($ L11/L12) |

VII.B - CT Reconstruction
B) $\frac{C T \text { Reconstruction (L12) }}{\text { 1) Projection geometry (5 slides) }}$
2) Fourier Domain Solution
3) Convolution / Backprojection
4) Cone beam reconstruction
5) Iterative Reconstruction

VII.B. 1 - CT tissue values

CT numbers for Medical CT images

- For soft tissues, the Hounsfield numbers are between 0 and 100.
- This corresponds to a 1% range of attenuation coefficient values.
- Air (~-1000) and bone (> 1000) provide high contrast.

VII.B. 2 - Central Slice Theorem - proof	Theorem first presented in L07

The central slice theorem is easily proven by considering the values of the Fourier transform of an object, $\boldsymbol{O}(\boldsymbol{x}, \boldsymbol{y})$, along the $\omega_{y}=0$ axis,

$$
\begin{aligned}
\mathfrak{J}\left(\omega_{x}, \omega_{y}\right) & =\iint O(x, y) \cdot e^{-2 \pi i\left(\omega_{x} x+\omega_{y} y\right)} d x d y \\
\mathfrak{J}\left(\omega_{x}, 0\right) & =\int\left(\int O(x, y) d y\right) \cdot e^{-2 \pi i\left(\omega_{x} x\right)} d x \\
\mathfrak{J}\left(\omega_{x}, 0\right) & =\int(P(r, 0)) \cdot e^{-2 \pi i\left(\omega_{x} x\right)} d x
\end{aligned}
$$

The inner integration reduces to the projection in a direction parallel to the y axis $(\theta=0)$. Other directions can be considered by a simple rotation of the object.

Barrett \& Swindell, 1981, Pg 38411

VII.B. 2 - quarter-quarter offset

- Angular sampling over 180 degrees is sufficient to describe an object in the Fourier domain.
- However, 360 degree sampling is commonly done with the rotation center offset by $\left(\frac{1}{4}, \frac{1}{4}\right)$ of the sample increment, $\Delta \mu$.

$\frac{1}{4}, \frac{1}{4}$ offset sampling improves resolution by decreasing the effective sampling increment, $\Delta \mu$, by a factor of two.

NERS/BIOE 481-2019
VII.B. 2 - Parallel beams, circular orbits

A parallel beam of radiation used to acquire $P(u, v)$ using circular rotational sampling completely samples the 3D Fourier domain.

VII.B. 2 - cone beam, circle plus line

- The Radon values of all planes intersecting the object have to be known in order to perform an exact reconstruction. The Tuy sufficiency condition (Tuy 1983) states that exact reconstruction is possible if all planes intersecting the object also intersect the source trajectory at least once.
- The circular trajectory does not satisfy the TuySmith condition as illustrated. It is therefore necessary to extend the trajectory with an extra circle or line if exact reconstruction is required.

> | Tuy, H. (1983). An inversion formula for |
| :--- |
| cone-beam reconstruction. SIAM Journal |
| of Applied Mathematics 43, 546-552. |

Each projection is associated with a dish shaped surface of fourier coefficients going through the 3D frequency domain. When rotated, there is a void of coefficients along the axis of rotation.
A cone beam of radiation used to acquire $P(u, v)$ with angular sampling DOES NOT FULLY SAMPLE the 3D Fourier domain in the region of the axis.

16
VII.B.2 - Cone beams, circular orbits

A fan beam of radiation used to acquire $P(u)$ with angular sampling produces frequency samples in the 2D Fourier domain in arcs through the 0,0 axis.

NERS/BIOE 481-2019
VII.B - CT Reconstruction
B) CT Reconstruction

1) Projection geometry
2) Fourier Domain Solution
3) Convolution / Backprojection (11 slides)
4) Cone beam reconstruction
5) Iterative Reconstruction
nees siroe A81-2019

VII.B. 3 - Filter shape

Projections are filtered either by

- convolution with a spatial kernel or
- Fourier transformations with a filter function

Equivalent:
-Convolution Backprojection
-Filtered Backprojection
23

[^0]NERS/BTOE 481 - 2019

VII.B. 3 - FBP reconstruction, 2D parallel, integral notation

- Consider (x, y) positions in a plane of an object rotated about the z axis thru θ degrees.
- The projection thru this point to the position u on the detector is,
$P(u, \theta)=\int \mu(s) d s$
$u(x, y, \theta)=x \sin (\theta)+y \cos (\theta)$

For each point (x, y), the value of μ is equal to the integral of the convolved projection over all angles
where:

- $u=u(x, y, \theta)$
- The convolution Kernal is the inverse Fourier transform of the

$$
K(u)=\int F(\omega) \mid \omega e^{i \omega u} d \omega
$$ ramp function, $|\omega|$, and any addition smoothing filter, $F(\omega)$.

$$
\begin{aligned}
& \mu(x, y)=\int P^{*}(u, \theta) d \theta \\
& P^{*}(u, \theta)=P(u, \theta) * K(u)
\end{aligned}
$$

$$
=\int K\left(u^{\prime}-u\right) P\left(u^{\prime}, \theta\right) d u^{\prime}
$$

VII.B. 3 - FBP reconstruction, 2D parallel, discrete notation reconstruction can be found for the special case of a cylindrical homogenous object
We then consider only the noise of the
We then consider only the noise of the reconstruction in the center which is projection, P_{0}.
The central ray projections are rotationally similar with a noise of σ_{P}.

Note: The fan beam solution (central cone) is the same
as the parallel beam for the central ray (see VII. B.4).

- If the projection noise does not vary with angle, σ_{P}, then projection variance, $\sigma_{P}{ }^{2}$, can be taken out of the summations.
The angular summation is now trivial and results in an N_{θ} term that cancels one in the denominator

$$
\begin{aligned}
\sigma_{\mu(x, y)}^{2} & =\frac{\{\pi \Delta u\}^{2}}{N_{\theta}} \alpha^{2} \sigma_{\rho}^{2} \\
\alpha^{2} & =\sum_{l=-\infty}^{+\infty}\{K(l \Delta u-u)\}^{2}
\end{aligned}
$$

VII.B. 3 - FBP reconstruction, 2D parallel, discrete notation

- A common smoothing function used to modify A common smoothing function used to modify
the ramp filter is the sinc function, $\sin (\omega) / \omega$.
- For this the α^{2} term is a function of the limiting spatial frequency

$$
\begin{aligned}
\omega_{\text {lim }} & =1 /(2 \Delta u) \\
& \begin{array}{c}
\text { Note: See the lecture notes on CT noise } \\
\text { propogation for the derivation of } \alpha^{2} .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\alpha^{2} & =\frac{\omega_{\mathrm{lim}}^{2}}{2 \pi^{2}} \\
\sigma_{\mu}^{2} & =\frac{\omega_{\lim }^{2}}{2 N_{\theta}} \sigma_{P}^{2} \\
& =\frac{1}{2^{3} N_{\theta}(\Delta u)^{2}} \sigma_{P}^{2}
\end{aligned}
$$

We recall now that the Projection is
proportional to the natural log of the detected signal and thus the projection noise is equal to the relative noise of the detector signal.

$$
P=-\ln \left(S / S_{o}\right)=\ln \left(S_{o}\right)-\ln (S), \quad \sigma_{P}=\sigma_{S} / S
$$

In terms of the noise equivalent quanta, $Q e q$. the projection noise is thus,
$\sigma_{P}^{2}=1 / S N R^{2}=1 /\left(Q_{e q} A_{d}\right)=1 /\left(Q_{e q} \Delta u S_{w}\right)$
where $A_{d}=$ detector area, $S_{w}=$ slice width.

where $A_{d}=$
29

VII.B.4-3D Solution, cone beam
 The Feldkamp solution weights the projection data and scales the backprojection

- Weight Projection Data

$$
P_{\theta}^{\prime}(u, v)=\frac{d_{s}}{\sqrt{d_{s}^{2}+v^{2}+u^{2}}} P_{\theta}(u, v)
$$

- Convolve Weighted Projection Data

$$
P_{\theta}^{*}(u, v)=P_{\theta}^{\prime}(u, v) * h(u)
$$

- Backproject the convolved weighted Projection Data

$$
\mu(x, y, z)=\int_{0}^{2 \pi} \frac{d_{s}^{2}}{\left(d_{s}-y\right)^{2}} P_{\theta}^{*}\left(\frac{d_{s} x^{\prime}}{d_{s}-y^{\prime}}, \frac{d_{s} z^{\prime}}{d_{s}-y^{\prime}}\right) d \theta
$$

VII.B. 4 - FKD pseudocode A - process the projection views

```
for each vertical detector position v ( }\mp@subsup{N}{v}{}\mathrm{ positions):
    for each horizontal detector position u (N N
        precompute weights w(u,v)=\mp@subsup{d}{s}{}/\sqrt{}{\mp@subsup{d}{s}{2}+\mp@subsup{u}{}{2}+\mp@subsup{v}{}{2}}
        end u loop
    end v loop
    for each 0 ( }\mp@subsup{N}{0}{}\mathrm{ views):
        Weight Projection
            for each vertical detector position v ( }\mp@subsup{N}{v}{}\mathrm{ positions):
            for each vertical detector position u (N
            p
        end u loop
    eadv loop
```

 Fourier Filter Zero Padded Projections 2 rows at a time
 for every other vertical detector position \(v\) (\(N_{v} / 2\) positions):
 \(P(u)=F F T\left\{p_{\theta}^{\prime}(u, v)\right.\) and \(\left.p_{\theta}^{\prime}(u, v+1)\right\}\)
 for each zero padded horizontal detector position \(u\) (\(2 N_{u}\) positions):
 \(P^{*}(u)=P(u) h(u)\)
 end \(u\) loop
 \(p_{\theta}^{*}(u, v)\) and \(p_{\theta}^{*}(u, v+1)=F F T^{-1}\left\{P^{*}(u)\right\}\)
 end \(v\) loop

VII.B. 5 - Maximum Liklihood CT reconstruction

Maximum Liklihood (ML) reconstruction methods offers the possibility to include the Poisson statistics of the photons in the reconstruction. Since the projections, i, are independent, the log-likelihood, L, can be written as,
where

$$
L=\sum_{i}\left(-d_{i} e^{\left.\left.-\sum_{i} A_{i j} \mu_{i}-Y_{i} \sum_{j} A_{i j} \mu_{j}\right)+c_{1} \left\lvert\, \begin{array}{l}
\text { Equation } 5 \\
\text { Ziegler 200 }
\end{array}\right., \begin{array}{l}
\\
\hline
\end{array}\right]}\right.
$$

di is the expected number of photons leaving the source along the ith projection,
$Y i$ are the observed photon counts along projection i,
μ_{j} is the absorption coefficient of the jth supporting grid point
Aij are the elements of the system matrix, and $c 1$ is an irrelevant constant An approximate solution of maximizing L leads to an iterative step n to $n+1$ of,

$$
\mu_{i}^{n+1}=\mu_{j}^{\prime \prime}+\mu_{j}^{\prime \prime} \frac{\sum_{i} A_{i j}\left[d_{i} e^{-\left(A_{i}, \mu^{\prime \prime}\right)}-Y_{i}\right]}{\sum_{i} A_{i j}\left(A_{i}, \mu^{\prime \prime}\right) d_{i} e^{-\left(A_{i}, \mu^{\prime \prime}\right)}} \begin{aligned}
& \text { Equation 6 } \\
& \text { Ziegler 2007 }
\end{aligned}
$$

Using an ordered subset method, Ziegler demonstrated that ML reconstruction can result in a signal to noise improvement of about 3 for equal resolution relative to filtered backprojection methods (FBP).

[^0]: - A. C. Kak and Malcolm Slaney,

 Principles of Computerized Tomographic Imaging, IEEE Press, 1988. http://www.slaney.org/pct/pct-toc.html

