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I.A.1 - General Model – xray imaging

Xrays are used to examine the interior content of objects
by recording and displaying transmitted radiation from a
point source.

DETECTION DISPLAY

(A) Subject contrast from radiation transmission is

(B) recorded by the detector and

(C) transformed to display values that are

(D) sent to a display device for

(E) presentation to the human visual system.
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I - General Model – radioisotope imaging

Radioisotope imaging differs from xray imaging only
with repect to the source of radiation and the
manner in which radiation reaches the detector.

A

B

Pharmaceuticals tagged with radioisotopes accumulate in
target regions. The detector records the radioactivity
distribution by using a multi-hole collimator.
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V.A – Linear Systems Analysis

V) Fidelity of images

A. Linear Systems Analysis (21)

B. Resolution

C. Noise

D. Detective efficiency
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V.A.1 – Linear System Properties

• Linearity

• For many inputs to a system, the output corresponds to a
the sum of the outputs that would occur if each input was
separately applied.

• Multiplication of the input by a constant multiplies the
output by the same constant.

• Spatial invariance
The image resulting from a point input is the same for all
input positions. For some systems, the response may be
large scale invariant with respect to the response of
adjacent detector elements, but small scale variant with
respect to input positions within one detector element.

• Isotropic response
Imaging systems for which the point response function is
the same in all directions can be described by one
dimensional response functions.

See Rossman, Radiology1969
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V.A.2 – Convolution

• For a linear imaging system, the output image can
be computed as the 2D input signal convolved with
the system point spread function.
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V.A.2 – Convolution

A special case of convolution is the auto-
correlation function, ACF, which is the
convolution of a function with the same function.

  dxdyyxfyxfACF ),(),(),( 

We will see shortly where the ACF is useful
for describing noise based on the deviation
of the signal from the mean, DS(x,y).

In this case, ACF(0,0) is just sS
2.
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V.A.3 – Fourier Analysis

• The Fourier transform can be used to evaluate the
frequency composition of a signal. For imaging systems
the signal is often a function of a two spatial variables.
For simplicity, consider only the variation of the image

signal in one dimension, S(x) .

• The Fourier transform operates on S(x) to produce a

function which varies with spatial frequency, S(wx) .

• When the variable x has units of mm the variable wx will
have units of cycles/mm.
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• The Fourier transform
may be mathematically
expressed as an integral
transformation involving
an imaginary
trigonometric operator.
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V.A.3 – Fourier Analysis

• Symmetric signals

If the signal is symmetric about x=0,
then the Fourier transform is real.

For example, if S(x) is a unit impulse
function at x=0, then the tranform is

simply S(wx) = 1 for all values of wx.

x
xi

x dexS x  2)()( 




 S

• Inverse Transform

A similar inverse Fourier transform
operates on a frequency domain
function to produce the corresponding
spatial domain function.
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• If S(wx) is obtained from the Fourier transform of S(x), then the

inverse Fourier transform of S(wx) results in the original function S(x).

• S(x) and S(wx) are thus often referred to as the spatial domain and
frequency domain representations of the same signal.
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V.A.3 – Spatial Frequencies

Audio signals are commonly described as a distribution of
audio tones with different temporal frequency (cycles/sec).

Signal that vary with position, x, are described by the
amplitude of different spatial frequencies (cycles/mm).
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V.A.3 – Spatial Frequencies

Similarly,
Images can
be described
as a set of
signals with
varying
spatial
frequency
and
direction.
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V.A.3 – Fourier Analysis

• The two dimensional Fourier transform can be used to
evaluate the spatial frequency composition of an image.
The inverse 2D transform is defined similarly.
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• S(wx, wx) for a particular

value of (wx, wx) ,
corresponds to a 2D image
with directionally oriented
sinusoidal signal variation.
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V.A.3 – Discrete Fourier Transforms

• For numeric computation,
the Discrete Fourier
transform (DFT) is used.

• Two dimensional
transforms are computed
by first transforming all
rows with a 1D transform,
and then all columns with a
1D transform.

   

   

1
2 /

0

1
2 /

0

1

N
i nk N

n k x
N x

k

N
i nk N

nk x
N x

n

S e

S e
N




























S

S

• The numeric steps in the DFT may be factored to achieve
significant improvement in computational speed. Most computer
algorithms use some form of a Fast Fourier Transform (FFT).

• Cooley JW and Tukey JW, “An algorithm for machine calculation of
complex Fourier series”, Math. Computation (April 1965), Vol 19, pp
297-301.

• Public domain optimized FFT: http://www.fftw.org

FFT Demonstrations: A. fourier.jar B. imageJ FFT
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V.A.3 – Fourier Analysis Theorems

Convolution Theorem

If f(x) has the Fourier transform F(w) and g(x) has the

Fourier transform G(w), then f(x)⨂ g(x) has the Fourier

transform F(w)G(w) ; that is, convolution of two
functions means multiplication of their transforms,

• Proof:    
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Note: * is used here rather than the
classical ⊗ as is commonly seen.
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V.A.3 – Fourier Analysis Theorems

Description of Blur

spatial and the frequency domain

Iin(x,y) Iout(x,y)P(Dx,Dy)

Iin(wx,wy) MTF (wx,wy) Iout(wx,wy)

F F F -

X =

=X
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V.A.3 – Fourier Analysis Theorems

Autocorrelation Theorem (Wiener-Khinchin theorem)

If f(x) has the Fourier transform F(w), then it’s auto-

correlation function has the fourier transform |F(w)|2.

• Proof: 2 2 * 2
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V.A.3 – Fourier Analysis Theorems

As a special case of the autocorrelation theorem,
the autocorrelation function of signal deviations is
the Fourier transform of its noise power spectrum.
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Where the NPS is the Fourier transform of
signal deviations from the mean, DS,
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V.A.3 – Fourier Analysis Theorems

• To illustrate convolution, autocorrelation, and noise power, consider
a radiograph taken with a uniform beam of 106 photons/mm2.

• For a detector with elements of 0.1 mm x 0.1 mm size, an ideal
detector would record an average of 104 photons with quantum noise
having a standard deviation of 100.

• Consider three detectors that spread the deposited energy
amongst the neighboring detector elements as decribed by their
point spread functions.

• These 2D spread functions
are normalized to have an
integral value of 1.0.

• The widths have Wx values
in mm that are the standard
deviation value of a gaussian
distribution.

• These spread function
might describe;

•high resolution
•standard resolution
•low resolution

Point Spread Function, P(r)
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V.A.3 – Fourier Analysis Theorems

As expected the image values for the low resolution detector have
noise deviations that are highly correlated from one element to the
next. The standard deviation of the detected values vary even though
the detected noise equivalent quanta is the same, 106 photons/mm2.

Std. Dev.

• high
resolution

63.9

• standard
resolution

27.9

• low
resolution

13.8

Detected Image values for one column
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The detected values reflect the convolution of the ideal response and the point spread function.
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V.A.3 – Fourier Analysis Theorems

The ACF describes the correlation
with distance of the noise texture.

Normalized ACF
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The ACF is equal to
the variance, s2, for
displacement
distances, k, of 0.
It is thus common
to normalize the
ACF by by variance
as shown here.

The low resolution
detector has longer
range correlation
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Noise Power Spectrum, NPS

0.0E+00

2.0E-07

4.0E-07

6.0E-07

8.0E-07

1.0E-06

1.2E-06

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Freq , cycles/mm

m
m

2
p
e

r
q
u

a
n
ta

Wx = 0.05

Wx = 0.10

Wx = 0.20

V.A.3 – Fourier Analysis Theorems

The NPS describes the spatial
frequency content of image noise.

The units of the NPS are the
inverse of noise equivalent
quanta units, 1/(quanta per mm2)

The high resolution
detector has extended
frequency response.

The area under
the NPS is equal
to the variance.
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V.A.3 – Fourier Analysis Theorems

Parseval’s theorem

Loosely stated, Parseval’s theorem says that the sum (or
integral) of the square of the spatial function is equal to the
sum (or integral) of the square of it’s Fourier transform.
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Parseval presented this theorem without proof in 1799,
http://en.wikipedia.org/wiki/Parseval's_theorem

• The area under the Noise Power Spectrum, NPS, is equal
to the variance associated with the signal deviations
from the mean, s2, as noted in the previous slide.

• This property is explained by Parseval’s theorem.
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V.A.3 – Fourier Analysis Theorems

Central slice theorem

The values of the 2D Fourier transform along a line (slice)
through the origin are equal to the 1D tranform of the
parallel projection (line integral) of the spatial function in a
direction perpendicular to the slice.

Barrett & Swindell, 1981, Pg 384
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V.A.3 – Fourier Analysis Theorems

The Sampling theorem

• The Nyquist-Shannon sampling theorem establishes a
sufficient condition for a sampling interval that permits a
discrete sequence of samples to capture all the information
from a continuous band limited signal.

• The Fourier transform of a band limited signal will be zero
above some limiting frequency

• The reconstruction is accurate if the signal is sampled at
intervals of

In the 19th century, Helmholz related visual resolution to the spacing of receptors in
the retina. In the 1930s this was used by Nyquist for commications signal sampling

D x = 1/(2 wlim ) .

wlim = 1/(2 D x ) , is called the Nyquist frequency.

https://en.wikipedia.org/wiki/Nyquist-Shannon_sampling_theorem
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V.A.3 – Fourier Analysis Theorems

The Sampling theorem and Aliasing

When the sampling theorem conditions
are not met and signal frequencies
extend beyond the Nyquist frequency,
the signal is falsely sampled and the
high frequency components appear as
false low frequency signals.

http://research.opt.indiana.edu/Library/FourierBook/ch07.html#H2

A poorly sampled image of a
brick building illustrates
aliasing artifacts sometimes
referred to as a Moire pattern.

http://www.svi.nl/AntiAliasing
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V.B – Resolution

V) Fidelity of images

A. Linear Systems Analysis

B. Resolution (22 slides)

C. Noise

D. Detective efficiency
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V.B.3 – Image detail

Good detector resolution permits the recording of
detailed object structures.
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V.B.1 – Spatial Spread Functions - P(x,y) and P(r)

• In the previous section, the output
image was shown to equal the 2D
input signal convolved with the
system point spread function.

• The point spread function (PSF) can
be written in polar coordinates,

P(r,q) .

• For systems with an isotropic
response, the PSF is then one
dimensional,

P(r) .
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V.B.1 – Spatial Spread Functions - L(y)

• The response to a line source is
known as the Line Spread

Function (LSF), L(y) , which is
the response normal to the line.

• For a linear system, the LSF can
be computed as the integration
of the PSF for point sources
distributed in a line.

• Written in this form, the LSF
can be seen to be the line
integral of the PSF in the x
direction for all values of y.

• This is often referred to as the
projection of the PSF.
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V.B.1 – Spatial Spread Functions - E(y)

• The response normal to the
edge of a broad source is
known as the Edge Spread
Function (ESF),

E(y).

• For a linear system, the ESF
can be computed as the
integration of the LSF for
distributed line sources.

• Written in this form, the LSF
can be seen to be the
derivative of the ESF.
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V.B.2 – Modulation Transfer Function (MTF)

• The 2D MTF is defined as the modulation transfer for 2D
sinusoidal patterns of varying spatial frequency and orientation.

• The 2D MTF may be computed as the magnitude of the 2D
Fourier transform of the systems point spread function, PSF.

• The PSF describes the systems response to x-rays normally
incident to the detector at a specific point.
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V.B.2 – MTF: Central Slice Theorem

• The projection of a PSF is equal to the LSF for a line
source oriented parallel to the projection direction.

• The 1D MTF is equal to the values of the 2D MTF along a
line through the origin and perpendicular to the line source

F2D
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2D MTF

Line Source

x

y
Point Source

LSF

F1D

1D MTF

wxx

K. Rossman, Radiology, Vol 93, 1964
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V.B.3 – MTF

The modulation transfer function (MTF) quantifies the
ability of the imaging system to transfer any given
spatial frequency from an input to an output.

Rossman, ‘PSF, LSF, & MTF, Tools for .. imaging systems’, Radiology 93:257, 1969



V.B.3 – Image blur
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MTFINPUT OUTPUT

The input signal
contains spatial
frequency
components of
varying amplitude
and phase.
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V.B.3 – MTF: Edge Phantom

• MTF is commonly measured using an Edge Test Device.

• This edge test device has been fabricated by milling
and then lapping the sides of a high Z material
laminated between lucite slabs.

•Edge Test Device

5 x 5 cm, 0.1-mm-thick polished
Platinum-Iridium foil laminated
between two 1-mm slabs of Lucite

•Image Acquisition

Device placement at the center of
the field of view

Acquisition at ~ 4-6 mR (w/o grid)

IEC 62220-1-2 ED. 1.0 B:2007

Samei
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V.B.2 – MTF: Edge Spread Function

• The edge spread function, ESF, is generally the easiest
reponse function to measure experimentally.

• The LSF can then be computed as the ESF derivative.

• Then the MTF can be computed from the LSF

Modulation Transfer
Function
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•Samei, Med. Phys., V 25, N 1, 1998
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V.B.3 – MTF: Edge Phantom Material

• If the kVp of the x-ray beam is above the binding energy of the
edge material, fluorescent radiation can cause low spatial
frequency distortion of the edge response.

• Edges are be made of very high Z material to minimize this effect;

Lead, Platinum-Iridium, depleted Uranium

• For low energies, a Brass-Aluminum laminate would be appropriate

Edge Response Function

Fluorescent

Radiation
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V.B.3 – Edge Fit

• Edge positions are estimated for each column using a
numerical derivative of the column data.

• A polynomial fit is performed on the edge estimates for
all column in a defined region of interest
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V.B.3 – MTF: Distance Binning

• For each pixel in the ROI;

• The closest distance to the
edge is determined and
converted to an integer index.

• The pixel value is added to a
1D array element.

• The average value of the ESF
is then computed from the
accumulated values.
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V.B.3 – MTF - ESF to LSF
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ESF to LSF transformation

•The ESF is smoothed in regions of low slope using a moving polynomial fit

•The ESF is numerically differentiated to deduce the LSF

•The baseline of the LSF is corrected using the ends of the data
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V.B.3 – MTF: LSF to MTF
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LSF to MTF transformation

•The LSF is multiplied by a Hamming window function.

•The magnitude of the Fourier transform of the LSF is computed.

•The MTF is determined by normalizedto 1.0 at a spatial frequency of 0.0.



42
NERS/BIOE 481 - 2019

V.B.3 – MTF: Edge vs Slit

M
T

F

Spatial Frequency (cycles/mm)

GP, edge method
GP, slit method

HR, edge method
HR, slit method

Samei, Med. Phys, 1998

KESPR, GP-25 & HR

0.1 mm pixel size,

90 kVp, PSC

The edge method for measuring the MTF is
equivalent to the slit method used previously
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MTF – CR, DR, and xTL

0 6 7
cycles/mm

1 2 3 4 5
0

.2

.4

.6

.8

1.0

MTF

CRGP

DR-CsI

DR-Se

dXTL

Lanex
Fine

V.B.3 – MTF typical shape
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V.B.3 – Image Blur from Light Diffusion

Film-Screen CR
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V.B.3 – Blur in Digital Radiography

thin film transistor

Oriented

CsI

reflective layer

indirect DR

dielectric
layer

electrode

a-selenium

thin film transistor

+
-

direct DR



46
NERS/BIOE 481 - 2019

V.B.3 – CR Hand Phantom
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V.B.3 – DR Hand Phantom
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V.B.3 – XTL Hand Phantom
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V.C – Noise

V) Fidelity of images

A. Linear Systems Analysis

B. Resolution

C. Noise (22 slides)

D. Detective efficiency
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V.C.1 – Noise

• Image noise associated with quantum mottle limits
the detection of large low contrast features.

• When evaluating the performance of CR/DR systems,
the noise amplitude and texture should be consistent
with the incident exposure and the detector type.
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V.C.1 – Noise texture

• Statistical fluctuations in the number of x-rays
detected in each pixel cause image noise.

• Correlation of the signal amongst pixels from
detector blur effects the noise texture.

A
B

Simulated noise

sA = sB
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V.C.2 – Noise Power Spectrum, NPS

The relative strength of various spatial frequencies in a
noise image is referred to as the noise power spectrum, NPS.

NPS
mm2

Spatial Frequency, cycles / mm

sA = sB

A

B
1 / fB

eq

1 / fA
eq
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V.C.2 – NPS and Noise Equivalent Quanta

The units of the NPS are mm2/quanta. This is the

inverse of feq , the equivalent number of quanta
per mm2 associated with ideal quantum noise.

NPS
mm2

Spatial Frequency, cycles / mm

sA = sB

A

B
1 / fB

eq

1 / fA
eq

Large area noise is described by
NPS (0) which is equal to the
inverse noise equivalent quanta.



54
NERS/BIOE 481 - 2019

V.C.2 – NPS and Spatial Variations

NPS
mm2

Spatial Frequency, cycles / mm

sA = sB

A

B
1 / fB

eq

1 / fA
eq

• Smoothing operations reduce STD but not NPS(0).
• STD is NOT a good measure of low contrast detection

when image texture and the NPS are different

The standard deviation of
image values is proportional
to the area under the NPS.



V.C.3 – NPS measurement conditions
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• The chamber is placed midway
between the source and the
detector and exposure
measure at A and B.

• The measurements are
corrected for distance and A
to B offset.

• Measures at B are used to
deduce estimates of the
exposure at the the detector.

In the absence of instrument noise,
the NPS is inversely proportional to
the radiation exposure.

Illustration from AAPM TG116 report
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V.C.3 – NPS measurement - Radiographic Technique

IEC and AAPM have published documents on Exposure Indices
that include a standard beam condition similar to RQA5.

HVL kV Added Cu Added Al

IEC 62494 6.8 +/- .3 70 +/- 4 0.5 mm 2 mm

AAPM TG116 6.8 +/- .25 70 +/- 4 0.5 mm 0-4 mm

Most previously
published work has
used IEC RQA
beam conditions.

It is now common to measure NPS over a range of exposure values

Suggested values:

0.1 0.3 0.6 1.0 3.0 6.0 10.0 mR

- 0.3 - 1.0 - 6.0 - mR

Added
Al

HVL
mm Al

Nominal
kVp

Typical
kVp

RQA5 21 mm 7.1 70 72-77

RQA9 40 mm 11.5 120 120-124
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V.C.3 – Linear ‘For Processing’ image data

• Ideally, we would like to obtain image data that is linear with
exposure but includes

• Defective pixel corrections

• Gain and offset corrections (flat field)

• Systems often export ‘For Processing’ images data that include
these corrections but are proportional to the log of the detector
input exposure, E. If the pixel value relationship is known, a linear
approximation for small signal deviations can be used.

 
 








 








 






E

E
B

E

E
BI

EEBAII

EBAI

p

p

1ln

ln

ln

AAPM TG116 recommends that exported ‘For Processing’
images have pixel values with Ip = 1000log10(Kstd) where Kstd

is the standard beam input air kerma in nanoGray units
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V.C.3 – NPS: 2D Block Average

To reduce noise in the estimate of the NPS at the expense
of spectral resolution, the 2D NPS is computed for many
small blocks using a 2D FFT and the results are averaged.

Flynn, Med. Phys., V 26, N 8, 1999

Additional
improvement
in the noise of
the NPS
estimate can
be achieved by
computing the
2D FFT from
overlapping
blocks.
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V.C.3 – NPS adjustment for non-uniformity

• The linear signal mean in
each block is used to
correct the NPS of each
block to the exposure at
the center of the detector.

• This accounts for
variations in the input
signal due to the x-ray
tube heel effect.
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V.C.3 – FFT estimate of the NPS

Flynn, Med. Phys., V 26, N 8, 1999

The estimate of the NPS for each block is done
using a Fast Fourier Transform, FFT, as described in
Flynn1999.

1. A bi-quadratic surface is fit to the block values to
obtain the mean value and low frequency trend (see
Zhou, MedPhys 2011)

2. Relative noise deviations are computed based on
whether the data is linear or logarithmic.

3. Values are adjusted for image pixel area.

4. Block values are modified by a spectral window function
(Hamming).

5. The NPS is computed as the magnitude squared of the
Fourier transform.
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wx

wy
No lap

V.C.3 – NPS: 1D Results from 2D NPS

• The 2D NPS can be displayed as an image with values
proportional to the log of the NPS.

• An 1D estimate can be derived from the 2D NPS by
averaging all values within;

• NPS(y) : A horizontal band about the wx axis

• NPS(x) : A vertical band about the wy axis

• NPS(r) : A circular band centered on the origin

wx

wy
.5 lap
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0 1 2
1E-7

1E-6

1E-5
NPS Validation

1000 x 1000 Image Simulation
.2 mm pixel size
10,000 quanta per pixel
Horizontal NPS
128 x 128 blocks
11 x 11 block array
50% block overlap

N
P

S
,
m

m
2

Frequency, cycles/mm

V.C.3 – NPS: 2D Block Average

NPS for a simulated image

uncorrelated gaussian noise

10,000 #/pixel x 25 pixels/mm2 = 250,000 #/mm2

1/250,000 = 4E-6 mm2

0 1 2
1E-7

1E-6

1E-5
NPS Validation

1000 x 1000 Image Simulation
.2 mm pixel size
10,000 quanta per pixel
Horizontal NPS
128 x 128 blocks
6 x 6 block array
no overlap

N
P

S
,
m

m
2

Frequency, cycles/mm
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V.C.3 – NPS: NPS exposure product

The comparison of results made at different exposures
can be done by plotting the product of NPS and exposure

0.0001

N
P

S
x

E
x
p

o
s
u

re
(m

m
^

2
-m

R
)

Spatial Frequency (cycles/mm)

0.327 mR

1.105 mR

Samei & Flynn, SPIE, 1997

NPS for a Computed Radiography (CR) system
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V.C.3 – NPS: Se DR detector

NPS for a direct digital radiography (DR) system
using a Selenium detector with negligible blur.

1.E-06

1.E-05

1.E-04

0 0.5 1 1.5 2 2.5 3 3.5 4

Spatial Frequency (cycles/mm)

N
P

S
*

E
x

p
o

s
u

re
(m

m
^

2
-m

R
)

0.38 mR, RQA5, Ver DR-1000

0.84 mR, RQA5, Ver DR-1000

1.74 mR, RQA5, Ver DR-1000

3.43 mR, RQA5, Ver DR-1000

6.88 mR, RQA5, Ver DR-1000

1.74 mR
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V.C.3 – NPS for an ideal detector

• Thicker detectors with more efficient absorption produce
less noise and lower NPS for the same exposure.

• It is informative to compare the measured NPS to that
expected from an ideal detector.

• The NPS for an ideal detector will be constant in relation
to frequency with a value equal to the inverse of the noise

equivalent quanta for an ideal integrating detector, 1/Feq .

• From lecture 05;

ikVp

kVp

ideal
eq Q

dEEE

dEEE






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










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



0

2

2

0
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V.C.3 – NPS: Se DR detector

1.E-06

1.E-05

1.E-04

0 0.5 1 1.5 2 2.5 3 3.5 4

Spatial Frequency (cycles/mm)

N
P

S
*

E
x

p
o

s
u

re
(m

m
^

2
-m

R
)

0.38 mR, RQA5, Ver DR-1000

0.84 mR, RQA5, Ver DR-1000

1.74 mR, RQA5, Ver DR-1000

3.43 mR, RQA5, Ver DR-1000

6.88 mR, RQA5, Ver DR-1000

Samei & Flynn, Med.Phys., 2003

Multiplying the NPS (mm2/quanta units) by the quanta/mm2 incident
on the detector (i.e. ideal NEQ) results in a dimensionless noise
power representation with a value of 1.0 for a perfect detector.

25

2.5

.25

Q
i
x

N
P

S

Qi x NPS = (Qi/uR) x uR x NPS

Qi/uR = 250
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V.C.3 – NPS for an ideal detector

For experimental use, values of Qi .and exposure, X , are
computed using a model of the spectral shape and expressed
as Qi / X in relation to kVp.

• Values for Xf are obtained by computing the energy absorbed in air for
the spectrum F(E) using mass enery-absorption coefficient data obtained
from the National Institute of Standards and Technology.

• The energy absorbed in air is then converted to charge using a W value
of 33.97 J/C (i.e. eV/ion pair) (Boutillon 1987).


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V.C.3 – Q,quanta per mR

0

50,000

100,000

150,000

200,000

250,000

300,000

40 60 80 100 120 140 160

kVp

(#
/m

m
2
)/

m
R NEQ / mR

Quanta / mR

xSpect simulation

The noise equivalent quanta per mR is a slowly
varying function of kVp and filtration.



Ideal Noise Equivalent Quanta
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[ ] denotes converted values
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Q per mR for TG116/IEC beam conditions

• Within the range of added filtration and HVL acceptable for
AAPM EI beam conditions, the Qi per mR varies by about +/- 1.5%

• The Qi per mR for an ideal counting detector is about 2.7% higher
that that for an ideal energy integrating detector.

• The noise equivalent quanta, and therefor NPS(0) for a DR
detector varies little with beam conditions.

Noise equivalent quanta computed from a spectral model.
• Qi/uR E integr: Ideal energy integrating detector
• Qi/uR Fluence: Ideal counting detector
• Qi/uR dDR: Direct DR detector (.5 mm Se)
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V.C.3 – Normalized NPS

NPS relative to an ideal detector

Low mR

Low mR

9 exposures

from 0.10 mR

to 3.20 mR

At high exposures
the noise power is
about twice that of
an ideal detector

At low exposures
increased noise
exhibits apparent
smoothing.
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V.D – Detective Efficiency

V) Fidelity of images

A. Linear Systems Analysis

B. Resolution

C. Noise

D. Detective efficiency (6 slides)
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V.D.1 – Frequency dependant SNR

• Since the NPS is normalized to the inverse of feq at zero frequency,

• and feq is understood to be the square of the signal to noise ratio,

• the NPS(w) can be understood as the square of the frequency
dependant noise relative to the overall signal,

• Since the frequency dependant signal is S * MTF(w) , the frequency
dependant signal to noise ratio can be defined as,

2
( )

( )NPS
S

 


 
  
 

Note: as written, this is the actual frequency dependant SNR that can
be computed from experimental measures of the MTF and NPS

 
 

 
 

2 2
2

2

( ) ( )
( )

( )( )

S MTF MTF
SNR

NPS

 


 


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V.D.1 – Frequency dependent NEQ

The frequency dependent SNR, SNRmeas(w), has been referred to as

the frequency dependent NEQ, NEQ(w) or feq(w) .

Since NPS(w) is equal to 1/feq for f=0,

and MTF(w) = 1.0 for f=0,

SNRmeas(w) = feq for f=0

The frequency dependent NEQ(w) is thus consistent

with the NEQ and feq that we have previously considered.

• Shaw, R., "Thé Equivalent Quantum Efficiency of the Photographic Process,“

J. Photogr. Sci., Vol. 11, pp. 199 -204. 1963.

• J. C. Dainty and R. Shaw, Image Science

Academic Press, London, 1974. (a) Ch. 5. (b) Ch. 8.

 
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V.D.2 – DQE: Detective Quantum Efficiency

• An ideal detector was previously defined as one that detects all of
the energy of all of the incident radiation. If it also has no blur,

the ideal SNR(w)2 will be the ideal Feq , i.e. the Qi defined in the
prior section, and will be constant for all spatial frequencies.

• A popular figure of merit (FOM) is to compare the measured
SNR(w) to the ideal SNR(w). This frequency dependant FOM is
known as the Detective Quantum Efficiency;

Note: DQE(w) is seen above to be just the ratio of the MTF(w) squared to the
normalized NPS obtained by using the ideal quanta per mR.

It is usually more informative to report the MTF and normalized NPS
separately rather than combining them into one FOM.
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V.D.3 – experimental DQE examples

DQE – CR and DR

0 6
cycles/mm

1 2 3 4 5
0

.2

.4

.6

.8

1.0

DQE

CRGP

DR-CsI

DR-Se

RQA5, ~74 kVp

1000 um
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CR dDR (500 mm)

V.D.3 – Spine signal/noise
Lateral Spine - Equivalent exposures
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V.D.3 – Arm signal/noise
Proximal Humerus – Lung Ca metastasis

dDR
(1000 um)

CR
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V.D.4 – Diagnostic Value

Is the diagnostic
value of reduced
noise (dose) in
mediastinal
regions more
important than the
value of improved
detail in lung
regions where
quantum noise is
minimal

?

EKC CR 900


