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ABSTRACT

PART I

The several statistical approaches to the problem of
signal detectability which have appearcd in the literature are
showvn to be essentially equivalent. A general theory based on like-
lihood ratio cmbraces the criterion approach, for either restricted
false alarm probability or minimum weighted error type optimum, and
the o posteriori probability approach. Receiver reliability is
shovn to be a function of the distribution functions of likelihood
ratio. The existence and wniqueness of solutions for the various
approaches is proved under general hypothesis.

PART II

The full power of the theoory of signal detectability can
be applied to detection in Gaussian noise, and several general re-
sults are given. Six special cases arc considered, and the
expressions for likelihood ratio are derived. The resulting opti-
mm receivers are eveluated by the distribution functions of the
likelihood ratio. In two of the special cases studied, the uncer-
tainty of the sigral ensemble can be varied, throwing some light on
the effect of uncertainty on probability of detection.



ACKNOWLEDGEMENTS

: In the work reported here, the authors have been in-
fluenced greatly by theilr association with the other members of
the Electronic Defense Group. In particular, Mr. H. W. Batten
contributed much to the early phases of the work on signal
detectability. The authors are indebted to Mr., W. C. Fox and Mr.
Paul Roth for the proofes of Lermn 1 and Lemma 2 in Appendix B
and also to Mr. Fox for the proof of Lemma 4t and for the many
helpful suggestions and corrections resulting from his careful
reading of the text.

The authors also wish to acknowledge their indebted-
ness to Dr. A. B. Macnee, Dr. H. W. Welch, and Mr. C. B. Sharpe
for the many suggestions resulting from their reading the report,
and to Geraldine L. Preston for her assistance in the prepara-
tion of the text.



—  ENGINEERING RESEARCH INSTITUTE -« UNIVERSITY OF MICHIGAN —

THE THEEORY OF SIGNAL DETECTABILITY

PART I. THE GENEDRAL THEORY

ISSUED SEPARATELY:

PART II. APPLICATIONS WITH
GAUSSIAIT INOISE

l. Concepts and Theoretical Resultis

1.l Introduction

Random interference plays the key role in the theory of signal detec-
tability. It not only places a limit on the energy which a signal must have to
be detected reliably, but it also limits the bandwidth of a receiver for strong
signals, or generally the variety of signals vhich can be detected consistently
in a given receiver.. Part I of this rcport presents the basic theory of detecting
signals in random interference and Part IT applies it to some simple problems in
design and evaluation of receivers.

The signal detectability problem is represented schematically in
Fig. 1.1. The operator has awvailable a voltage varying with time, which will be
refcrred to as the receiver input. This voltage is in some way different when

a signal is present from when there is noise alone.
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TRANSMITTER NOISY CHANNEL RECEIVER OPERATOR
RECEIVER
INPUT

FIG. I.I. BLOCK DIAGRAM OF SIGNAL DETECTION PROBLEM.

The recciver is the operator's tool or analyzing system; it enables him to study
the input to the receiver by observing the receiver output. He can use the
receiver input to his advantage only if (1) the receiver input is differcnt
when therc is a signal than vhen there is no signal, and (2) he knows enough
about the signals and the noise to analyze the input so as to recognize the dif-
ference. The operator can do better than random guessing in deciding whether or
not there is a signal present only when he has information about the signals,
the noise, and his receiver; this rust be fecognized before treating this prob-
len. The information ebout the simal and about the noise is usually of a
gtatistical nature because of the random nature of noise, and the uncertainty as
to the exact signal that will be transmitted.

Simal detcctability has been recognized as a statistical provblem by
a nunber of authors.l Therce have been two distincﬁ approaches to the problen.

The first, the criterion approach, is Tirst presented in Threshold Signals by

: 2
J. L. Lawson and G. I. Uhlenbeck. The second, using a posteriori probability,

lLawson and Uhlenbeck, Ref. 1; Woodward and Davies, Refs. 2, 3, 4, and 5; Reich
and Swerling, Ref. 6; Middleton, Ref. T7; Slattery, Ref. 8; Hanse, Ref. 9;
Schwartz, Ref. 10; North, Ref. 1ll; Kaplan and Fall, Ref. 12.

2Lawson and Uhlenbeck, Ref. 1.
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wes studied by P. M. Woodward and I. L. Davies.l The difference between the

two methods lies mainly in the approach. Both are presentced in this report,

and the very close ponnection between the results of the two will be demonstrated
in Section 2; namely, the basic receiver required can be the same for elther
case, only the final manner of analysis and presentation of the output is differ-
ent. The criterion approach requires less of this analysis, and has been given

more attention in this report because it is somewhat simpler.

1,2 Detectability Criteria

Suppose the operator is required to guess whether or not there is a
gignal present. He will, for certain recelver inputs, say that a signal is
present.2 Such receiver inputs will be sald to satisfy the criterion, or to be
in the criterion. Those receiver inputs which lead him to guess that there is no
signal present are not in the criterion.

There are two distinct kinds of errors which the operator may make.

He may say there is a signal present if there is only noise; this is a false
alarm. THe may say there is only noise when signal plus noise is present; he
misses the signal. One of these errors may be more serious than the other, so
that they must be considered separately.

It will be convenient to use the ordinary notation of probability
theory. EIvents will be represented by letters, and in particular, the following

symbols will be used for the following events:

lpavies, Ref. 2., and Woodvwerd and Davies, Ref. 3.

2We shall assume the operator is scientifically logicel, i.e., for the same
receiver input he will always give the same response. An alternative approach
is described in Appendix A.
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5N There is signal plus noise

N There iz noise alone

A The operator says there is a signal, i.e., the rcceiver input
is in the criterion

CA The operator says there is only noise, i.e., the receciver

inpul is not in the criterion.

If B and C are events, P(B) is the probability of occurrence of event
B, P(B-C) 1s the probability of occurrence of events B and C together, and Pp(C)
is the (conditional) probability of occurrence of event C if event B is known
to occur.

From the statistical information given about the signal and the inter-
ference it turns out to be convenient to calculate Py(A) and PSH(A)’ because
these quantities do not depend upon the a priori probability that a signel is
bresent. This will be done in Part IT of this report for some interesting ceses.
If these probabilities, P;@Q) end Pgr(A) are given as well as P(SN), the a priori
probability that a signal is present, then the probability of any combination of
the events in this discussioﬁ can be calculated. In fact, any three (algebrai-
cally) independent probabilities can be used to calculate all the others. That
there are just three (algebraically) independent probabilities can be seen by
noting that all of the events discussed are combinations of the four events SH-A,
II-A, SN-CA, and N-CA, and any probabilities can be calculated Trom the probebili-
ties of these Tour. But the sum of the probabilities of these four is unity, so

only three of these are independent, Thus, for example,

P(SN-A) = P(SH) Pgy(A) ,

P(N'A) = [1 - P(SN)] P (4) s

B(SH-CA) = P(SH) Bgy(ca) = P(sm) [1 - Bgy(n)] (1.1)
P(A) = P(SN.-A) + P(N-A),

py(sw) = ZEMA) L

P(A)
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1.3 A Posteriori Probebility and Signal Detectability

As an alternative to requiring the operator to say whether a signal is
present or not, thelOPerator might be asked what, to the best of his knowledge,
is the probability that a signal is present. This approach has the advaentage of
getting more information from the receiving cquipment. In fact Woodward and
Davies point out that if the opefator mokes the best possible estimate of this
probability for each possible transmitted message, hé is supplying all the infor-
metion which his equipment can give him.l The method of making the best estimate
of the a posteriori probability that a signal is present will be discussed in
this report. A good discussion of this approach is also found in the original
papers by Woodward and Davies.2

Tt is shown in Section 2 that the a2 posteriori probability is given by
the following equation:

o) = (=) 2(sN)
P = 1m P(S%) T1 - B(N)

(1.2)

where PX(SN) is the a posteriori probability for the receiver input denoted by
x and _Q(X) io the likelihood ratio for the same receiver imput. Likelihood
ratio for a particular receiver input is usually defined as the ratio of proba-
bility density for that receiver input if there is signal plus noise to the
probability density if there is noise alone. It is a measure of how likely that
receiver input is when there is signal plus nolse as compared with when there is
noise alone. It is & random variable; its value depends upon what the receiver

input happens to be. If a receiver which has likelihood ratio as its output

lRef. 3.

2Rer. 2, %, 4, and 5.

)
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can be built, and if the a priori probability P(SN) is nown, a posteriori proba-
bility can be calculated easily. The calcula‘tion‘could be built into the receiver
calibration, making the receiver an optimum receiver for obtaining a posteriori

probability.

1.4 Optimm Criteria

An important question is whether or not it is possible to find the
optimun criterion for a given situation. A first step toward the answer is to
define what is meant by 'optinnm, and this definition depends upon the situation.
It may be possible to put a numerical value upon the correct respons}es and a

nunerical cost on the errors. Suppose

Vap.a = Value of the correct response SN-A =y,
VH-CA = Value of the correct response N-CA =N e .
\ (1.3)
Esi.ca = Cost of the error SN-CA : s
Ky.p = Cost of the error N-A I .
Then
V7 Von.aP(WeA) + Vg o POI-CA) - Ko o P(SH-CA) - K P(N-A) (1.4)

is the expected value of the response of the equipment for a given criterion.
An optimum criterion then would be one which would maximize this expression.
Since the later sections will calculate PN(A) and PSN(A), it will be an advantage

to express the expected value V of the response in terms of these quantities.

Y = Vg aP(SH) Bg(a) + VN_CA[l - 2em)] [1 - pya)]

- Krca?@ 1 - 2 @)] - KN-A[_l - p@n)] )
Vo= Fgy(A) P(SN) (Vgy.p* Kgy.ca) - Pp(8) [l - P(SN)]* (Vy.ca * Ky.a)

+ Ve |1 - 2EM] - Ko, oy POST). (L)

N-CA

6 ]
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Thus maximizing V is equiwalent to requiring that
PSN(A) - B PN(A) is a maximum, where
(1.6)

+
1 - P(SH) (VN-CA KN.A) .

D (SN v +K
(sm) (Vaw.a SN.CA)

Note that P(SN) is the a priori probability that there ies a signal present.

In anotheér case it may be required to limit the probability of a false
alarm and to minimize the probability of a missed signal with this restriction.
In symbols, it is required that,

P(N-A) £ Po
(1.7)
- ‘ P(SN-CA) is a minimum.

This also can be expressed in terms of PN(A), PSN(A)’ and the a priori probability

P(SN):
‘ Po
P@-A) = [1 - P(sW)] Py(a) S Po, or P(A)S k TorEm 0 e
1.8
P(SN:CA) = P(SN) [l - PSN(A)] is a minirmum, ife., Pgy(A) is a ma.ximum( )

1.5 Theoretical Resultis

Both of the above problems of finding an optimum criterion will be
discussed in later sections, and it will be shown that under very general
conditions both problems have essentially the same solution. The optimum cri-
terion consists of all receiver inputs with likelihood grea.ier than some number B.
For the first type of optimum criterion, B is the parameter in Eq. (1.6), and for
\the second type of criterion, £ can be determined from the value of the parameter -
k in Eq. (1.8). It has already been mentioned that a posteriori probability is
the simple function of likelihood ratio given in Eq. (L.2). Thue a receiver which
could calculate the likelihood ratio for each receiver iﬁput can be used as an

‘& posteriori probability type receiver or as either of the criterion type

7
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receivers. Part II of this report, which treats some specific cases, deals

only with the likelihood ratio.

1.6 Receiver Evaluationl

Usually a receiver is Jjudged on the basis of probability of false
alarm if no signal is sent, i.e., PNCA), and the probability of detection if a
signal is sent, PSN(A). The reliability of eny receiver in any given situation
can be summarized in one greph, called the receiver operating characteristic, on
which Poy(A) is plotted against Ph(A). For any criterion and any fixed set of
signals, there is fixed value for Pgy;(A) and a fixed value for Py(A). Thus the
criterion can be represented as a point on the receiver operating characteristic
graph. A criterion-type receiver may operate at any level (i.e., any value of \
B or any value of K), and hence is represented by a curve. Two types of optimum
criteria have been discussed, and the graph points up the relation between
the two. In Fig. 1.2 curve (1) is baseg;?n Qp?#nmm Qp§?ation for which‘€SNCA) is
maximized for Py(f) fixed. {Thus, no receiver can operate aﬁove‘éﬁé»fiést curve?}
The third cuwrve is a lower limit in operation found by rotating the optimum
curve about the center point of the graph; it would result if an optimum receiver
operator minimized PSN(A), i.e., said no whenever he should say yes, and vice
versa,. [EB receivé;, no matter how poor, can be made to operate below the third
curve.:)The diagonal could be achieved by turning the receiver off and guessing,
in which case Poy(d) = Py (a).

In the next section it will be shown that the derivative of curve (1)
sketched in the lower Plot, is the operating level B of the optimum receiver;

that is, if the slope at some point is By then the corresponding optimum criterion

lOnly evaluation of criterion type receivers is discussed here. Ewvaluation of an
& posteriori probability type receiver is considered in Section 2.5.

8
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is made up of all inputs which have likelihood ratio greater than or equal to B.
The relationship between the first and second types of optimum criteria is
graphically illustrated in Fig. 1.3. If at any point (PN(A‘), PSN(A)) on curve (1)
a line is drawn with slope B, it will be tangent to the curve and will intersect

SH
for the first type of optimum criterion, and if a linc with the same slope is

the axis at the value P__(A) - B P"I(A) . This is the quantﬁity to be maximized

drevn through any other point on or between curves (1) and (3), it will cut the
axis below the point where the tangent cuts the exis. Thus, curve (1) is not

Fen®)

meximized, but also the curve for the optimum criterion when values are placed ]

only the curve for the optimunm of the type when PI' I(A) is bounded and

on the operator's responses.

A non-optimum receiver can be evaluated in & given situation if its
receiver operating characteristic is drawn together with that of the optimum.
One recekiver is better than another over a range if it is closer to the optimum
than the other. In some instances the optimum curve for a given situation will
\nearly match another receiver's operation in the same situation except that the
optimum will require less signal energy. In this case, the non-optimum receiver
can be given a db rating for that situatiom.

Each application of the theory treated in Part II of this report is

a.ccompa.hied by the receiver operating characteristic of the optimum receiver.

11
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2. MATHEMATICAL THEORY

2.1 Introduction

The method for hahdling the signal detectability problem mathematically
is described in this section. The first gtep is the presentation of the appro-
priate mathematical description of the signals and noise. In these terms the
gignal detectability problem is restated in several forms discussed in Section 1
of this report. It is then shown that in each case, if the likelihood ratio can
be determined for each receiver input, the problem is essentially solved. Thus
the conclusion is that the receiver design problem should be treated in terms of

likelihood ratio; this is the approach used in Part II.

2.2 Mathematical Description of Siznals and Noise

Any receiver input, noise or signal plus noise, is a voltage which is
a function of time. Thus we shall be considering a set of functions. In this

report 1t will be assumed that the receiver input is limited to bandwidth h W, and
e e oy 1
that the observatlon is of finite duration T. By the sampling theorem,™ any

A e A A e

o et e e

such function is campletely determined when its valuecs at "sampling" points spaced
1/2W seconds aepart through the observation interval are known. There are 2WT
sampling points in all. Thus a receiver input can be considered as a point in a
2WT dimensional space, the values at the sample points being taken as coordinates.
Let us call the space R.

If there is noise at the receiver input, the receiver input voltage
may usually be any of an infinite number of functions, i.e., any of an infinite

number of points in the 2WT dimensional space R. With Gaussian noise any point is

lShannon, C. E., "Cormumnication in the Presence of Noise," Proc. IRE, Vol. 37,
p. 10, Jamuary 1949; also Appendix D of Part II.

12
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theoretically possible. It is a matter of chance which one occurs. Thus it
appears that the appropriate way to describe the noise is to give the probability
density for points. in the space of receiver inputs.l The same is true when there
is signal plus noise, so that we shall deal with the space R and two probability
density functions, fN(x) for the case of noise alone, and fSN(x) for the case of
signal ’plus noise. Here x denotes a point of the space R.

In a practical application, information will be given about the signals
as they would appear without noise at the receiver input rather than about the
signal plus noise probability density. Then fSI'I(X) must be calculated from this
information and the probability density function :f'N(x) for the noise. The noise
and the signals will be assumed independent. If the signals can be described by’

& probability density function fq (%),

Top(x) = f Ty (x-s) fq(s) ds (2.1)
R

where the :fntegg:ation is over the whole space B.. The receiver input x(t) could
be caused by any signal s(t), and noise ;x(t) - 8(t). The probability density
for x is the probability that both s(t) and x(t) - s(t) will occur at the same
time, summed over all possible s(t).

If the signals cé.nnot be described by a probability density function, a
more general form must be used, in which the signals are described by a proba-

bility measure, Pq; the formula for this case is

fon(x) = [ fN(x—s)dPS(s) . (2.2)
R

This is what is called a Lebesgue integral, and it means essentially to average

;IWe shall assume that the probability density function exists. See Appendix A,

13
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fN(x-s) over all values of s in the whole Space weighting according to the

probability PS of the points g appearing ag signals.l

2.3 A Posteriori Probability

The approach of Woodward and Ds.vieas2 to the signal detectability
problem is to ask the operator » "What is the probability that a signal is pre-
gent?" He is to give the probability, using knowledge of the receiver input,
i.e., he gives the a posteriori probability.

If the probability density functions are continuous, the a posteriori
probability Px (SN) can be found for any particular receilver input x. Bayes!
theoremj is used, but not directly, since PSN(X) and PN (x) are both zero.
Consider a small sphere U with radius r and center x. Then P;(SN) can be ob-
tained by Bayes! theorem, and Px (SN) can be defined as the

PX(SN) = lim PU(SII) . (2.3)
r—+0
Denote by P(SN-U) the probability that signal plus noise will be present and

the receiver output will be in U. Then

P(SN'U) = P(SN) Poy(U) = Py(SN) - P(U) (2.4)
and '
P(U) = Pgu(U) P(sn) + Pu(U) (1 - p(sw)) (2.5)
Solving for Py(SN), P(ST) Parr ()
' : SN
S T 1) e P(SN)] B (0)
Fsy(U)
P(SN) P——-—-—-N @

= (2.6)

P(sW) ;%%1)_ + (1 - B(sM))

I | P
Cramér, Ref.l4, pp. 62 » 188. 2wood:ward and Davies, Ref. 3. BCramer, Ref.14, p. 507,
1k




~——  ENGINEERING RESEARCH INSTITUTE -+ UNIVERSITY-OF MICHIGAN

By the definition of probability density fumction,

Peg(U) = f Lop(x) ax
U

P = [ £ e @.7)
U

vhere the integrel is reelly a multiple integral over the volume of the sphere

U in the n-dimensional space. Then

| [ 2 ) e
PSN(U _ U e
O B OX (2.8)
ana 1f fqu(x) end fH(x) are continuous,
P (U) Tap(x) :
. SN - _SH = 0 ) 2.
a0 Fg®) B ) @2

The ratio of probability densities fSN(x)/fN(x) = f(x) is called the likelihood

ratio. It follows that

1im sn) £ .
PLSW) = p sy BN = P(sm)Pé(zg +i][?. ~P(SM)] (2.10)

This is the existence probability as defined by Woodward and Davies.l
Notice that the likelihood ratio £(x) is the all-importent quantity. P,(SN) is a
simple monotone increasing function of the likelihood ratio. Therefore if P(SN) i

known and if the receiver produces ﬂ(x), a calibration will convert this to PX(SN).

2.4 Criteria and the Optimum Criteria

2,h,1 Definitions. Suppose the operator is only required to guess

whether or not there is a signal present. For certain receiver inputs he will

guess there is a signal present. These receiver inputs form a subset of

lRef. 3.

15
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the space R of all posseible receiver inputs. Let us call this subset the
criterion and denote it by A. That is > @ point x 1s In the criterion A if the
operator will say there is a signal present when x occurs as receiver input.

It will be convenient to have a symbol for each of the two types of
optimum criteria described in Section 1.4, The first type will be denoted by
A;(B); that is, Al(B) is any subset of R such that for fixed g > o,

- [Al(B)] - B By [Al(B)] is maximum © (2.11)

The second type will be denoted by As(k); that ig, Ae(k) is any subset of R
such that

Py (As(k)) € X, ana
(2.12)
Poy (Bo(k))  is maximum,

The likelihood ratio £ (x), which is defined as ratio of the proba-~
bility density functions ’ fSN(x) /fN (x) plays an important role in the following
discussion. It is g measure of how much more likely the receiver input is to be
if there is signal plus noise than if there is noise alone.

2.4.2 Theorems on Optimum Criteria. The optimm criterion is closcly

related to the likelihood ratio. For the first type of criterion the connection
is g:i?ven by the following theorens.
Theorem 1: Denote by A the set of points for which the likelihood ratio L(x)2 B,
Then A is an optimm criterion A (B).

Proof: The condition that A be an optimum criterion A (B) is

that Pon(a) - B PN(A) is maximm; i.e., for any other set B of

receiver inputs PSIJ(A) - B PN(A) > PSN(B) - B PN(B).

16
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[}

f fon(x) ax - B f f(x) ox
A A (2.13)
Af [ fon(®) - p f(x)] ax

Pgy() - B Py(a)

vhere the integration is over the set A, and so is really a multi-
ple integral over a part of the space R which has 2WT dimensions.
Let B be any set different from A. Denote by A-B the set of
points which are in A and not in B, by B-A the set of points
which are in B but not in A, and by BNA the set of points which
belong to both A and B. Then since A is the union of A-B and

ANB, and A-B and ANB have no points in common,

Pep(d) - B Pg) = [ [fem) -] ax
A
- f [ £or(x) - B fN(x)] dx (2.14)
ANB
+ f[i‘SN(x) - B fN(x)] dx
A-B
Likewise

Poy(B) - B Py () ESORY: )]

ANB (2.15)
* f[fsn(x) -8 fN(x)] ax
B-A
Thus
Pop(®) - B By(a) - [Bg (8) --Ry(3)] =
(2.16)
f[fSN(X) - B fN(x)] ax - f[fSN(X) - B fN(X)] dx

A-B B-A

17
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The points in A-B arc in 4, and so for them.fsn(x)/fw(x) =
L(x) 28, so that fSN(x) - b fr(xj > 0, and the Tirst integral
in Eq. (2.16) is not lcss than zero. The points in the set B-A

are not in A, so T I(X)/fN(X) < 8, and the second integral in

ST

Eq. (2.16) is no greater than zero. Thus
£ - > - [ e
PSN(X) th(A) 2 PSN(B) P PH(B) ’ (2.17)

(A) -pr

PON (A) is a maxirum, and A is an optirunm criterion Ap(8)
ST

N
There is not a unique optimum criterion Al(B) . In the Tirst placc

"optirmum' was defined in terms of probability. Thus a change in Al(B) which

‘would not change PSN [Al(ﬁ)] or PN‘ [Al(ﬁ)] would regult in an equally good

criterion. Such a change might consist of adding or taking out a singlc point,

a finite nuwber of points, or generally any sct of probability zoro.l liore

insight into the uniquencss is given by the following theoren.

Theorem 2: If A is an optimum criterion.Al(B), then the set of points in A for

which _Z(X) < B has probebility zcro, and the set of points not in A for which

£ (x) > B has probability zero.
Proof: We will show that any criterion which does not have these
two properties is not an optimum criterion. Consider any cri-
terion B with a subset C, of non-zero probability, such that the
likelihood ratio of each point in C is less than 8. There is a
positive number € and a subset C¢ of C, having non-zero probability,
such that £(x) £ 38 - € for the points in Cc - If this were not
true, then for any positive small number € , the subset C, would

have probebility zero. These subsets Ce are monotone, that is,

1y set T will be said to have probability zero if both PSN(E) and PN(E) are zero.

18
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if €5 < €, then Cee contains Cel, and, since C contains no
points with likelihood ratio equal to B8, the union of all Ce 18 C
itself, and would have probability zero.l

As in Eq. (2.14),

T (%)= B Ey(Ce) = [ [foy@)-p ey (x)]ax = [ () [£(x) - ] ax
Ce Ce

and since £(x) S B - €or L(x) - < - €,

Psn(Ce) - BB (C)S -¢ [ f(x) & = -ep(c) . (2.19)
Ce

Therefore, if PN(% ) >0,
Poy(Ce) - B Py(Ce) <0 . (2.20)
But C¢ 1is a subset of A, and therefore

Pon(B - C¢) - B Py(B - Ce) > Psn(B) - B Pi(B) , (2.21)

and B is not an Al(a). It can be shown in an analogous manner

that if there is a set D of non-zero measure outside of criterion

B such that £(x) > B in D, then there is & subset D¢ of D such

that
Pgy(@.) - B P (D) >0 (2.22)

and therefore

Pey(BYD, ) - B Py(B¥YD. ) > Psn(B) - B Py(B) (2.23)

end B is not an Al(B).

lCrza.me’r, Ref. 1%, p. 50, Eq. 6.2.3; and p. 77, paragraph 8.2,

19
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This theorem says nothing about the points for which L{x) =p. It
is not hard to show that PSN(A) - B PN(A) is not affected by including or ex-
cluding points where £(x) = 8. Thus a criterion Al(B) must include all points
for which £ (x) > B (except perhaps a set of probability zero), none of the
points where £(x) < § (except perhaps a set of probability zero), and it may or
may not include a point for which £(x) = B.
In the most general case, vhen the noise is Gaussian, the following
two theorems show the uniqueness of Al (8).
Theorem 3: If the probability density function for noise alone, fN(x), is an ana-
lytic function, then the set of points for which 4x)= p has probability zero.t
A function is said to be amalytic if it is analytic in the ordinary
sense when considered as a function of each single coordinate. The proof of the
theorem is quite involved, and so it is given in Appendix B.
Theorem 4 follows immediately from Theorem 2 and Theorem 3.
Theorem 4: If the probability density function for noise alone f‘N(x) is analytic,
any two optimum criteria Al (B) cen differ only by a set of probability zero.
How let us turn to the second type of optimum criterion.
Theorem 5: Let A be a set such that if x is in A, the likelihood ratio £L(x) 2 3,
while if x is not in A, £(x)< B. Then if Py(A) =k, A is an optimm criterion
A (k).
Proof: An optimum criterion A2(k) mst satisfy the conditions
Py(A) £ k, end Pgy(A) is maximum. The first is satisfied by
hypothesis. Suppose B is any other set such that PN(B) < k.

Denote by A-B the set of points in A which are not in B, by B-A

L 1ittle more 1s needed in the hypothesis for Theorem 3 than that fy(x) is

enalytic. See Appendix B.
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the set of points in B which are not in A, and by BA the set of
points common to B and A. Since A is the union of A-B and ANB,

and since A-B and ANB have no points in cammon,

pa) = f £(x) &x = /fN(x) ax+ [ £,,(x) ax
A A-B ANB
(2.24)
= Py(A-B) + P (ANB) = x
Likewise
PB) = P (B-A)+ P (A0B) <k, (2.25)
and thus
PN(A—B) 2 P (B-A) . (2.26)
Also,
Poy(B-A) = j'fSN(x) ax (2.27)
B-A
. Ty (%)
and since any point x in B-A is not ina, L(x) = T (=) <B and
. N
Lepe(x)
SN ,
Foy(B-A) = ffN(x) T fp(x) ax - B f fy(x) ax
B-A B-A
or
Poy(B-4) < B Pi(B-A) . (2.28)
Likewise
Pgy(A-B) 2 B Py(A-B) . (2.29)
Collecting Egs. (2.26), (2.28), ana (2.29),
Pgy(B-A) < B PL(B-A) £ P, (A-B) s Poy(A-B) . (2.30)

2l
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As in Eq. (2.24),

Pg() = [t ax = [rpE) e e [ e
A A-B ANB
. (2.31)
= PSN(A-B) + PSN( )
and
PSN(B) = PSN(B-A) + PSN(AﬂB) . (2.32)
Therefore
PSN(A) - PSN(B) = PSN(A—B) - PSN(B-A). (2.33)
From Egs. (2.30) and (2.33) it follows that
P (A)2 Pou(B) (2.34)

and PSI-I(A) is a maximum.

It follows from Theorem 5 that every optimum of the first type, Al(fs),
is an optimum of the second type. More precisely, if set A is an optimum of the
first type it is associated with the fixed B for which it is an Al(ﬁ). By
Theorem 2, the likelihood ratio in A is not less than B, and outside A the
likelihood ratio is not greater than B, except on a set of probability zero. DBut
the introduction or omission of such a set has no effect on PSN(A) or P (A).
Since Py(A) has some velue, call it a; A will be an Az(a) by Theoren 5.

Theorem 6: For every k between O and 1 there is an optimum criterion of the
first type Ay, such that PN(Ak) = k.
Proof: For each value g we consider the maximal Al(B) ; by ‘I‘l;eorem
2 this is the set consisting of all points of likelihood ratio
not less than B:

w, = {x| L 28} (2.35)

22
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Now 1f for k there is a B such that PN(MB) = k, then because Mf3
is an Al(fs) the proof is complete.

Hext we point out that M, is the whole space R and My 1is
the empty set, and therefore PN(MO) = 1 and PN(MCO ) = 0. For

any value of k, if there is no MB such that PN(MB) = k, let

B* = min { g l PN(MB):/Z k} = gdb {(3 'PN(MB) < k} that is,
Py(iy¥) >k and if B> ¥, By(Mg) < k. ‘Thus the jump in P is due
to those points in Mﬁ* for which £ (x) = p*.

Because the probability density functions exist, every point
has probability zero and therefore there is a subset S of these
points with £(x) = B* for which Py = PN(Ma*) - k. This is shown
in Appendix B (Lemma 4).

Removing this subset from M_¥, PN(MB* -8) = k . (2.36)

Because MB* - S satisfies Theorem 1, it is an A, (p*). oOf
.course, by Theorem 5, it is an Ag(k) also.

The following theorem completes this circle of proof.

Tor any k there is a B, such that every A, (k) is an Al (Bk).
Proof: Let A be any Ag(k).
By Theorem 6 there exists a Bk and an Al (Bk), vhich we will denote
by A¥*, such that Py(A¥%) = k. Then by Theorem 5, A* is also an
As(k), and hence for both A and A%, Poy is maximum and P, S k.

i
Therefore

Py (A%)

]

Pegr(A) (2.37)

> =
PH(A*) = k=Ppa) (2.38)
Multiplying Zq. (2.38) by - By and adding gives

Py (A%) - By Py (a%) £ Pgy(A) - By P (&) . (2.39)

25
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Since A¥* maximizes this expression, the equality must hold, and
A is also an A) (By).

In summary, these theorefns show that B can be written as a multivalued
function of k and that k can be written as a multivalued function of B. These
relations can be sharpened somewhat.

Theorem 8: Let a < b be two values taken on by _£(x). If no set of the form
{x l Ll < l(x) < ,22} for a < £l < £2 < b has probability zero, then By
is a single valued function of k on some interval I, with a < Bks b, and
a PSNgAl(Bk))/dk exists and equals B, for every k in I.
Proof: 1) In general, if a function is monotone on an interval
and its range of values is also an interval, then it is con-
tinuous. If it were not, then at some point the left and right
hend limits would be unequal, which would introduce a gap in the
Vra.nge of values, contradicting the hypotheses.

2) 1If ﬁk]_ > Bk2 and if the interval from 6kl to Bk2
contains a subinterval of [ a, b] of length greater than zero,
then k, > k;. There are, by Theorem 6, criteria of the first type
Ay (for i = 1, 2), which, by Theorem 2, may be chosen so that A,
contains all points for which £(x) > Py and no points for which

i

L (x) < Bki. Also PN(Ai) = ki, by Theorem 5. By applying

Py to the equation A, = AlU (A2 - Al), one obtains

2
= +P (A, -A). I£P.(A, - A,) = O, then from Egs. 2.7
yv 2 1 Nva 1

and the fact that £(x) is bounded on A,

PsIT(A'E - Al) = 0 also. But, by hypotheses, Ai' - A, camnot have

- Al y 1t follows that

probability zero. Hence k2>kl.

2k
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3) Let I be the set of points k for which at least one
By 18 in the open interval fram a to b » and let Bk denote the
possibly multivalued function defined on I. Then 2) says that Py
is both single valued and monotone, and Theorems 1 and 6 Imply
that the range of wvalues of BL is the interval from a to b.
Hence I is an interval s for if it were not s there would exist
three values kl < 1:2 < k3 with only tﬁe middle one not in T.
Then Bkl< Bk2 < 51:5 and ;3k2 would not be in the interval
from a to b, yet the other two would be--a contradiction. Thus
1) can be applied to ﬁk and ﬁk is therefore continucus on I.

4) To form the derivative, let

D = Al(ﬁk) - Al(ﬁko) if B, < ﬁko
(2.42)
= Al(Bko) - Al(ﬁk) if Bkz B .
(o]
Then
lim = lim (2.43)
k—+x* k - kg k—k+ k- k

> < z
Since k 2 kO, 6k.. Bko, and in D’ ﬁkS [(JL) < Bko’ ﬁka(X)

< Toy(x) S Bk fN(x). But
o

Pg(D) = ffSN(x) dx = f,Z(x) £.(x) ax  (2.4h)
D D

Pe®) = k-k = Df £, (x) ax (2.45)
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< < B, i k <
end therefore B)PN(D) < PSN(D) < RKOBN(D) Similarly if k

By PN(D) < PS'N(D) < 5kPN(D). Thus

O
P_..(D)
lim L_'—""“‘SI;" " = Bk ; (2.11-6)
k—sk Ko °

by virtue of the result that BP is a continuous function of k.,

-

2.5 Evaluation of Optimum Receivers

2.5.1 Introduction. This section treats the problem of determining

how well a given receiver will perform its task of detecting signals. For the
criterion type receiver, the probability of false alarm if no sipnal is sent,

PN(A), and the probability of detection if a signal is sent, P__(A), give a

SII(
good measure of receiver performence. For the a posteriori probability type

receivers, the average or mean a posteriori probability with signal plus noise
and with noise alone describe the receiver’s ability to discriminate between '

sipnal plus noisgse and noise alone,

2.9.2 Evaluation of Criterion Type Receivers. For simplicity, let us

restrict this discussion to the case in which the probebility density function
for noise alone, fN(x) is analytic.

Denote by FSN(B) the probability that the likelihood ratio £(x) is
equal to or greater than B if there is signal plus noise, and similarly, let FN(B)
be the probability that £ (x) is equal to or greater than 8 if there is noise
alcone. These are the complimentary distribution functions for £(x). Then for
any Al(ﬁ):

Poy (A1(B)) = Fgy(8), ana (2.47)

B, (4,(8) = T (6), 2.18)
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because the set of points for which L£(x) 2 B, and differs from any Al(B) only by
& set of probability zero (Theorem 4). By Theorem 7, every A, (k) is an A, (). The
Bl cori'esponding to k can be found from Eq. (2.48)

LAy (By) = Fy(B) = k. (2.19)
Then

Poy(fs(k)) = FSN(B]S) . (2.50)

Thus, if the distribution functions Fgy(B) and FN([S) are known, any criterion

type receiver can be evaluated.

It turns out that not both FSN(B) and FN(B) are necessary., Theorem 8
states that

d Fep(B)
TG C , (2.51)

since PSI\I(A:L(BK)) = FSN(Bk), and k = FN(Bk). Thus, if FN(B) is known, FSN(B)
can be found by integrating Eq. (2.51).%

0 0)
Fp®) = - [ varm@ . (2.52)
B

As an alternative, Foy(B) might be given as a function of FN(B); this is the
receiver operating characteristic graph. Then B can be found from Eq. (2.51);

i.e., B is the slope of the graph.

lThe change in sign is because the functions Fgy(B) and FN(ﬁ) are complimentary
distribution functions. If the density function associated with FN(a) is g(B),

¢ Fy(B) ©
then —Z— = - g(8) and Fgy(p) = [ &(8) d b

B
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A corollary of Theorem 8 is the following: The nth moment of the

distribution for noise alone is the (n-1)st moment of the signal plus noilsge

distribution.

@
@ 1

(00
J manm = [ P earne - [ Plarge e
-0 - -

As an example of the application of this corollary, note that the mean value of
likelihood ratio with noise alone is always unity. If the variance with noise

alone is oNe, the second moment of ¥ (8) is 1 + 0N2 ; then the mean of the

2
8ignal plus noise distribution is 1 + O'N » and the difference of the means is

UNQ. For detection corresponding roughly to Fig. 2.1, the difference of the

means of the two distributions must be of the order of the standard deviation of
the distributions, so that

2 "~
o = o » (2.54)
N N
I
]
,/ FIG. 2.1
/ RECEIVER OPERATING
CHARACTERISTIC -
Foro*ﬁ =],
y

Pey(A)
N\

0 Py (A) '
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or the variance of the distribution with noise alone must be of the order of

2
unity. For better detection, c&i

2.5.3 Evaluation of A Posteriori Probability Woodward and Davies Type

mst be greater.

Receivers. Davies proposes the mean a posteriori probability as a measure of

the efficiency of a receiver. The mean a posteriori probability is defined as:

K o (PX(SN)) = fo(SN) fSN(x),dx (2.55)
R

Ky (B (sW)) = /PX(SN) £, (x) ax (2.56)
R

These can be evaluated if the distribution functions FSN(B) and FN(ﬁ) for likeli-

hood ratio are known. Since

- P(sW) L(x)
Py (SW) = P L (x) +X1-1>(sﬂ ’ (2.57)

the mean a posteriori probabilities are

Koy(R, (SN)) = /ﬂ - P(SN§ PiSN% ~ P(Sﬂj'd FSN(y), and (2.58)
e = [ s T (2.59)

Davies presents the formula

H gy [PX(SN)] + L‘;‘(gﬁgﬂ K [PX(SN)]

I

1, (2.60)

which enables one to calculate easily either one of the mean a pbsteriori proba-

bilities once the other has been calculated.
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2.6 Conclusions

It is possible to combine the most common statistical approaches to
the theory of signal detectability into one general theory. In this theory
likelihood ratio plays the central role: the result of the theory is that a
receiver built so that its output is Iikelihood ratio can be adapted easily to
accomplish the task specified in any of” the well-nown epproaches to 8ignal
detectability. If the probability distribution of likelihood ratio isg knoim,.
then the receiver reliability can be evaluated.

In Part IT of this report, likelihood ratio and its distribution
functions are calculated for a number of specific cases, and the problems of

receiver design are discussed.
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.

APPENDIX A

It was assumed throughout the discussion of the criterion approach to
signal detectability that for any given receilver input, the operator would always
give the same regponse. This is certainly not the case with threshold signals
and a human operator. A more realistic approach might be to assume that for any
receiver input x, the operator would say with probability p(x) that there is
signal plus noise., Finding the optimm receiver would then consist of Tinding the
optimum p(x). This approach does not lead +o eny interesting new results; if
p(x) = L on an optimm criterion end zero on its compliment, then p(x) is
optimum,

The theorems on signal detectability are proved in Section II in more
general form than has yet been found hecessary in an application. However, they
can be generalized samewhat, and this appendix discusses some of the possibili-
ties. |

It is certainly possible o consider more general spaces of signals, Any
space on which a probability measure can be defined might be used. In order to
prove the theorems on optimum criteria, however, some sort of likelihood ratio
secms necessary. One possibility is to assume the measure PN(A) and the random

variable .£(x) are given and to define PSN (A) through the integral

P () = fﬁ(x)dPN(A) . (A.1)
A

The mean value of £(x) must be unity, of course.

If the space is a Euclidean space of finite dimension, then it is possi-

ble to define an arbitrary measure through distribution functions. These
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functions, being monotone, have a derivetive almost everywhere, and thus afford

a means of defining likelihood ratio. For any point which has measure zero, the

likelihood is the ratio of the derivatives of the distribution function for signal

plus noise and for noise alone, Points which do not have measure zero can always

be treated separately. There can be only a countable number of these and like-

lihood ratio for such a point x can be defined as
Poyy (%)

L&) = B

*.2)

Any point with iInfinite likelihood ratio belongs in the criterion, of course, and
such a point has a posteriori probability unity. Then likelihood ratio is defined
except for a set of points of measure zero.

In any case where likelihood ratio is defined and satisfies Eq. (A.l),
Theorems 1 and 2 can be proved. The lemma (Appendix B, Lemma 1) which is needed
Tor the proof of Theorem 5 can be proved for any space and measure for which sets
of a.rbitrarily small measure can be found containing each point. If this holds

and likelihood ratio is defined, then Theorems 5, 6, 7, and 8 can be proved.
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APPENDIX B

This appendix contains the proof of Theorem 3 and the lemma required to
complete the proof of Theorem 6. It is convenient to prove three lermas from

which Theorer 3 will follow directly.

Lemma 1: Let S be a sphere (i.e., the set of all poiﬁts whose distance to a
fixed point is less than or equal to a fixed positive number) in n-dimensional
Euclidean space E*. Let f(x) be a contimwous real function defined on S. Then
the graph G = {[x, f(x)]} of f(x) in En+l has (n+l)-neasure zero.

Proof: Let the volume (the n-measure) of S be V. Since f(x) is uniformly continu-
ous on S, for cvery € >0 there is a & > 0 such that whenever the distance between
x; end X, is less then 8 it follows that I f(xl) - f(xe)l < e/hv.

Moreover, for each S > 0 there is a decomposition of B" into pairwise
disjoint congruent n-dimensional cubes each with its greatest diagonal of length
less than 8/2. This decomposition may be chosen so that, if {Ci} i=1,2,..,k
are the cubes that touch S, then
Z (volume Ci) <2V . (B.1)
Thus I, = £(C4) is an :Lnte;val of length less than 2(e/4V) = € /2V,

Now, let Ci*be the (n+l)-cube formed by the Cartesien product C. x I ; by
construction, the graph G is covered by the (n+l)-cubes Ci*. Also i
2 [(n+l)-volume Ci*}g > [(n)—volume Ci]e/EVSEV- € oV =€ . (B.2)

i i ‘
Thus for each € > 0 there is a covering of G by (n+l)-cubes whose total

(n+l)-volume is less than € . This means (n+l)-measure of G is zero.
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Lemma 2: Let D be an open set in Euclidean n-dimensional space E" and f(x) a
real function defined for all points x in D which has continuous partial deriva-
tives of all orders such that at each point x in D at least one partial deriva-
tive (of any order) does not vanish. Then, if b is some value taken on by 1,
the set f'l(b) of all points % such that f£(x) = b has n-measure zero.
Proof: A point X in D is said to have "order zero" if some first order deriva-
tive of f does not vanish at x; x has "order r" (r a poéitive integer) if all
partial derivatives of f of order < r vanish at x, but at least one partial |
derivative of £ of order r+l does not vanish at x. By the hypotheses, every
point of D has finite order.

Tor each integer r 2 0 let Cr be the set of points in f—l(b) of order

o0}
r; then f‘l(b) = U Cr' The theorem is proved if it is shown that the n-measure
r=0

of Cr is zero for each r. This will be donc in two steps.
I. At each point x° in C.s there is a sphere S(z°) centered at x° such
that S(z°) [)Cy has n-measure zcro.
II. There is a countable collection {S(xi)} ,i=1,2, ..., of such

i
gpheres such that Cr is contained in the wnion |J S(x ).
i=1

Steps I and II together show that n-measure of C. is zero because

Io0) .
< nvl
0 € n-neasure Cr- Y n-meagure [Q(A )f]Cr] = 0 . (B.3)

i=1
Step II is an application of the Lindel8ff theorem which asserts that every col-
lection of spheres contains a countable subcollection whose union is equal to the

wnion of all the original spheres.
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The proof of I follows:
Since x° is of order r, one of the derivatives of order r of f(x), say
w (x), has a first order derivative which does not vanish at x°. By a change

in notation, this can be written as: g’% = 'wn does not vanish at
n

xo

x° = (x°l, ceey x°n). The implicit function theorem can then be applied to w,
yielding these results:

1) there is a sphere S(x°) centered at x° and contained in D.

2) writing n for the projection of S(x°) onto the Eyy eeey xn—l
"coordinate plane," n is an (n-l) sphere. There is & real valued
continuous function X(xl 3 ey Xn-l) defined on x whose graph
G ={[x1, ey X o8 X(Xyy oees xn-l)]} is the set of all points
x in S(x°) such that w(x°) = w(x); that 1s G = S(x°)Nw-L [w(x°)] .

Note: 2) says that, in particular, w [xl, ey X 1o X(xl, vevy xn—l)]
= @(x°). This is the usual way of stating the theorem.
By Lemma 1, the n-measure of G is zero. Thus step I is proved if S (x°)) CrCG.
Case 1: r = 0. Ifx is in S(zx°)N C,» then x is of order r = 0 and
f(x) = £(z°). But in this case w must have been chosen to be £, B0 W({X) = w(x°),
which implies that x is in G.

Case 2: r > 0. If x is in S(x°)ﬂCr, then x is of order r, which
means that in particular all r-order partials of f vanish at x. Hence w(x) = 0.
Also, by the same argument w(x°) = 0, and w(x) = w(x°) implies that x is in

G. This completes the proof of Lemma 2.

Lemma 5: If fN(xl 153 e xn) is an analytic function defined on n-dimensional
Buclidean space En, and if P(Sl ,82 3 seey Sn) is a probability measure on ER such

that there exists a bounded set in EP whose probability is unity, then
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(X5 =ees xn) = f fH(xl-sl, ceey xn—sn) d.P(sl, cees 8y) (B.1+)
E? '

fSH

exlsts and is analytic.
Proof: Let B be a bounded set such that P(B) = 1. Then B, the closure of B, is
guch a set also; it is certainly bounded, and it can be assigned the measure
unity, since
BcBer and 1 =P(B) § P(B) £ PE) = 1 . (B.5)

The probability of the complement of B is zero » and hence the integration can
be restricted to the set B rather than to the whole of E",

For a fixed (xl, ceey xn) and for (sl, ceny sn) in B, fN(xl-sl, veny
xn-sn) is bounded, since fH is continuous and B is closed and bounded. The

function f.

y is also measurable, since it is continuous. (This assumes open sects

are measurable,) Then the integral exists.l

The function fH(xl, ceey xn) being analytic means that fN(Xl, ceey xn)
is an analytic function in the ordinary sense when considered as a function of
any single coordinate :ci. Let us forget about the other coordinates for the
present. Then fN(xi) has a power serles expansion at each point x°i, which
converges in a neighborhood of the point (z°i, 0) in the complex plane. Thus
fN (= i) can bhe extended for complex values of z, in a region containing the real
axis.

Formally,

£ (X, ) -F_ (x.)
d _ SNVTL SNV'L
1

lCraJnér, Ref. 1k, Section 5.2, p. 37.
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.1
= lm H f fI\I(Xl-Sl, voey xi+h-si, ceey Xn—sn) dP(Sl, cees sl)
| (5.7)
- f fII(Xl"sl, e sy }:isi} L) Xn-sn) dP(sl’ sy Sn)]

+h"s "o e X -8
. i’ 2 n n)

. 1
= lm H [fn.(xl"ol’ csey Xl

h o
(2.8)

-fN(Xl—sl’ ¢ ey Xi-si’ seavy Xn-sn) dP(sl, L ] sn)]

.1 .
= /h]_mo o [fN(xl-sl, ceey Xi+h—sn, veey Ln-sn)
—
B

(Bl9)
—fI\I(Xl-sl’ cvey xi, ey Si—Xn—Sn d.P( l, seey Bn)]

0Ty

dxi dP(sl, eens Bu) (B.10)

B
The only question now is whether or not it is permissible to interchange the order
of integration and taking the linit of the difference quotient at step (B.9).
This is permissible if the difference quotient converges uniformly, which turns
out to be the case.

The function fN(xi) is analytic in a domain which extends to complex

values of %4 near the real axis. The function fN(:ci +h - si) can be considered
as a function of h - 85, and is enalytic for complex values of h - 8; in a domain

containing the real axis. Since the values of s = (Sl’ «+ey 8,) in B are a

closed bounded set » and the values of h can certainly be bounded, the set V of
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values h - 85 is bounded. V can also be taken asg closed, and it can be chosen
so that no point S; iz on its boundary. Then there will be a minirnm distance

hs > 0 from points s to the boundary of V. Consider the function

1
\/f(sl, ees 8, h) = E[fz-y(xl-si’xi+h-si’ ceey xn-sn)

(*c T3 ey Xym8, Ll X, -8 )J
if h # 0, and

=-—-—, ifh=0 ’

defined for , h’ = hy, and s in B. ¥ 15 continuous at every point, and it is
defined for all points (hy 8) with h = utiv and s = (o 3 ecey S ) of a campact

subset of En+2.. \IJ is therefore uniformly continuous > and its convergence to

Jor
3 XN as h approaches zero along any complex valued path is uniform in s, Thus
i

the difference quotient converges uniformly.

Lemma 3': Let fJCX]_’ seey X ) be a function of n camplex variables, and suppose
that for cach i, there is a domain D in the complex plane and a number h such
that the domain Di contains all points within a distance of h of the real axis »
and fir(xq, ..., Xgs «oe5 %) is an analytic function of X, in D; for all real
values of the other coordinates, Then, if P(sl 3 eeey sn) is a probability

neasure on the n-dimensional Buclidean space En,

Tl o m) = [ e, e, xoa) (s, +uvy 8 ) (B.11)
oy

J

is analytic if it exists.l

e Ty is bounded, the integral must exist, as in the previous case,
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The proof will be omittéd. The idea of the proof is as follows: one
must form the difference quotient for fSN(Xl > +++5 Xp) for each coordinate Xy

1 ‘ '
H [fSN(Xl, seey Xi+h, es oy Xn) - fSN(Xl, ceey Xi, seey Xn)]

and show that the limit as h —= O exists, a.pd is equal to what is obtained by
differentiating under the integral sig. ,';I'he Space can be divided into two
parts such that one will have arbitrarily small measure and contribute an arbi-
trarily small amount to the integrals, while the other will be closed and bounded
and hence on it the order of integration and taking the limit as h—»0 can be
interchanged, as in Lerma 3. The domain Di is required so that differentiation

in the complex plane will be possible.

How let us discuss Theorem 3. Suppose f‘N(x) is analytic » and suppose

either Lemma 3 or Lermn 3! holds. Then f“H(x) is analytic, and their ratio

S
£(x) = :%’f;—) :

i
is analytic except where fH(x) = 0. This is a set of neasure zero, by Lemma 2.
Since £(x) is analytic » the points where £(x) = B form a set of measure zero,
by Lemma 2.1 This proves Theorem 3.
Theorem 3: I the probability density function for noise alone, fH(x), is an
analytic function, (and if either Lerma 3 or Lemma 3! holds,) then the set of
points for which .£(x) =  has measure zero.

The restriction that ILerma 5 or Lemma 3' holds is not at all serious,

If the signals have bounded energy, Lemma 3 holds. Lemma 31 irou.ld be expected
to hold for most amalytic probability density functions, end in particular it

does hold if the noise is Gaussian,

lNote that Lebesgue measure zero implies probability zero » 8ince the probability
is defined throurh density functions. .
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The following lemma is needed to complete the proof of Theorenm 6.

Lerma L: ret f(x) be a probability density function defined on the n-dimensional
Euclidean space I, Denote by P(A) the valus of the integral f f(x) dx for all
subsets A of EP for which the integral exists, If A_ is eny P‘-measurable set
whose measure P(A)) is finite, and ir 0< y<p (A,), then there is a p-
meagurable set B, such that P(By) = 7.

The following proof makes the theoren valid for any measurc on gn_z
space M with the property "C" defined below.
Proof: Under the hypotheses above » the measure P hag g special property relatiive
to the space EZ,
Property "C": Therc is a countable class [Ci] »1=1,2, ..., of P-measurable

sets such that if x is a point and € > O then there is a Cs
containing x such that P(Ci) < € .

One can obtain such a class by choosing all (n—dimensioml) spheres
of rational rediug centered at points whose coordinates are rational. This
class is countable because the rational numbers are countable. Its members are
P-measurable because Af f(x) d&x exists for any sphere A. That it has property
"C" is a way of stating a fundamental property of integrals.

The desired éet BO will be constructed as the union of a special
sequence [Di]of P-measurable sets. Define Dl to be C]_nAo if P(ClﬂAo) < v
otherwise define D, to be empty. IT Dn has been defined, define D

1 n+l

_ . < . . . =
= D, U[le”Ao] if P{Dn U[Cn+ln AO]} = 7; otherwise define Dn+l Dn’

i < i < a
Since DnCDn+l’ P(Dn) < P(Dn+l) S Y . Ience the sequence [P(Dn)] of real

numbers converges. A general property of measures Yyields the result that

Q© @

Fl (J Dy| = LimP(D ). wWrite B, = Lj

D ; then P(B ) = 1im P(Dn) 7.
n =1 n-—+@® n B ©

1 n-+»ao

ko
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It remains to be shown that P(BO) =Y. Suppose P(Bo) < Y ; then
writing € = ¥ - P(BO) > 0, one has P(Bo) = y - €. Since P(B)) < P(AO), there

is a point x in.Ao but not in B,. By property "C", there is some C, containing

2 <
x such that P(Cy) < € . Return to the definition of D_. If P {D, ;U [c Nagl}sys
then Dy was defined to be D _j U [CkﬂA o]. Here
P{Dk—lu [CKOAO]} < P(Dk-l) + P(Ck) < P(BO) + P(Ck) < (y-€)+€=7.
Thus it was the case that CnyAOCZDkuBO. But Ckf]A contains a point x not in B,.
'Y O A ———

This contradiction shows that P(B,) is actually equal to Y and not less than as

wes supposed.

ky
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APPENDIX C

The following theory was developed as the preparation of the text of
this report neared completion. The subject matter is appropriate to this report,
and so it is included.

The purpose of this material is to characterize uniformly best tests ,
or criteria. If there are a family of signal distributions (or hypotheses, ‘in
statistical terms), and if a criterion A is an A2 (k) for each of them, then A is
a uniformly best test.l Theorem Cl states that if all distributions in a family
of signal distributions are k-equivalent, all optimum criteria are uniform best
tests, and Theorem C2 states the converse.

Tn the first three cases considered in Part II of The Theory of Signal

Detectability, the signal known exactly, the signal known except for carrier
thase, and the signal a sample of white Gaussian noilse, two aignai distributions
differing only in signal energy are k-equivalent, Thus, by Theorem Ch, a signal
distribution with fixed signal energy and one with the signal energy having an
arbitrary distribution are k-equivalent in these three cases, These three cases
have for the boundaries of their optimmm criteria, planes, cylinders, and spheres,
respectively. For the other cases, with more complicated criterion boundaries,

k-equivalence cannot be expected when energy is changed.

1
Definition: If fSN( ) (x) and fSN(g)(x) and fN(x) are defined on E7, and if
there exists a set X of probability zero such that for any two points x and y in
in E, but not in X,
£, (x)2 £, (y) if and only if Lo(x)2 L) >

then fSN(l) (x) and fgy (@) (x) are said to yield k-equivalent distributions.

lNeyman and Pearson, Ref. 13. Lo
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Theorem Cl: If fSN(l) (x) and fSN(g) (x) give k-equivalent distributions s then a

criterion is an A, (k) for the first if and only if it is an A5 (k) for the second.

Proof: Suppose A ié an A2 (k) for the first distribution. Then by Theorem 7,
there is a B such that A is a A;(B). By Theorem 2, A contains all points for
which £(x) > B8 and none for which £(x) < B, except for a set of probability
zeé'o. Except for a set of probability zero, if x and y are any two points such
that x is in A and y is not in A, then ,él(x) Z £l(y). By definition of k-
equivalence, there is a set X of probability zero » such that if x and y are also
not in X, ,62 (x)2 £5(y). Then there must exist a number B, such that for any x
except a set of probability zero, 12 (x)2 B, if x is in A and ,62 (x)< 32
if x is not in Bg. If follows that A is an Al (52) with respect to the second
distribution. Furthermore 9 PI\I (A) = k, for either distribution since the proba-
bility density with noise alone is the same for both distributions. It follows

by Theorem 5 that A is an A2 (k) for the second distribution.

' 2
Theorem C2: If fSN () (x) and fSN( ) (x) lead to two distributions such that for
every k, any criterion A is an A2 (k) for one if and only if it is for the other

2
also, then fSN(l) (%) and fSN( )(x) lead to k-equivalent distributions.

Proof: Consider the family of sets Ay vhere A = {x ' ﬁl(x)_—>. Cx} ; and a takes
on all rational number values greater than zero. Eech Ay is an An(k) for same k
with respect to the first distribution, by Theorem 5. Then it is for the second
also, by hypothesis. Each Ay is an Ay [B(oz)] for some B(x), by Theorem 7. For
each A, the set of points Cy such that x is in A, end £Z(x) < (@) or xz is not
in Ay and 4(x) > B(a) has probability zero, by Theorem 2. Let Xl be the union
of all the sets Cy» 80d since each C, has probability zero, and tile rational

numbers and hence the family Cy 1s countable » 1t follows the the set Xl has proba~

bility zero. 43
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Now consider the family of sets

A, = auQ<rA°‘ = {x’ El(x)é r} (C..l)

defined for every positive real nurber r, Also define

g(r) = 4. u. b, B{x) (C.2)
all a<r
Then for any point x not in Xl, if x is in Ar, 12 (x) 2 g(r). Also consider the
family of sets

A¥ = a’llLSJ>rAS = {x’ﬁl(x)>r} (C.3)

defined for every positive real number r. If x is a point not in Xl s &nd if x
is not in A*r s

ﬁe(x)é g- L. b. g(r*) . (c.h)
all r*¥>r

For any value of r at which g(r) is continuous,

g(r) = g. L.v. grx) (c.5)
all r%¥>p

Any point x which is not in Xl and for which 'él (x) =1 is in Ar but not in
A%*r, and therefore
gr)s ,Ze(x) = g(r), i.e., Ee(x) = g(r) . (0.6‘)
Clearly g(r) is a monotone increasing function of r. It can therefore
have at most a countable number of discontinuities, Let ro denote a discontin-
uity in g(r) and Suppose that the set of points B = {x, El (x) = ro} has proba- ’
bility greater than zero, Define
BEo) = Low v {5 | P {x|xe Bana Lrx) <8 = o}
(€.7)
h*(ro) = g. L. b. {B , P({x ’ X€ B and Ee(x) > B}) = O} .

—

The claim is made that h(ro) = h*(ro). Suppose h(ro) # h*(ro). Then there

L
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exists a number ¥ such that hir )<y < h*(ro). Define

«Q
i

3 {x,h(ro)é- ﬂe(x)é ')’}
(c.8)

1}

Co {x ly < fe(x)é h*(ro)} -,

both,Cl and 02 have probability greater than zero, by Eg. (C.7). Now consider
the set Ar - Cg. It is an Ay (k) for the first distribution, by Theorem 5.
Clearly, by Theorems 7 and 2 s it cammot be an 1\2(}:) for the second distribution.
The contradiction leads us to conclude that h(ro) = h*(ro). Then for each
diécontinui‘ty r there exists a set of probability zero, say S(ro), such that if

11(:«:) = r, and x is not in S(ro), ,Ze(x) = h(ro). Let X, = a_llur S(ro). Then

<o has probability zero, since there arc only a countable nunber of points of
discontinuity r,. Now define X = XlU X.2, 4 also has probability zero. Let the

function h(r) be defined as follows:

it

h(r) a(r) if g(r) is continuous at r
(C.9)

h(r)

]

h(ro) at r = r,, & discontinuity of g(r).

The function h(r) has the following properties: (1) h(r) is a monotone
increasing function of r, and (2) if ﬁl(x) =T, and x is not in X, then
[2 (x) = h(r). The first assertion is an obvious consequence of the way in
which h(r) is defined, and the fact that g(r) is monotone. The second assertion
has been shown separately first for points where &, and hence h, is continuous )
Eq. (C.6), secondly for the points of discontinuity of h, in the Preceding para-
graph.

Now suppose x and y are not elements of X, and ﬂl(x)é ﬁl(y). if
£y (x) = r, and 44 (y) = Ty thenr, 2 r.. It follows from the fact that h(r)
is monotone increasing that h(r,) 2 h(ry), and since ’22 (x) = h(r,) and

b5
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Lo(y) = h(ry)’ Ly(x) 2 £,(y). Since X has probability zero, this completes the

proof.

Theorem ¢3. If fSN(l) (x) is k-equivalent to fSN(i) (x) for each value of i

between 2 and n, (or between 2 and ®), and a4 are positive real numbers such that

S (1) 3 (1)
a; =1, (or % a, = 1), then oy (x) and % &, foy (%),

M

(60) .
(or % a; i‘SH(l) (x)) yield k-equivalent distributions.
The set X (in the definition of k-equivalence) for the distribution
given by the sum is taken as the union of the sets X for the individual distri-

butions. Then the proof is obvious.

(o4
Theorem Ch: If fSN( )(x) is a continuous function of ¢ in an interval [a. ’ b] »
o . . ()
if for any two nmumbers @, and a, fSN( l)(X) is k-equivalent to Toy e (x), and

if F(a) is a monotone function which is zero at the left end of the interval and
1 at the right end of the interwval, then
b
)
f ( i
J 29 ew@

is k-equivalent to any fSN(a) (x).

Proof: Choose any G, in the interval [a, b] - Then for each rational value of

(@) (@o)

¢ in the interval [a, b], » T (x) and Loy (x) are k-equivalent. There

SH
is a set X which has probability zero, such that if x, y are not in hor

> : : > . .
Loy(x)2 ﬁa(y) if and only if Zao(x)_—_,éao(y). The union X of all X, with
rational @ also has probability zero, since the rational numbers are countable.
Furthermqre s 1f x and y are not in X, then la(x) 22 o(¥) for any rational value

of « implies j%(x);zao(y), end £ g (x)2 ﬁ%(y) implies Ly(x)2 £y(y) for

46
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all rational values of . Since fSN(a) (x) is continuous in a, Ea(x) mst be
continuous in o also, and it must follow that for any real « in [a s b] and for
any x, y not in X, £ (x)2 ﬁa(y) if and only if ﬁao(x) ;,Zao(y). Then it is

easy to show that if x and y are not in X,

b
x) - P (o) 2
af [6a=) - 2,)] @E) 20
if and only i 2 fb (@) ] ;
y if ﬁao(x)=£ao(y), and hence fon' ' (x) dF (¢) is equivalent
a

to fSN(ao) (x).

b7
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LIST COF SYMBOLS

A The event "The operator says there is signel plus noise present,"
or a criterion, i.e., the set of receiver inputs for which the
operator says there is a signal present.

Ay (B) Any criterion A which maximizes Poy(A) - B Py), i.e., an opti-
mn criterion of the first type.

As (k) Any criterion A for which P (A) £ k, and Poy(A) is maximum, i.e.,
an optimum criterion of the'second type. ©

CA The event "The operator says there is noise alone."

d A parsmeter describing the ability of a receiver to detect signals.
(See Section 5.1 and Fig. 5.1.)

E, E(s8) The signal energy.

" The n-dimensional Euclidean space.

fN(x) The probability density for points x in R if there is noise alone.

Loy () The probability density for points x in R if there is signal plus
noise.

T N(B), Fy (£) The complementary distribution function for likelihood ratio if
there is noise alone, i.e., FN(B) is the probability that the

likelihood ratio will be greater than B if there is noise alone.

FSN(B), FSN (£) The camplementary distribution function for likelihood ratio if
‘ there is signal plus noise.

k A symbol used primarily for the upper bound placed on false alarm
probability PN(A) in the definition of the second kind of optimum
criterion. ,
£ The likelihood ratio for th i input 2(x) Tou()
x e ellihood ratio for the receiver input x. X) = .
(x) 2, (®)
n The dimeﬁsion of the space of rec’eiver inputs. n = 2yT .
i) The event "There is noise alone," or the noise power,
I~IO The noise power per unit bandwidth. No = N/V .
PN (a) The probability that the operator will say there is signal plus

nolse if there is noise alone » i.e., the false alarm probability.
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PSNLA) The probability that the operator will say there is signal plus
noise if there is signal plus noise, i.e., the probability of

detection.

PX(SN) The a posteriori probability that there is signal plus noise
present. (See Sections 1.3 and 2.3.) :

P~ (8) The probability measure defined on R for the set of expected

2
signals.

R The space of all receiver inputs. (The set of all possible sig-
nels 1s the same space.)

s A signal s(t), which may also be considered as a point s in R
with coordinates (sl, Boy o o oy sn).

SN The event "There 1s sigmal plus noise."

t Time.

T The duration of the observation.

W The bandwidth of the receiver inputs.

x A receiver input x(t), which may also be considered as a point x

in R with coordinates (xl, Xns o o ey X )

B A symbol usually used for the likelihood ratio level of an optimum
criterion.
;LSN(Z) The mean of the random variable z if there is signal plus noise.
;LN(z) The mean of the random variable z if there is noise alone.
crHQ(z) The variance of the random variablc z if there is noise alonec.
2

i The variance of likelihood ratio if there is noise alone.
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ABSTRACT

PART T

- The several statistical approaches to the problem of
signal detectability which have appeared in the literature are
shown to be essentially equivalent. A general theory based on like-
lihood ratio cmbraces the criterion approach, for either restricted
false alarm probability or minimum weighted error type optimum, and
the a posteriori probability approach. Receiver reliability is
shown to be a functlon of the distribution functions of likelihood
ratio. The existence and unigueness of solutions for the various
approaches is proved under general hypothesis.

PART II

The full power of the theory of signal detectability can
be applied to detection in Gaussian noise, and several general re-
sults are given. §5ix special cases are considered, and the
expressions for likelihood ratio are derived. The resulting opti-
mm receivers are evaluated by the distribution functions of the
likelihood ratio. In two of the special cases studied, the uncer-
tainty of the signal ensemble can be varied, throwing some light on
the effect of uncertainty on probability of detection.
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THE THEORY OF SIGNAL DETECTABILITY

Part II. APPLICATIONS WITH
GAUSSIAN NOISE

ISSUED SEPARATELY:

Part I. THE GENERAL THECQRY

3. _INTRODUCTION AND GAUSSIAN NOISE

3.1 Introduction

The chief conclusion obtained from the general theory of signal detec-
tability presented in Pért I is that a receiver which calculates the likelihood
ratio for each receiver input is the optimum receiver. The receiver can be
evaluated (e.g., false alarm probability and probabllity of detection can be
found) if the distribution functions for likelihood ratio are known. It is the
purpose of Part IT to consider a number of different ensembles of signals with
Gaussian noise. For each case, a possible receiver design is discussed. The
primary emphasis, however, is on obtaining the distribution functions for like-
lihood ratio, and hence on estimates of receiver performance for the various
cases.

The special cases which are presented were chosen from the simplest
problems in signal detection which closely represent practical situations. They
are ligted in Table I along with examples of engineering problems in which they

find application.
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TABIE T
Description of
Section Signal Ensemnble Application

h.2 Signal Known Exactlyl Coherent radar with a target of

knovn range and character

k.3 Signal Known Except for Ordinery pulse radar with no inte-
Phasel gration and with a target of known

range and character. ’

L. L Signel a Sample of White | Detection of noise-like signals;
Gaussian Noise detection of speech sounds in

Gaussian noise.

k.5 Video Design of a Broad Detecting a pulse of known start-

Band Receiver ing time (such as a pulse from a
radar beacon) with a crystal-video
or other type broad band receiver.

L6 A Radar Case (A train of | Ordinary pulse radar with inte-
pulses with incoherent gration and with a target of known
phase) range and character.

4.8 Sipnal One of M Orthogo- | Coherent radar where the target is
nal Signals at one of a finite number of non-

overlapping positions.

k.9 Signal One of M Orthogo- | Ordinary pulse radar with no inte-
nal Signals Known Except | gration and with a target which
for Phase may appear at one of a finite

number of non-overlapping posi-
tions.

1

Our treatment of these two fundamental cases is based upon Woodward and Davies'

work, but here they are treated in terms of likelihood ratio, and hence apply
to criterion type receivers as well as to a posteriori probability type

receivers.

2This is essentially the case treated by Middleton in Ref. 7.
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In the last two cases the uncertainty in the signal can be varied, and some
light is thrown on the relationship between uncertainty and the ability to
detect signals.l The variety of examples presented should serve to suggest
methods for attacking other simple signal detection problems and to give insight
into problems too complicated to allow a direct saolution.

It should be borne in mind that this report discusses the detection of
signals in noise; the problem of obtaining information from signals or about
sipgnals, except as to whether or not they are present, is not discussed, TFur-
thermore, in treating the special cases, the nolise was assumed to be Gaussian.2

The reader will probably find the discussion of likelihood ratio and
its distribution easier to follow if he keeps in mind the connection between a
criterion type receiver and likelihood ratio. In an optimum criterion type
system, the operator will say that a signal is present whenever the likelihood
ratio is ggggg a certain level 8. He will say that only noise is present when
the likelihood ratio is below B, TFor each operating level B, there is a false
alarm probability and a probability of detection. The false alarm probability
is the probability that the likelihood ratio £ (x) will be greater than f if
no signal is sent; this is by definition the complementary distribution function
FN(B). Likewise, the complementary distribution.FSN(B) is the probability that

.@(X) will be greater than B if there is signal plus noise, and hence Fgy(B) is

the probability of detection if a signal is sent.

lThe only discussion in the literature on the effect of uncertainty on signal de-
tectability vwhich has come to our attention is in Davies, Ref. 2, where the effect
upon signal detectability of not knowing carrier phase is shown quantitatively.

2See the footnote on page 4 with reference to the spectrum of the assumed
noise.
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3.2 Gaussian Noise

Throughout Part II, receiver input voltages, which are functions of
time, are assumed to be defined for all times t in an observation interval,
0f t< T. They are also assuned to be limited to a band of frequencies of

width W. By the sampling theorem,l

each receiver input can be thought of as
a point in a 2WT dimensional space, the coordinates of the point being the value

of the function at the "sample points" t = , for 1£ i £ 2WT. The notation

S
2w
x(t), or simply x,denotes a receiver input, and xi denotes the ith sample value,
or coordinate. The signal as it would appear at the receiver input in the
absence of noise is denoted by s(t), or simply s, and the coordinates, or sample
values, of 8 are denoted by By. The receiver input, which may be due to noise
alone or to signal plus noise, is random because of the presence of noise,
Therefore, only the probability distribution for the receiver inputs x(t) can
be specified. The distribution must be given for the receiver inputs both
wvhen there is noisé alone and when there is signal plus nolse. The probability
distributions are described in this report by giving the probability density
function fay(x) and fN(x) for the receiver inputs x in the 2WT dimensional space.
The noise considered in Part II is always Gaussian noise limited to
the bandwidth W, and having a uniform spectrum over the ban.d.2 This is ordi-

narily called white Gaussian noise. The probability density function for white

Gaussian noise, and hence for the receiver inputs when there is noise alone, is:

n L [ -
To(x) = I exp |- =— |}, or (3.1)
I .
i=1 / 2nN an

lSee Appendix D.

2If the noise spectrum is band limited, but not uniform, the noise and signals
can be put through a filter which makes the noise uniform, and then the theory
can be applied. See H. V. Bode and C. E. Shannon, "A Simplified Derivation of
Linear Least Square Smoothing and Prediction Theory," Proc. I.R.E., Vol. 38,

p. 417, April 1950. "
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n
z 1 '
fn(x) = ( Q:J;N ) exp {" ;-_N z Xie} (5'26')

vhere n is the dimensi.n of the space, i.e., 2WT ,2 and N is the noise pcwer.5
It can be shown that this ensemble of noise functions has a Gaussian distribu-
tion at every time and that its spectrum is uniform.

By the sampling ‘c;heorem,1+

T
> x? = e f [x(t)]zdt . (3.3)
0
Therefore a
2 T 5
I - i f
£,(x) = (2:@1) exp [ - x(t) d’c] ’ (3.2b)
o
0]
SN L, . . P
where No =4 is the noise power per unit bandwidth.

If the signals and their probabilities are known, then the signal plus
noise probability density function, fSN(x), can be found by the convolution

integral, as described in Section 2.

lUnlesrs otherwise indicated, the limits on the sumare i =1 to i =n = 2WT.
2 n
X

2 1 i |.
If S XP [—- é-ﬁ—} is called fN(Li), then fN(x) = jE]_ fN(x_L), i.e., the x,; are

independent and each has e (x i) for its probability density function. For a
discussion of "independent," see Cramér, Ref. 14, p. 159.

3 This assumes the circuit impedance is normalized to one ohm.
ll'See Appendix D,

5’.i‘his form of the expression for fH(x), and the corresponding forms of the
equations for fg (x) and £ (z) were first derived by Woodward. See Woodward
and Davies, Refs. 2 and 3.

6See page 13 of Part I.
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n
2 ., n 5
fSN(X) = ﬁN(X‘S)d-% (s) —<23tN) exp [" 5% ) (Xi'si) ] ARy (s)
R R i=1
B n a (3-146.)
2
(af ol Bl ol Bt § e
i=1 1=
n
1 \? 1 L 2 '
(%) = /fN(x-s) dPg(s) =<§:H\I-) exp [- T f [x(t)-s(t)]» dt]d.Ps(B)
R R °o
2 (3.4p)
2 T T T
1 1 2 1 2
= (ExN) exp [- ﬁ;é/' X dtJ‘///g;p [- ﬁ; 6[ sedt} exp [ﬁ;s/. X8 di] dPS(s)
R
) 1 T 2 1 2
The factor exp| - ﬁ-c-)- Of X (t) at| = exp| - T > X4 can be brought out of

the integral since it does not depend on 8, the variable of integration. Note

that the integral

T
o‘[ s2at = % 2 8% = ms) 1 (3.5)

is the energy of the expected signal, while

T 1
of x(t) s(t) at = 5 2 X383 (3.6)

is the cross correlation between the expected signal and the receiver input.

- lSee footnote 3 on page 5.
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3.3 Likelihood Ratio with Gaussian Noise

Likelihood ratio is defined as the ratio of the probability density

functions fSN(x) and fN(x). With white Gaussian noise it is obtained by dividing

Eq (3.4) by Eq (3.2).

- n
£(x) = /zxp [- E-:I—gﬂ] exp %\-I- z xisi:l dpg(s), or (3.72)
R o i i=1 '
i T
L) - /xp[%f,—l}xp R EXORCES

R - 0

If the signal is known exactly or completely specified, the probability
for that signal, or point s, is unity, and the probability for any set of points

not containing s is zero. Then the likelihood ratio becomes

,Zs(x) = GXP[-EI%Z exp % ¥ x.8; | or (3.8a)
E i=l
E(s) ] 2 T
= exp [' N, exp ﬁ f x(t) e(t) dt:I . (3.8b)
- ) 0

Thus the general formulas (3.7a) and (3.7b) for likelihood ratio state that £(x) .

is the weighted average of ,ZB(x) over the set of all signals, i.e.,
L(x) = /f(X) d P (s) . (3.9)
R 8 S

If the distribution function PS (s) depends on various parameters such

as carrier phase, signal energy, or carrier frequency, and if the distributions




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN  —

in these parameters are independent ,l the expression for likelihood ratio can be
gimplified somewhat. If these parameters are indicated by Tio Tpy ooy Tp and
the associated probability density functions are denoted by fl(rl ), f2(r2), cesy
fn(rn), then

a B (s) = Ty(ry) **t By(r)) drp cee dxy

The likelihood ratio becomes

L) = [ e [ L @) fry) o £ (my) @xy ey

f [);l(rn) tee [ff]_(l'l) ,és(x) dl'l] "']dl‘n . (3.10)

Thus the likelihood ratlo can be found by averaging ,Zs (x) with respect to the

parameters.

lCra.mér, Ref. 14, p. 159.
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L. LIKELTHOOD RATIO AND ITS DISTRIBUTION FOR SPECIAL CASES

4.1 Introduction

The purpose of this section is to derive expressions or approximate
expressions for likelihood ratio and its distribution functions for a number
of special signals in the presence of Gaussian noise. The results obtained in

this section are summarized and discussed in Section 5.

4,2 The Case of a Signal Known Exactly

The likelihood ratio for the case when the signal is known exactly

has already been presented in Section 3.3, Eq (3.8).

- . n

Z(x) = exp _-ﬁ%_ exp [% E Xisi] ’ (k.1a)
[ E ] 2 T

2(x) = exp |- o exp[ T f x(t) s(t) dtJ (%.1b)
L J o 0

As the first step in finding the distribution functions for £(x), it
is convenient to find the distribution for % > x;84 when there is noise alone.
Then the input x = (xi, Kpy veey xi) is due to white Gaussian noise. It can be
seen from Eq (3.1) that each x4 has a normal distribution with zero mean and
variance N = WN, and that the x; are independent. Because the s; are constants

depending on the signal to be detected, B = (sl, Bpy -+ey By),-each summand

. 8
%‘ (z48 i) has a normal distribution with mean -ﬁ"ﬁ- times the mean of x5 and vari-
2 ' 2 8.2

8 ]
ance L times the variance of X4 = zero and e 3 N= L respectively.

a N N

Because the xj are independent, the summands % 84X; are independent, each with

normal distributions, and therefore their sum has & normal distribution with
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mean the sum of the means -- i.e., zero -- and variance the sum of the
varia.nces,l
g 2
y i . ZWE(s) _ 2E _ Dy Signal Energy . (h.2)
N N N, Noise Power Per Unit Bandwidth ey

The distribution fori%' > X483 with noise alone is thus normal with zero mean

and variance ﬁa—E .« Recalling (4.la)

o

=i

d(z) = exp [-%;+ insi} (%.12)

it is seen that the distribution for% > Xi8; can be used directly by intro-

ducing o defined by

B = exp [-ﬁﬁ-:-+a] » ora=-r-q£-:-+ —Zl’lﬁ ()“'-3)

(e] o

The inequality ¢ (x) 2 B is equivalent to %‘I-insi 2 a, and therefore

®
/N
) =/ % / eXP[ %-Q-EQ.VQJ dy (k)
(94

The distribution for the case of signal plus noise can be found by

using Theorem 8, which states that®

dFSIq(ﬁ) = BGFN(B) . (ll-.5)

1
Cramér, Ref. 1%, p. 212.

®See Part I, pp. o4 and 27.

10
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Differentiating Eq (k.4),

; N, Nocx2 1
FB) = -z = T/ 2 (4.6)

N
Ty (8) = - /1 exp [- % + -_.@_}da (k. 7)

O
N N 2
Fou(®) =./ 15 / exp [ ;(y I%f—) ]dy (+.8)
(94

In summary, &, and therefore Ln » has a normal distribution with signal
plus noise as well as with noise alone; the variance of both distributions

is —EIE—- , and the difference of the means 1is = .
I, No

The receiver operating characteristic curves in Fig. 4.1 are plotted
for any case in which £n £ has a normal distribution with the same veriance
both with noise alone and with signal plus noise. The parameter 4 in this
figure is equal to the square of the difference of the means, divided by the
variance. These recelver operating characteristic curves apply to the case of
the signal kmown exactly, with d = ]?21—;‘— .

Eq (k.1b) describes what tl(ze ideal receiver should do for this case.

T
The essential operation in the receiver is obtaining the correlation,of s(t)x(t)at.

Lrhe change in sign appears because the distribution functions FSH(B) and FN(B)

are probabilities that .£(x) will lie between § and @, not - ® and p as is
usually the case. If the density function for FSN(B) is called g(B), then

.Y

an
——%IL(?—)- = -g(B), and FSN(B) = Bf g(B) ds.

ag

1l
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The other operations, multiplying by a constant, adding a constant, and taking
the exponential function, can be taken care of simply in the calibration of the
receiver output. Electronic meens of obtaining cross correlation have been
developed recently.l

If the form of the signal is simple, there is a simple way to obtain
this cross correlation.Z Suppose h(t) is the impulse response of a filter.

The response e, (t) of the filter to a voltage x(t) ia”

t
e (t) = J) x(T ) h(t-T) dT (&.9)
If a filter can be synthesized so that
h(t) = s(T-t) OStsrT
h(t) = 0 otherwise, (%.10)
then .
T .
e (T) = f x(t)s(t)ar , (k.11)
0

80 that the response of this filter at time T is the cross correlation required.
Thus, the ideal receiver consists simply of a filter and amplifiers.
It should be noted that this filter is the sanme, except for a constant

factor, as that specified when one asks for the filter which maximizes peak

L

signal to average noise power ratio.

lHarrington and Rogers, Ref. 16; Harting and Meade, Ref, 17; Lee, Cheatham, and
Wiesner, Ref. 18; Levin and Reintzes, Ref. 19.

2This appears to be due to Woodward. See Woodward, Ref. 5, and Woodward and
Davies, Ref. 3.

3g. Goldman, Transformation Calculus and Electrical Transients, Prentice Hall,
New York, 1949, p. 1l12.

lFLewrson and Uhlenbeck, Ref. 1, p. 206; Horth, Ref. 11.

12
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4.3 Signal Imown Except for Carrier Phase

The signal ensemble considered in this section consists of all
signals which differ from a given amplitude and frequency modulated s8ignal only
in their carrier phase, and all carrier phases are assumed equally likely.

s(t) = f£(t) cos(wt+¢(t)—9) .

(k.12)
Since the unknown phase angle 6 has a uniform distribution,

1
dEy (8) = 5 de. (5.13)

The likelihood ratio can be found by applying Eq (3.7), and since the signal

energy E(s) is the same for all values of carrier phase Q,l

L(x) = exp [- %—:’ﬂ:w [% Xisi] &P (s) (k.14)
°
R

Expanding s into the coefficients of cos 6 and sin © will be helpful: 2

8(t) = f£(t) cos(w t+¢(t))cos e + f£(t) sin(wt+¢(t))sin e , (k.15)
and
.I%insi = cos ei]\% ZXi f(ti) cos (wti + ng(ti))
+ gin @ %Z X; £(t;) sin (wti + ¢(ti)) (k.16)

Because we wish to integrate with respect to 0 to find the likelihood

ratio, it is easiest to introduce parameters similar to polar coordinates

(r, 8,) such that

lFor this to be rigorously true, it i
and have its line spectrun zero at ze
w

o]
to or greater than %}—t-— .

s sufficient that the slgnal be time limited
ro frequency and at all frequencies equal

ti denotes the 1*h sample point, l.ee, ty =

—— Py

2w

e

17
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L N

= T cos 6, = = ZXi f(ti) cos ( Wty + ¢(ti))

R o1 - .

5 rsine, = i zoxi f(ui) sin (w ty + ¢(ti)) (k.17)
and therefore

1 x;8; = L cos (-8 . 4.18)

ﬁ z 11 I ( O) ( )

Using this form the likelihood ratio becomes

2x
L(x) = exp [- ﬁE_] /' exp l:l% cos (6 - QO):I g_fg?
°< 0
= exp [- I—?:l I, (%) (%.19)
o

where I, is the Bessel function of zero order end pure imaginary argument.

I, is a strictly monotone increasing function, and therefore the
likelihood ratio will be greater than a value § if and only if i\IT: is greater than
sone value corresponding to f. The quantity r is defined by the Egq (h.l?); %

is the square root of the sums of the squares of the right-hand sides. The

probability that I\ET will exceed any certain value can be computed by observing
that each of the right-hand sides is -é9 times the cross correlation of x(t)

with a fixed signal, either f(t) cos [ wt + ¢(t)] or £(t) sin [wt + ¢(t)] .
Therefore, the distribution of each can be found in the same manner as the dis-

tribution of 'I]—i Z X484 was found for the case of the signal known exactly,l and

z

r
T cos 90 and =

oy
2E .

7 - Furthermore, f(t) cos (wt + ¢(t)) and f(t) sin{ wt + ¢(t)) are out
o)
of phase, or orthogonal, and therefore r cos 90 and r sin GO have independent

both sin GO have normal distributions with zero mean and variance

distributions .2

lSee page 9. 25ee footnote 1, p. 17.

18
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L. x 2 r o . 2 g
Because 3 = »\/N cos Oo) + ( § sin QO) , the probability that

%;-will exceed any fixed value is given by the well-known chi-square distribu-

1
tion for two degrees of freedom, Kz(ag). The proper normalization yielding

/ N
. . . T 0 .
zero mean and unit variance requires that the variable be 7 m—;—, that is

il o
r o) . 2 o
Py < T 55 2a | = I\Q(a ) = exp [: -5 ] . (4.20)
If ¢ is defined by the equation

B = exp [-%] IO< /g%o a> ) (+.21)

the distribution for ﬁ(x) in the presence of noise alone is in the simple form

2
Fy(B) = exp [—%—] : (k.22)

Using Theoren 8 of Section 2, namely

B dFN(B) = dFSN(ﬂ) (’4’-23)

but making use of the parameter «, we form first

GFN(B) = - Q exp I:- %2—] o, (&.24)
and hence
2
dFSN(B) = =~ €Xp [‘ -IT?O—]C! exp [-gé—j'lo %—ECZ ax (14-.25)

Integrate from ¢ to infinity.

@ 2
Fou(B) = exp [-1?—0] f @ exp [-9‘2—-] I, \/%—-‘Ea a . (4.26)

a

lCramér, Ref. 14, p. 253, or Hoel, P. G., Introduction to Mathematical Statistics,
Wiley, 1947, p. 134, ,

19
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Bgs (h.22) and (4.26) yield the receiver operating characteristic in parametric
form, and Eq (4.21) gives the associated operating levelsl Thege are graphed
in Fig. 4.5 for the same values of gignal energy to noise per unit bandwidth
ratio as were used vwhen the phase angle was known exactly, Fig. 4.1 , 80 that the
effect of knowing the phase can be easily seen.

If the signal is sufficiently simple so that a filter could be syn-
thesized to match the expected signal for a given carrier phase © as in the case
of a signal known exactly, then there is a simple way to design a receiver to
obtain likelihood ratio. TFor gimplicity let us consider only amplitude modulated
signals (¢(t) = 0) in Eq. (1}.12)). Let us also choose 6 = 0. (Any phase could
have been chosen.) Then the filter has impulse response

h(t) £(T-t) cos [w (T-t)] 0L t<T

il

= 0 otherwise. (k.27)

The output of the filter in response to x(t) is then

t t
e (t) = f x(T) h(t-t) aT = f x(T ) £(T +T-t) cos w (T+T-t) AT
- t-T
t
= cos w(T~-t) / x(T) £(T40-t) cos wT ar
t-T
t .
- sin W (T-t) f x(t) f(Tt+T-t) sinwT 4 T . (+.28)
t-T

lGra.phs of valueg of the integral (4.26) along with approximate expressions for
small and for large values of « appear in Rice, Ref. 20. Tables of this
function have been compiled by J. I. Marcum in an unpublished report of the
Rand Corporation, "Table of Q-Functions »"" Project Rand Report RM-399.

20
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The envelope of the filter output will be the square root of the sum
of the squares of the integrals,l and the envelope at time T will be propor-

. r .
tional to = , since

N
r |
W

il

T T
[f x(T) £(T) cos w'rdrj’2+[f x(t) £(t ) sin wrere. (¥.29)
0 0

Square of the envelope, at time T, of eo(t).

If the input x (t) opasses through the filter with an impulse response gilven by
Iy
r
Eq (4.27), then through a linear detector, the output will be *ég' y at time T.
by
Because the likelihood ratio, Eq (%.19), is a known monotone function of T

the output can be calibrated to read the likelihood ratio of the input.

4.4 Signal Consisting of a Sample of White Gaussian Noise

Suppose the values of the signal voltage at the sample points are
independent Gaussian random variables with zero mean and variance S, the signal
power. The probability density due to signal plus noise is also Gau.ssia.ﬁ, since

. . . . . 2
signal plus noise is the sum of two Gaussian random variables:
n

z
1 1 1 2
fop(®) = 2n (W+5) exp [“E e 2 % ] (+.30)
The likelihood ratio is
pe
N 2 11 2 1 1 2
£(x) = (ﬁ‘+§) eXP[EﬁZXi -5 TS in] (+.51)

lIf the line spectrum of x(t) is zero at zero frequency and at all frequencies

€qual to or greater than %%) » then it can be shown that these integrals

contain no frequencies as high as % .

2Cre.me/r, Ref. 1k, p. 212,

22
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“

In solving for the distribution functions for £, it is convenient

to introduce the parameter ¢, defined by the equation

a
N \° S a?
N+S) exp (ﬁ;g '§') . (+.32)
l L
Then the condition £(x) 2 B is equivalent to the condition that T z Xi?. a.e.

p.
In the presence of noise alone the random variables ( J—%) have zero mean and unit

variance, and they are independent. Therefore, the probability that the sum of
the squares of these variables will exceed a2 is the chi-square distribution

with n degrees of freedom,l i.e.,

Fo(B) = K (°) . (4.53)
x5
Similarly, in the presence of signal plus noise the random variables
\»./ N4S
have zero mean and unit variance. The condition 'I]? Z xlez cz2 is the same
as requiring that L > x 2, I o?, and again meking use of the chi-square
W45 i 7 W48
distribution,
- N2
Fan(P) = Kﬂ(ms A (4.34)

Recelver operating characteristic curves are presented in Figs. 4.6 and
4.7 for four possible choices of n (10° , 100 R th ’ 10° ), and in each case for
three values‘ of signal to nolse ratio three db apart.

TFor large values of n, the chi-square distribution is approximately

2

2
normal over the center portion; more precisely,” fora > > 0

lcramér, Ref. 1%, p. 233. Tables of Kn(az) can be found in most books on sta-
tistics. Extensive tables are listed in the bibliography of Ref. 1k, p. 570.

®p. G. Hoel, Introduction to Mathematical Statistics, New York: Wiley, 1947,
p. 246.
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T

yQ] ay (4.35)

(00)]
2y~ L [ '
Kn( ) E / €xXp ‘(i

v2a2-J/on1

v 2x
2
/ 2Ty
N+S ""\/211-1

If the signal energy is small compared to that of the noise, I-Il% is nearly

unity and both distributions have nearly the same variance. Then Fig, 4.1

applies to this case too, with the value of d given by

2 A
d = (2n-1) (1 - o/ ﬁ-g) . (k.37)

For these small signal to noise ratios and large samples s there is

simple relation between signal to noise ratio, the number of samples, and the

N 18 S
l‘\/TTENEN fory <<1 ,

a ~ B (4.38)

detection index 4.

Two signal to noise ratios, (%)

a.nd( §_) » Will have approximately the same
1 Nig 77

operating characteristic if the corresponding numbers of sample points, ny

and n,, satisfy 2

—
=

_ VN4
-

)2

[P
e
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This can be verified for the three curves of Fig. 4.7 for n = lO5 » compared
with Fig. %.1 for d = 1, 4, 16.
E‘L‘he receiver specified is any device that produces the likelihood

ratio of its input,

n
i) 2 S 1 2
£ (x) =(i\r‘+‘s‘) exp [fﬂg"ﬁ 2z J . (%.31)
An energy detector has as its output
T 2 1 2
e (t) = f[x(t)] at = 5 Y (.%0)

0
and this receiver can be calibrated so that its output at the end of the obser-

vation tine, e, (F), will be read as

n

e T
L(x) = <f§-s-> exp [ﬁ% fi‘;—(-_).] (k.41)

o

1!-.5 Video Design of a Broad Band Receiver

The problem considered in this section is represented schematically

in Fig. 4.8. The signals and noise are assumed to have passed through a band

g RoM BAND PASS LINEAR VIDEO
—— PLIFIER
oF Iives FILTER / DETECTOR/ AMPLIFIE
POINT A POINT B
FIG. 4.8

BLOCK DIAGRAM OF A BROAD BAND RECEIVER.

pass filter > and at the output of the filter » point A on the diagram, they are

assumed to be limited in spectrum to a band of width W and center frequency

27
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@ g - The noisc is assumed to be Gaugsian noise with a wniform spectrun
2

over the band. The signals and noise then pags through a linecar detector. The
output of the detector is the envelope of the signals and noise as they appeared
at point A; all knowledpe of the phase of the receiver input is lost at point B,
The signals and noise as they appear at point B are consideréd receiver inputs,
and the theory of signal detectability is applied to these video inputs to
ascertain the best video design and the prerformance of such a system. The
mathematical description of the sicnals and noise will be given for the signals
and noise as they appear at point A. The envelope functions, which appear at
point B, will be derived, and the likelihood ratio and its distribution will be
found for thesgse envelope functions.

The only case which will be considered here is the case in which the

amplitude of the signal as it would appear at point A is a known function of

time.
Any function at point A will be band limited to a band of width W
and center frequency é%d> g . Then the alternate form of the sampling theoren

can be used.l Any such function f(t) can be expanded as follows:
f(t) = x(t) cos wt + y(t) sin wt (. h2)
where x(t) and y(t) are band limited to frequegcies no higher than g-, and

hence can themselves be expanded by the sampling theorem:

£(t) = Z[x(%)\[li(t) cos Wt + y(%)gl/i(t) sin wt] . (5.43)
i
The function can be thought of as a point in a space of n = 2WT dimensions with
R i (1) . s '
coordinates x(ﬁ-) =X and y (W) =7¥; - This is a rectangular coordinate

lSee Appendix D.
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system, since the family of functions \"i(t) cos wt and \Pi(,t) sin wt form
an orthogonal system.

The amplitude of the function f(t) is

2 2
r(t) =/ [x©)]" + [y(0)] (. 4)
and thus the amplitude at the ith sampling point is
() - e 5 (o
The angle
71 e 4.6
8, = arctan ;i- = arccos T (4+.46)

might be considered the phase of f£(t) at the i'® gampling point. The function
f(t) then might be described by giving the J:'i and Gi rather than the X; and y;.
The rj and 6; are sample values of amplitude and phase, and forma sort of
polar coordinate system in the space associated with the set of functions.

Let us denc_:te by Xy yi » Or Ty, Qi, the coordinates or sample values
for a receiver input after the filter (i.e., at point A in Fig. 4L.8). Let
84, by, or £y, ¢i denote the coordinates for the signal as it would appear at
point A if there were no noise. The envelope of the signal, hence the coor-

dinates f,, are assumed known. Let us denote by Fo(f1s Bos --es ¢11. ) ‘the

2
distribution function of the phase coordinates ¢i' The probability density

function for the coordinates x 2 when there is white Gaussian noise and no

signal is

n
. n/2 n/2
Iy(x, ¥) = (égj-r'-ﬁ) exp [- i xi2 + ¥ yie)] (5.57)
i=1 i=1 ‘

29
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and for signal plus noise
2 n/2 n/2
- 1 1 2 2
i= =
R (4.48)
Changing to the polar coordinates,
n
2 n/2 n/2
. _ (L L 2 !
IN(I', 8) = (Qﬂq) H r; eXp [‘ ol z—: Ty ) - (k.b9)
i=1 i=1
ané
n
2 n/; n/2
1 1 2 2
me(r,Q) (”nN) I Ti[ Xp [— 5% z {ri +fi -erifi cos (ei-¢ii}]
i= i=1
R
dl?s(ngl, cees ¢B) . (4.50)
2T 2
The factors [] r; are introduced because they are the Jacobian of the
i=1
transformation from rectangular to polar coordinates.l’ 2
The probability density function for r alone, i.e., the density func-
tion Tor the output of the detector, is obtained by simply integrating the den-
sity functions for r and © with respect to 9.3
2% 23 2n
fy(r) = f f f £4(rys 6;) d9, do, +++-d9,
0 0 0 2
n
"2 nfe n/2
=(1 r L 2
‘(ﬁ) iHl 1 exp[ 5 2 T1 (+.51)

lCramé%, Ref. 1k, page 292.
2 .
For example, in two dimensions, fN(x, y)dx dy = fN(r, 8) r dr de.

3 /
Cramer, Ref. 1k, page 291.
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and
21 an 2x
fSII(r) = f f LAY f fSI\I(ri’ ei) de, dgg. . e -d‘el—]:
0 0 0 5
3 /2 /2 n/e .
2 n a T.f.
1 2 2 i+i
- (%\f) I Ty &P | - 5 2 (ri ;) I Io< N >6F(¢l:¢2¢2)
R i=1 i=1 =1 5
n .
= n/é n/é
2 r.f. 1 o 5
1=1 | i=1

Notice that the probebility density for r is completely independent

of the distribution which the ¢i had; all information sbout the phase of the

S8ignals has been lost.

The likelihood ratio for a video input is

o (r) n/2 n/2 r.f,
SN ) 1 2 ivi
L) = I(x) = e | -3g .Zl £l O o1 T/ (+.53)
i= i=1

Again it is more convenient to work with the logarithm of the likelihood ratio.

n/2

1 2 _ W 2 _E
B £ = 5 [f(t)] at = T and (4.5k)
n/é
dn £ @) = -+ Y Anay rlfi) ’ (+.55)
(o] i=1 i)

which is approximately

T

Lo L(x(t)) = - 1%1 W f n Io(l‘tr_l_)_fﬂigat . (4.56)

0
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The function #n Io (x) is plotted as a function of x in Fig. 4.9.
2
This function is very nearly the parabola }-ir for small values of x and is
approximately linear for large values of x. Thus » the expression for likelihood

ratio might be approximated by

T
fn.é(r(t)) - IEI“ + :‘1\% f [r(t)]e [f(t)]e at (4.57)
0
0
for small signals » and by

T
C, +¢, f r(t) £(t) at (+.58)
0

i

an(r(t))

for large signals, where Cl and 02 are chosen to approximate jn I0 best in the
desired range.

The integrals in Egs (4.57) and (+.58) can be interpreted as cross
correlation. Thus the optimum receiver for weak signals is a square law detec-
tor, followed by a correlator which finds the cross correlation between the
detector output and (f(‘l:))2 » the square of the envelope of the expected signal.
For the case of large signal to noise ratio, the optimun receiver is & linear
detector, followed by a correlator which has for its output the cross correla-
tion of the detector output and f£(t), the amplitude of the expected s8ignal.

The distribution function for (r) cannot be found easily in this
case. The approximation developed here will apply to the receiver designed
for low signal to noise ratio > 8ince this is the case of most interest in
threshold studies. An analogous approximation for the large signal to noise ‘
ratios would be even easier to derive.

First we shall find the mean and standard deviation for the distribu-

tion of the logarithm of the likelihood ratio:
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n/2
~ 1 2 1 2 =
In Jr)= - 55 2 T+ ) igl ri2 s (4.59)

for the case of small signal to noise ratio. The probability density functions

for each r; are

f r. = o X - ——— an
ey T | e |Tw |
I‘i [ rig
gN' (ri ) = TI_ eXp - o1 . : | ()-l- . 60)

The notation gN(ri) and gSN(ri) is used to distinguish these from the Joint

distributions of all the T; which were previously called fN(r) and fSN(r). The

r.2f12
mean of each term —= in the sum in Eq (k.59) is
2, 2 o2 o,
T fi = 1 i:';__ (r.) dr.
F A Ly - S\t 1
0
2 @ 3
f. r. 2 2 .
. 4 I el - (riTHE57) ity
R - GTP[ 2N ] I°< N ary
0
15%)
2.2 2 2 o
Ir. fl f f f ri
/LL‘ 1 = (I‘ ) dr - XP i
W\ " 4}; B TN (h.61)
0
Do 2
ry°f;

The second moment of each term is

I

T 4g i1+
Ko\ / (ry) ar
SN 16Nl* 16112 q;_) & i

®
L4 5 2.2y |
3 / T e |- (i) oo (Fifi ) 4.
= - | ‘o \ —— i
161° s i 241 N
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w

"
s <rihfih>= ~ 2 g(ry) ar
I\ 161 160 J R

@©
fih ry” ry?
[, 1-“—5—— exp —-é-ir dl'i (ll-.62)

2
16
Sl

1]

The integrals for the case of noise alone can be evaluated easily:

2, 2 2
 (55). o
N\ 4P 2N

L
/'L] (ri fil*> B f‘il+
. L
16Nh on®

The integrals for the case of signal plus noise can be evaluated in terms of

[}

I

the confluent hypergeometric function, which turns out for the cases above to
reduce to a simple polynomial. The required formulas are collected in conveni-

ent form in the book, Threshold Signals by Lawson and Uhlenbeck.l The results

are
2 2
" ifff. -1 5 1+£§-_
SN\ 2 W 2N
ho b 2 4
K rifi =££<l+i+f}_>
SN 16Nh 2 P ¥ g (k.64)
Since
2 > 12
e = pdd-[rw]® (1.65)
r.2f.2
the variance of —s—— is

g

IRef. 1., p. 174
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20 2 o b r2
r.<f. .
0_2 i7i . 1 i <l+ i

SN\ 12 bR ]
P
5 (r:L fi2>_ fil+
o i
N e e (4.66)

For the sum of independent random variables, the mean is the sum of
the means of the terms and the variance is the sum of the variances.

mean of #n [A(z) is

n/2 nf2|. £?2 e nfe gl
. 1 2 1 i 1 i ]_ 1
poy (o) == T £+ 3T |7 FE 2|7 2 -
i=l i:l N i=l I
nf2 _ o n/2 5
! 3
py (Lode) =- 2 g3 2 (h.67)
i=l i:l

= 0

and the variance of {#n { (r) is

n/2 1 filb ]_fi6
O‘ESN(.Zn,,Z(r)) = El 2 TR

=

n/2 fil"

z —_—
) e (4.68)

il

2
g o (.@hf(r))

If the distribution functions £n l(x) can be assumed to be normal,
the distribution functions can be cobtained immediately from the mean and standard
deviation of the distribution. In some cases the normal distribution is a good

approximation to the actual distribution.
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Let us consider the case in which the incoming signal is a rectangular
pulse which is %i seconds long.:L The energy of the pulse is half its duration

times the amplitude of its envelope, and therefore the amplitude has the value

fi = g—g—i s (+.69)

where E is the pulse energy. It has this value on M sample points and is zero

at all others. For this case

il

o (£n L(x))

By (,ﬂn ,Z(r))
o-sng(ln ,é(r)) B = (1 + g 2 )

i

1]

I

GNQ (£a L)) . (+.70)

Also, for this case, the distribution of £n .Z(x) is approximately
normal, i1f M is much larger than one. Since it is the sum of M independent
random variables, all having the same distribution, it must, by the central
limit *l:b.eorem,2 approach the normal distribution as M becomes large. The actual
distribution for the case of noise alone can be calculated in this case, since

the convolution :v'.ntef_g;.r'a.l3 for the gN(ri) with itself any number of times can be

]"Ihe problem of finding the distribution for the sum of M independent random vari-
ables, each with a probability density function f(x) = x exp [— % (x2+a2)] I, (o)

arises in the unpublished report by J. I. Marcum, A Statistical Theory of Target
Detection by Pulsed Radar: Mathematical Appendix, Project Rand Report R-113.
Marcum gives an exact expression for this distribution which is useful only for
small velues of M, and an approximation in Gram-Charlier series which is more
accurate than the normal approximation given here. Marcum's expressions could be
used in this case, and in the case presented in Section 4.6.

2
Cramér, Ref. 14, . 213 and 316. Scrandr, Ref. 14, p. 188-9.
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expressed in closed form. The density function for this distribution is
plotted in Fig. 4.10 for several relatively small values of M. The distribution
of 4n _f(x) for signal plus noise is more nearly normal than the distribution
for noise alone, since the distributions ESN<ri) are more nearly normal than
81¢(r1)0 |

The receiver operating characteristic for the case M = 16 is plotted
in Fig. 4.11 using the normal distribution as approximation to the true distri-
bution. In many cases it will be found that

1, 28

= . il
M, << i (4.72)

In such a case the distributions have approximately +the same variance. Aszsuming

normal distribution then leads to the curves of Fig. L,1, with

1 (@)

d = 13 ﬁ; . (3.72)

4.6 A Radar Case

This section deals with detecting a radar target at a given range.
That is, we shall assume that the signal, if it occurs, consists of a train of
M pulses whose time of occurrence and envelope shape are known. The carrier
phase will be assumed to have a uniform distribution for each pulse independent
of all others, i.e., the pulses are incocherent.

The set of signals can be described as follows:

M-1
s(t) = ¥ £(tmT) cos (wt+ei) (+.73)

n=0
where the M angles Gi have independent uniform distributions, and the function f,

which is the envelope of a single pulse, has the property that
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T

f F(t+iT) £(4+JT) At = %E( 315 (4. 7h)
0

where Sij is the Kronecker delta function, which is zero if i 7! Jy and unity
if 1 = j. The time T is the interval between pulses. Egq (h.'ﬂ&) states that
the pulses are spaced far enough so that they are orthogonal » and that the total

signal energy is E.l The function f(t) is also assumed to have no frequency

components as high as @,

2n
The likelihood ratio can be obtained by applying Eq (3.7).
L(x) = fe:qal:— }%g-ﬂ]exp[%— fT s(t) x(t) dT] dPg () (*.75)
R © °0 ,
- 27 21 > T M-1
E
= expl- =| [ o+ [ exp|= 2 £(tmT)x(t)cos @t+o_)dt do ...de
I T
(%.76)
The integral can be evaluated, as in Section 4.3, and
M-1 r
L(x) = exp [ -1%*3-] o I (-ﬁ“) , (&.7T)
°J 1o
where
2 7 2 3 2
( ™my) _|.2 , 2 . .
—ﬁ-) =I5 f(t4m T )x(t)cos w tdt] + — f(tm7) x(t)sinwtdt (4.78)
o o
0 0

This quantity rm is almost identical with the quantity r which appeared
in the discussion of the case of the signal known except for carrier phase,

Section 4.3. In fact, each Tm could be obtained in a receiver in the manner

IThe factor 2 appears in (4.7h) because £(t) is the pulse envelope; the factor M
eppears because the total energy E is M times the energy of a single pulse,

hy
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described in that section. The quantity r, 1s connected with the first pulse;
it could be obtained by designing an ideal filter for the signal

s_(t) = £(t) cos Wt+e) (%.79)
for any value of the phase angle 8, and putting the output through a linear
detector. The output will be %Q 'I:I\TO at some instant of time t o Which is deter-
mined by the time delay of the filter. The other quantities T, differ only in
that they are associated with the pulses which come later. The output of the
filter at time t, + mT will be %9 = .

It is convenient to have the receiver calculate the logarithm of the

likelihood ratio,

M-1
An L(x) = - éj— + > Un IO<E%\II1‘) (1+.80)
o =0

r
m
Thus the £n I (_IT) mst be found for each r,» end these M quantities must be

T
added. As in the previous section, -I_? will usually be small enough so that
2

A I
£n Io(x) can be approximated by }—%— 1 The quantities )l-T (—ﬁn—l) can be found

by using a square law detector rather than a linear detector, and the outputs

of the square law detector at times t,, t+ T, ..., t, + (M-1)T then must be

o]
added. The ideal system thus consists of an i.f, amplifier with its passband
matched to a single pulse ,2 a square law detector (for the threshold signal
case), and an integrating device.

We shall find normal approximations for the distribution functions of

the logarithm of the likelihood ratio using the approximation

r I 2
Lot (Blem ' (4.81)
° I P

Lsee Fig. 4.9,

211: is usually most convenient to make the ideal filter (or an approximation to
it) a part of the i.f. amplifier.

Lo
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r
which is valid for small values of-ﬁﬂ, 1
M=-1 2
~ B 1 Tn
Lats - DI (2) . (h.82)

The distributions for the quantities r, are independent; this follows from the
fact thatvthe individual pulse functions f(t+mT) cos (w t+6,) are orthogonal.
The distribution for each is the same as the distribution for the quantity r

which appears in the discussion of the signal known except for phase; the same

analysis applies to both cases. Thus, by Eq (4.22)2

M 2
Tm O > [ 04 J
PN<'fr zm =% = em|-F

or o (4+.83)
T a"N M
> = ex o
PN N - a - eP"’ oR 2
and by (4.26),
. @®
TMr 2 "
O m s _ _ E .o 2n
PSN< "aﬁ‘*‘f=a)‘ =P [ r’f‘J/xeXp [ 2:]I°<a @E)‘h
°lg
or
Psy \j72a/ = 5 © [- ﬁ:ﬁ.}u//ﬂa exp \ - —— | L(2) da (4+.84)
a

o () = 22 (%) om [ MT] [—( ) (2] 5 (2) oo

lSee footnote 1, p. 37,

2The M appears in the following equations because the energy of a single pulse is
% rather than E.

L 3
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This 1s the same situation, mathematically, as appeared in the previous section
on page 3%. The standard deviation and the mean for the logarithm of the

likelihood ratio can be found in the same mamnmer, and they are

hyy (fnf) = E
h =
SN T 2
Ky (€nd) = o
2 2 28
G'sN (.an) = E2 (1+W)
MN °
. _E°
I (Lnl) = - (4.86)

If the distributions can be assumed normal, they are completely deter-
mined by their means and variances. These formulas are ldentical with the
formulas (h.'?o) on page 37 of the previous section. The problem is the same 9
mathematically, and the discussion and receiver operating characteristic curves

at the end of Section 4.6 apply to both cases.

4.7 Approximate Evaluation of an Optirnm Receiver

In order to obtain approximate results for the remaining two cases > the
assumption is made that in these cases the receiver operating characteristic
can be approximated by the curves of Fig. k.1, i.e., that the logarithm of the
likelihood ratio is approximately normal. This section discusses the approxi-
mtion and a method for fitting the receiver operating characteristic to the
curves of Fig. 4.1,

It was pointed out in Section 2.5.1 of Part I of this report that
Foy(£) cen be caleulated if Fy(£) is known. It was further pointed out that
the n'R moment of the distribution F (.1/) ig the (n—l)th moment of the distri-

bution FSN("Z)' Hence, the mean of the likelihood ratio with noise alone is

L
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2
unity, and if the variance of the likelihood ratio with noise alone is Oy » the
second moment with noise alone » and hence the mean with signal plus noise is
1+ O‘Ne. Thus the difference between the means, and the veriance with noise

alone are the same munber o-NE. This muber probably characterizes the receiver
reliability better than any other single number.
Suppose the logarithm of the likelihood ratio has a normal distribution

with noise alone, i.e. »
[0 0)

2
(L) = ;d / exp[.. LX_;.?_] dx, (4.87)
An £

vhere m is the mean and d the variance of the logarithm of the likelihood ratio.

The nth moment of the likelihood ratio can be found as follows:

(00) b0}
32
/LN(,@n) = Ofln F (L) = \/;Td -C'_{ exp[nx]exp[- %?—]dx s (4.88)

where the substitution /= €Xp X has been made. The integral can be evaluated by

completing the square in the exponent and using the fact that

®
I exP[-Jzii_]dx=\/2xd ,
-

‘ 2
Ppll™) = e[ BSym ] | (1.89)
In particular, the mean of £(x), which must be unity, is
,U.N(jx) = 1 = exp[ ‘-21-+m ] R (¥.90)
and therefore
n = - -g— , (+.91)

The variance of _£(x) with noise alone is 0'H2 > and therefore the second moment
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of A(x) is
/'LN(“gQ) = [:"‘LN<*Z)J2 + C'-Ne(-ﬁ) = 1+ O-Ne(*e) P (k.92)

and this must agree with (4+.89).

,uN(le) = 1+ O'Ng = exp [Ed + zm] = e}:p[dJ (4.93)

and therefore

d =A4n (1+ crNg) : (4.9%)

The distribution of likelihood ratio with signal plus noise can be

found by applying Theorem 8.t

@
Fap(£) = - [f T (L) . (4+.95)
Substituting for FN(Z) from (%.87), and letting £ = exp x vields
2
® (x + §)
— l - —-—————-—-—g
FSN(JZ) - \/2—“-& [{l eXP[X] €Xp - od dx
2
d
1 (0)) (X - '2—)
- -—_— ] ax . k.96)
+ 2nd jnf[ P 24 . (

Thus the distribution of #n £ is normsl also when there is signal plus noise, in
this case with mean g and variance d.

In summary, the variance cJ'N2 of the likelihood ratio probably measures
the receiver reliebility better than any other single number. If the logarithm

of the likelihood ratio has a normal distribution, then this distribution, and

lSee Part I, Section 2.k.
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hence the signal plus noise distribution, are completely determined if (TN?
is given. Both distributions of AUn £(x) are normal with the same variance d,
and the difference of the means is d. The receiver operating characteristic
curves are those plotted in Fig. 4.1, with the barameter d related to CTN2

by the equation

d = 4In (1 + cﬁ?) . (. 94)

In the case of a signal known exactly, this is the distribution which
occurs. In the cases of Section L.k, Section 4.5, and Section 4.6 this distri-
bution is found to be the limiting distribution when the number of sample points
is large. Certainly in most cases the distribution hag this general form, Thus
it seems reasonable that useful approximate results could be obtained by calcu-
lating only (TNQ Tfor a given case ang assuming that the receiver reliability ig
approximately the same as if the logarithm of the likelihood ratio had a normal
distribution. On this basis, aayg(ig) is calculated in the following sections
for two cases, and the assertion is made that the receivervreliability is given
épproximately by the receiver operating characteristic curves of Fig. 4.1 with

d = 4n (1 + oaye).

4.8 _Signal Which is One of M Orthogonal Signals

The following case has several applications, which will be discussed in
Section 5.3. The importance of this case, and the one which follows it, lies in
the fact that the uncertainty of the signal distribution can be varied by
Changing the paramecter M.

Suppose that the get of expected signals includes Just M orthogonal

functions 8, (t), all of which have the same probability, the same energy E, and
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m——
are orthogonal. That is,

T
of s(t) 8g(t) at = EJy,

(k.97)
Then the likelihood ratio can be found from Eq (3.7) to be

M

I
R 1 E 1
L) = ¥ §ex [' T ]eXp [I‘I ) Xiski}
k=1 o

i=1

(&.98)

where s, ; are the sample values of the function sk(‘t).

It should be clear that with noise alone, the terms 1

n
D x.8
¥.5 1%k

n
2
5 Sxi - 1
— =

have a Gaussian distribution with mean zero and variance

18

L i=1
Furthermore, the M different quantities i‘l_l- 2 X;8y4 @re independent, since the
i=1

M=
functions s; (t) are orthogonal. It follows that the terms exp [% 2 x 1%k - ﬁE‘
o}

i=1 ]
are independent.

n
Since the logarithm of each term Z = exp ,:_

E
II\I: 2 XiBpy - ﬁ_] has a
i=1 o]
normal distribution with mean - E and varisnce —

T the moments of the distri-
° o

bution can be found from Eq (4.89). The n™ nement is

#N(Zn) = exp [n(n-l) %—] .

e}

(+.99)

l’I'he reasoning is the same as that on page 9.
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It follows that the mean of each term is unity, and the veriance is

o2 = pE®) - [/.L(Z) EJ - e;—p[f—"ﬁ-] -1, (4+.100)
' (s}

The variance of a sun of independent random variables is the sum of the variances

of the terms. Therefore

0‘1\12(M,Z) = M [exp(%hz) - l] ’ (4.101)

[s]

and it follows that the variance of the likelihood ratio is

- [ () 2] (e

It was pointed out in Section 4.7, page 47 that the receiver operating

characteristic curves are approximately those of Figure 4.1 s with

_ 2y _ Sl ?_E_) -
d = £n (1 + UN ) = Lnl1 7t i P (No (¥.103)
This equation can be solved for -N@L :
o
%E- = An [J. + M (ed - 1):, . (k.10k)
o]

7]

Curves of %‘E— for constant d are plotted in Fig. 4.12. They show how much the
o

signal energy must be increased when the nurber of possible signals increases,

k.9 Signal Which is One of M Orthogonal Signals with Unknown Carrier Phasge

Consider the case in which the set of expected signals includes Just
M different amplitude modulated signals which are known except for carrier phase.
| Denote the signals by

5 (t) = T, (t) cos (wt + @) . (&.105)

_— k9
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It will be agsumed further that the functions fl, (t) all have the same energy E

and are orthogonal, i.e.,
T
of f(t) f(t) at = 2By, (4.106)

where the 2 is introduced because the f's are the signel amplitudes, not the
actual signal functions. Algso, let the fk(‘t) be band-limited to contain no
frequencies as high as W, Then it follows *that any two signal functions with
different envelope functions will be orthogonel. Let us assume also that the
distribution of phase 0 is uniform, and that the probability for each envelope
function is % .

With these assumptions, the likelihood ratio can be obtained fram

EQ (3.7), and it is

M 2n n
Lx) = 15 1 f wp[% > X, By - -I;?;J ae (k.107)
i=1

where 84 are the sample values of sk(t), and hence depend upon the phase o,
The integration is the same as in the case of the signal known except for phase »

and the result cen be cbtained from Eq (4.19)

M
Lx) = %Z exp [- T\TE—JIO(% R (4.108)
o

where

' 2 . 2
r =/(Zi x; ) (t;) coswti) + (Zi: X, ) (t;) sin wti) . (4.109)

Now the problem is to find 0‘N2 (.@ ). The variance of each term in
the sum in Eq (%.108) can be found, since the digtribution function with noise

alone can be found as in Section 4,3, Since the fk(t) are orthogonal, the

5L
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distributions of the Ty, are independent, and the terms in the sum in Eq (4.107)
are independent. Then the variance of the likelihood ratio, O'NQ(JZ) is the

sun of the variances of the terms, divided by M. L

E

T
The distribution function for each term exp [- I\T}I (Tk) is given

in Section 4.3 by Eq (4.21) and (k.22). If ¢ is defined by the equation

B = exp [52.] < > (4.10)
Q

then the distribution function in the presence of noise for each term in

Eq (k.108) is
2
FN(k)(B) = exp [- < ] . (4.111)
The mean velue of each term is
e C ® 2
Ik 1o E 2K
B) = 6/BdFN ®) = O/. exp [- -N—O-] I, </ﬁ_ga>a exza[- O‘—Q-Jda .

This can be eva.lu.a.‘ted,2 and the result is that ,LL(k)(ﬁ') = 1.

The second moment of each term is

m

w2 = f 6% ar, () ()

f
e
s
)
o=
[
o
SN
Q
o
~—
n
Q
8
| —
]
rof
3
g
o~
£
&

Leramér, Ref. 14, p. 188.

Lawson and Uhlenbeck, Ref, 1, p. 17k,
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The integral is evaluated in Appendix E, and the result is
X) 2y _ o
pe (8% = Io(ﬁ—> . (4.114)
0

The variance is

o 2
[UN(k)(B)} _ P(k)(gg) - [,u.(k)(ﬁ)] = Io( )- 1. (k.115)

Tt follows that the variance of M £ is

1

2 ;
O"N ML) = M [IO(%E;>- l] , and (’-I-‘ll6)
oF
UNQ(K) = %E [IO(TI;)' lJ ’ (+.117)

since the variance for the sum of independent random variables is the sum of the

variances,
If the approximation described in Section 4.7 is used, the receiver

operating characteristic curves are approximately those of Fig. 1#.1, with

a = £n (1+ O_Ne) = jn<1‘%&+%510(ﬁ2§)>' (+.118)

Curves of %E~ vs M for constant d are plotted in Fig. 4.13,
(o]
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2. DISCUSSION OF THE SPECIAL CASES

5.l Receiver Evaluation

5.l.1 Introduction. In Section 2.5 it was shown that the receiver

reliability can be determined from the distribution functions for likelihood
ratio. In particular an optimm criterion receiver operating at the level 8 of
likelihood ratio has false alarm probability PN(A) = FN(ﬁ) » and probability of
detection Pgy(A) = Fgy(B). The functions FN(B) and FSN(B) are calculated in
Section 4 for a number of special cages.

For the purpose of discussing receiver reliability it is sufficient to
have the receiver operating characteristic in which FSN(B) is plotted as a
function of FN(B). In this discussion B plays only a secondary role.

The receiver operating characteristic shown in Figure 5.1 applies to
several cases. Among them is the case of the signal known exactly, with the

Parameter d equal to %E.. » twice the ratio of signal energy to noise power per

unit ba.ndwidth.l Thusc,) for example, if the signal is a voltage which is a known
function of time, and if the signal energy is twice the noise power per unit
bandwidth, theoretically a receiver could be built with false alarm probability
of 0.25 and a probability of deteétion 0.90., If the false alarm probability is
required to be no greater than 0.10, the probability of detection can be made no
greater than 0,76. If the false ala:rm probability i1s required to be no greater
than 0.023 and the probability of detection is to be at least 0.98, the signal
energy st be at least eight times the noise power per unit bandwidth.

2.1.2 Comparison of the Simple Cases. Several curves for the case of

a signal known except for phase are shown in Fig. 5.2 for some of the same values

lSee Section 4.2,
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of the ratio -I%E; ag appear in Fig. 5.1. The curves for a given energy lic below
those for the case of the signal kmown exactly; with a given false alarm
probability and a given wvalue of %—E; » one camnot achieve as high a probebility
of detection if the carrier phase of the signal is unknown.

It was found that in several cases the distribution of fn ./ (x)
approached a normal distribution as a limiting case, and that in the limit the
variance with signal plus noise and the variance with noise alone are equal.

In any such case the curves of Fig. 5.1 apply, and a comparison of these cases
is simplified. For example, in the case of a signal which is a sample of white

Gaussian noise, it was found that if the number of sample points is large and the

signal to noise ratio is small, then this approximation applies » with

o

2 2
_ ) .~ n/ S -
¢ = (@EU\l-/5ms/)® 3 ( ﬁ) : (+.57)

Other curves for this case, some with small sample number and moderate signal
to noise ratio, are given in Figs. 4.6 and 4.7. The exact equations for the
distribution are Eqs (4.33) and (L.34).

The following two cases lead to the same receiver operating charac-
teristic in the approximation considered in Sections 4.5 and 4.6: (1) the broad
band receiver with optimum video design, with a pulse signal, and (2) the optirmm
recelver for a train of pulses with incoherent phase. In the first case the
parameter M was taken as the product of the total bandwidth of the receiver é.nd
the pulse width of the signal. In the case of the train of pulses, M is the
number of pulses. In each case E is the total energy of the signals. Approxi-
mate receiver operating characteristics are plotted in Fig. 4.10. Small sipnal

to noise ratio and large M lead to the distributions for which Fig. 5.1 is
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plotted, this time with

)2 ) (k. 71)

Eﬂg

- 3

o}

2.1.3 An Approximate Evaluation of Optimum Receivers. Some simpler

evaluation of receivers wasg needed because of the difficulty in solving directly
for the distribution function of likelihood ratio in any casges rnore complicated
than the ones already mentioned. It seemed reasonable to approximate the actual
receiver operating characteristic by the curves given in Fig. 5.1, finding in
sane mamner the value of the detection index 4 which leads to the best fit of
the approximate curve to the real curve. This is suggested by the occurrence of
the curves of Fig. 5.1 in four of the five cases already discussed., Also, any
recelver operating characteristic must have in common with the curves of Fig. 5.1
that its slope is positive and its second derivative is negative, and that it
must start at the lower left hang corner and end at the upper right hand corner
of the graph,

It is shown in Section 2.5.2 that the variance o7 of the likelihood
ratio when there is noise alone is the same as the difference of the means of
likelihood ratio with noise alone and with signal plus noise. This parameter

G.NE seems to characterize signal detectability better +han any other single

mmber. In Section 4.7, it is shovn that if o 2

N is given and the logarithm of

the likelihood ratio is assumed to have & normal distribution with noise alone »
then it follows that the logarithm of the likelihood ratio with signal plus
noise also has a normal distribution with the same variance, and thus the

receiver operating characteristic is that of Fig. 5.1. The index d is given by

d = 4n (l + 01\12) . (+.94)

o9
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2
i)
be determined for the actual situation and the approximate receiver operating

It seems reasonable +hat the curves be fitted on this basis, i.e. » that o

characteristic graph be taken as the curve of Fig. 5.1 with index g given by the
above Eq (k.9k).
5.1.% The Signal One of M Orthogonal Signals. The methods of the

breviocus section have been applied to the case where the operator knows that the
signal, if it occurs » Will be one of M orthogonal functions of equal energy.
Orthogonal, of course > Weans that the functions have Zero cross correlation, i.e,,

£(t) and g(t) are orthogonal if

T
[ o26) at) at = o (5.1)
0
where the integration is over the observation interval. The value obtained for
1
(J'H2 is

2 _ 1 25 _ 1 4,102
¥ T u [GXP(NO) ] ( )

and so the approximate receiver operating characteristic is that of Fig. 5.1 with

= 1.1 2E .
ad = /n [1 5t e (No )J (%.103)

The value of 0'N2 was also found for the case where each of the M orthogonal
8ignals is Imown except for phase » and the phase angle has a uniform distribution.e

For this case

e 1 2R | ’
o = = = )-1 and hence k.11
I M [IO I\Io ) ’ ( 7)
- 1,1 2L
d = 4n [l -Eti IO( T )} . (4+.118)
1 . o
Sec Section %.6. See Section 4.7,
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These two cases arc the basis for the best approximation availasble to
the problen of a signal of unknown time origin or a signal of unknown frequency
or both. For example, we have been unable to find the distribution of likelihood
ratio for the case of a signal which is a pulse of wnknown carrier phase if the
starting time is random and distributed uniformly over a time interval. However,
if the problem is changed slightly, so that the starting time is restricted to
tines spaced approximately a pulse width apart, then pulses starting at differecnt
times would be approximately orthogonal, and the case of the signal one of M
orthogonai signals mown except for phase could be applied. Eq (4.118) showld
be used with M équal to the ratio of observation time to pulse width. A sinilar
argument applies to the case in which a signal is a pulse known except for phase
and center frequency. Eq (4.118) should be used with M taken as the ratio of
total bandwidth to signal bandwidth. It should be pointed out that it is no: the
samne to assume that the signal can appear in only a finite number of different
positions, even though the positions are close *o each other, as to say that the
signal can appear anywhere in an interval. There is more uncertainty in the
latter case, and the signal cammot be detected as easily.

5.1.5 The Broad Band Receiver and the Ideal Receiver. One common

method of detecting pulse signals in a frequency band is to build a receiver
whose bandwidth is the entire frequency band. The receiver operating character-
istic for such a receiver with a pulse signal of known starting time is cal-
culated in Section 4.k, This is not a truly ideal receiver, and it would be
interesting to compare it with an ideal feceiver. This can be done using the
approximation of the preceding paragraph for the ideal receiver. Since the
bandwidth of a pulse is approzimately the recciprocal of the rulsc width, the

parameter M of Section 4.4 and the parameter i in Eq (%.118) are both equal to

61




—  ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN  —.

the ratio of total bandwidth to pulse bandwidth. Curves showing %% as a
function of d are given in Fig. 5.3 for the approximate ideal receiver and the
broad band receiver for several values of M. The expression used for 4 is

Eq (%.71) which holds for large values of M.

5.1.6 Uncertainty and Signal Detectability. In the two cases dis-

cussed in Section 5.1.4, vhere the signal considered is one of M orthogonal
signals, the uncertainty of the signal is a function of M. This gives us an
opportunity to study the effect in these two cases of uncertainty on signal
detectability. In the approximate evaluatioﬁ of the receiver built to detect the
presence of a signal when the signal is one of M orthogonal functions, the

curves of Fig. 5.1 are used with the detection index d given by

d = Zn[l—}--i-}—exp(ﬁg?-)} (4.10%)
* o

This equation can be solved for the sigmal energy.

& An [l - M+ Med]

8 Ao M+hn (21) (5.2)

op 1
the approximation holding for large T From this equation 1t can be seen
o

that the sipgnal energy is approximately a linear function of £n M when the

detection index d, and hence the ability to detect signals, is kept constant.2

e %E > 3, the error is less than 10%.
lo

elt night be suspected that %E is a linear function of the entropy = - 2: Py npi,
o

where p; is the probability of the i'™P orthogonal signal. This is not the case,
except when all the Py are equal. The expression which occurs in this more

general case is:
?-,E'-z - ,Zn[z pi2]+jn (ed-—.l)
\‘0
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5.2 Receiver Design. There are a few cases when the receiver design is sirple

to specify if the noise is Gaussian. If, for example, not only the noise, but
also the signal are Gaussian, and both have a uniform spectrum over their
bandwidth, then the optimum receiver simply measures the energy which comes in
during the observation period. The simple relation between energy and likeli-
hood ratio is given by Eq (4.41) of Section L.k.

The gimplest remaining case is that in which the signal is known
exactly. Then the theory specifies that the receiver find the cross corre-

lation between the expected signal and the receiver input, i.e.,

T
of s(t) x(t) at, (5.3)

where s(t) is the expected signal and x(t) is the receiver input, and the
observation interval is from t = 0 to t = T. The ratio of this cross correlation
to the noise power per unit bandwidth is one-half the natural logarithm of the

likelihood ratio.~

Several. elaborate correlating devices have been built
recently.2
There is, in this case, a simple means of obtaining the correlation,

if the signal is simple in form, for example, a pulse, If & filter can be

designed with impulse response

A

h(t) s(T-t) if 0%t

T,
= 0 otherwise, (k.10)

and the receiver input applied to the filter, then the output at time T will be

1see page 9, Eq (k.1b).

2
Harrington and Rogers, Ref. 16; Harting and Meade, Ref. 17; Lee Cheatham, and

Wiesner, Ref. 18; Levin and Reintzes, Ref. 19.
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which is the required correlation. It turns out that this is the same filter
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T

f x(t) s(T) 4t s

0

-—

(%.11)

specified by Middleton, Van Vleck, Wiener, North, and Hansen as the filter which

mexinizes signal-to-noise ratio.l

If the signal being sought is an amplitude modulated signal known

except for carrier phase, then the ideal receiver has a filter like the one

specified in the previous paragraph designed for any particular phase. The

receiver input is applied to this filter, and the output is an rf (or more

likely, if) voltage. It turns out that the envelope of this voltage is the

required quantity. Its rclation to likelihood ratio is derived in Section L.3

and presented in Eqs (4.10) and (4.29).

A look at the general eguation for likelihood ratio

L(x) = V/c‘:{p [—- %3)-] exp[ﬁ%

R

T

J

}Qt)s@)dtJ<ﬁsw)

(3.70)

sugpgests the following method for designing the optimum receiver for signal

detection. First find the correlation as described above, between the receiver

input and each possible expected signal. Next, divide each by N,, the noise

per unit bandwidth, and find the exponential function of each. Finally, find the

weighted average of all these quantities.

The hard part is to find the cross

correlation between each expected signal and the receiver input.

This means

that the ideel filter and associated amplifiers are needed for each expected

signal, or essentially a separate receiver for each expected gignal. In most

1

Lawson and Uhlenbeck, Ref. 1, p. 206; North, Ref. 11.
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cases this is out of the question. In the cases studied in Sections k4.2, h.3,
L.4, and 4.6, some peculiarity of the set of expected signals made a simpler
ideal receiver possible.

There is another noteworthy case. If the signal is known except for
starting time, then it is sufficient to look at the same ideal filter at dif-
ferent times rather than to have a different filter for each starting time.

For even a simple square pulse, it is impossible to synthesize the
ideal filter exactly. Just how critical, then, is the design of the ideal
filter? This can be answered by finding how well signal detection can be accom-
plished with an approximation to the ideal filter.

For simplicity, consider the case of the signal known exactly. The
results for this will follow with little modification for the other cases where
the ideal filter is used. The theory specifies that the response of a certain
filter to the receiver input be observed at a certain instant. Once it is known
that the ideal receiver has this form, it is clear that this filter must be the
one which maximizes the instantaneous signal output voltage (or power), the noise
rms voltage (or average power) being kept fixed. This is the reason the filter
which other authors have found maximizes signal-to-noise ratio is the one which

1
is the absolute optimum for this case.

If a filter can be built for which the output ratio of peak signal to rms
noise is nearly the same as that obtained with an ideal filter, then this filter
will give results nearly as good as the ideal filter. The noise power at the

output of a filter with transfer function H(w) is equal to

N = 5 [ Ho) Ho) do (5.4)
-w .

1
See Footnote, p. 65. v
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where N, 1s the noise pover per unit bandwidth of the input noise. By Parseval's

theorem,l and the fact that h(t), the impulse response, is the Fourier transform

of H(w).
K
o W —
N = 5 [ How) Hw) dw
-0
N o
= % [ n(t) ©(@) at. (5.5)
-~
In the case of the ideal filter, Eq. 4.10 can be applied, and the
result is
No T 5 NE
N = 5 [ s(t-1)%ar = - (5.6)
0

where E is the signal energy. The peak voltage output if there is signal but

no noise is T >
f s(t)"at = & ’ (5.7)
0
and hence the peak signal power at the output is E2. The ratio of peak signal
bower to average noise pover is thus %g.for the ideal case.
| For the particular case of the signal consisting of a single rectangu-
lar pulse, if an RC filter is used with time constant 80% of the pulse duration,
’the receiver operating characteristic will be the Same as if the ideal filter
were used and the signal reduced 0.90 db. This is derived in Appendix F.
Several other pulse cases have been treated and the results for the best filter

of each type are summarized in the following table:

1

Titchmarsh, An Introduction to the Theory of Fourier Integrals, Oxford Univer-
sity Press, 1937, p. 50.
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TABLE TT
Equivalent Loss
Pulse Filter in Signal Strength
Gaussian Rectangular Passband 1
0.98 db
Rectangular Gaussian Passband
Rectangular Rectangular Passband 0.85 ap*
Rectangular Simple RC Filter (or
Single Tuned Circuit) 0.90 &b

impulse

Rectangular regponse 0.51 db

I\\ ’\\ impulse
response 1.62 ab
__f\\\\\-‘____ Simple RC Filter (or

(Ezponential Decay) | Single Tuned Circuit) 2.67 db

The minimm equivalent loss was obtained by adjusting the bandwidth
of the filter. Thus in detecting pulses the form of the filter passband is
relatively unimportant. However, it is important to have the correct filter
bandwidth. This is essentially the present-day attitude in building receivers

for receiving pulses of known frequency.

5.3 Conclusions

Part II of The Theory of Signal Detectability consists of the applica-

tion of the theory presented in Part I to some special cases of signal detection
problems in order to obtain information on (1) the design of optimum receivers

for the detection of signals, and (2) the performance of these receivers.

1
These cases are derived in Lawson and Uhlenbeck, Ref. 1, p. 206.
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The special cases which are presented were chosen from the simplest
prbblems in signel detection which closely represent practical situations. They
are listec'i in Teble I dlong with examples of engineering problems in which they

find application.

UNIVERSITY OF MICHIGAN —

TABLE I
Description of
Section Signal Ensemble ‘Application

i) Signal EKnown Exactly Coherent radar with a target of

known range and character

4.3 Signel Known Except for Ordinary pulese radar with no inte-
Phase gration and with & target of known

range and character.

bk Signal a Semple of White | Detection of noise-like signals;
Gaussian Noise detection of speech sounds in

Gaussian noise,

4.5 Video Design of a Broad Detecting a pulse of known start-

Band Recelver ing time (such as a pulse from a
radar beacon) with a crystal-video
or other type broad band recelver.

4.6 A Radar Case (A train of | Ordinary pulse radar with inte-
pulses with incoherent gration and with a target of known
phase) range and character.

4.8 Signal One of M Orthogo~ | Coherent radar where the targe‘b is
nal Signals at one of a finite number of non-

overlapping positions.

k.9 Signal One of M Orthogo- | Ordinary pulse radar with no inte-
nal Signels Inown Bxcept | gration and with a target which
for Phase may appear at one of & finite

number of non-overlapping posi-
tions.
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In the last two cases the uncertainty in the signal can be varied, and some
light is thrown on the relationship between uncertainty and the ability to
detect signals. The variety of examples presented should serve to suggest
methods for attacking other simple signal detection problems and to give insight
into problems too complicated to allow a direct solution.

It should be borne in mind that this report discusses the detection of
gignals in noise; the problem of obtaining information from signals or about
signals, except as to whether or not they are present, is not discussed. TIur-
thermore, in treating the special cases, the noise w=2s assumed to be Gaussian.l

In addition to general remarks on receiver design,2 most sections on
gpecial cases include gpecific information describing the simplest design for
the optimm receiver for the case considered in those sections.

For the simple cases, the design indicated corresponds closely to the
desipgn indicated by the type of analysis in which signal to noise ratio is
maximized. For the more complicated cases, the design suggested is usually
impractical. For same problems it may never be practical to attempt to build an
optimum system. For others, however, engineers equipped with a good understand-
ing of statistical methods and their application to the problem of simmal
detectability, and to communication theory in general, will undoubtedly invent
systems which approach the optirmm system.

For each special case treated in this report, at least an approximation
is given for the receiver performence. Receiver performance received’primary

emphasis becauge it has generally been slighted in previous work. It is

1see the footnote on page 4 with reference to the spectrum of the assumed
noise.

2See Section 5.2.
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importmf to kmow the performance which could be obtained from an optimum
receiver even if an optimum receiver cammot be built » Since this gives an upper
bound on the performance which can be obtained with any receiver in a given
situation, and since this also gives an upper bound on what can possibly be

accomplished by improvements in receiver design.
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APPENDIX D

The Sampling Theorem

Then f£(t) can be expanded in a Fourier series in this interval. The frequency or

any term in the series is an integral multiple of 1/7. Suppose there are no terms
1

in the series with frequency above W. This makes the function band limited,

Denote by Yu(t) the function

sin [:t(QWT) (% - H;T):I

Yo (t) = (D.1)
" (2wr) sin[zr (% - 'é%f)
Then
25T
() = 3 £EB\Y () (D.2)
el (2& ) -

Furthermore, the functions \,lfm are orthogonal on the interval o0<t<T,

T Skm
/ Va(t) Yy (t) at = = (D.3)
0
and
T
/ ll’m(t) dt =§%“ ’ : (D.4)
0

where Skm is the Kronecker delta function, which is zero if k £ m and unity if

k =n,

Tve shall assume ZWT ig an odd integer, This equivalent to choosing the limit
of the band half way between the frequency of the last non zero term in the
Fourier series and the frequency of the next term (which, of course, has a
zero coefficient). 7
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It follows from Eq (D.2) and Eq (D.3) that

/T [f('c)}2 at -= = Q;T [:E‘ (-2‘%)]2 (D.5)
S

and from Egs (D.2) and Eq (D.L)

T a2WT
/ £(t) dat =2Wi 2 f(%) (D.6)

o m=1

Thus the 2WT functions \;/m have the same properties for the finite

interval which Shannon's interpolation functions have on the infinite interval.
It is interesting to note that when 2WT is large, these functions » except the

ones near the ends of the interval, are approximately the same as Shannon's.

The Fourier series for llfm(t) has no terms with frequency above W.

It is, in exponential form,

1
WT-'é-
1 . -
Yo (t) = 5 exp[g -.gg’;_ﬁmi]exp[j EE_T.IEJ (D.7)
n= -(WT-l)
2

This can be shown by expressing the sine functions in Eq (D.1) as exponentials

and using the algebraic identity

an+l _a-n-l ::! n k
a - ad ; kz a (p.8)
=-n

Formula (D.4) can be proved by integrating Eq (D.7) directly. Note

that the only term which contributes to the integral is the term for which

n=20,

1 see Shannon, Ref, 21.
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Formula (D.3) can best be proved also by using the Fourier series,

,, P S IR {‘l’m(t) ¥ (8] at
7 wr- 1 wr-2
| L enl el 2 Y S
0 n= -(WT-%) P =(WT-%)
wr- 1 WP - 1 T

i
P
%QH
p ——

N

mm

1]

4
—

Coe

I

o
EE

1
I

[1]

4

[ SN

jui

1
7

u

C"

2
WT - .;-_ Wr- 1
2
= --——-21 -2n(mn-kp) 3
(@) n;m'- % ) p;-(/wT_ef[J 0T ] T
WT - .21.
- T E [ -2rn(m-k) :,
P e
(W) o - -(WT _ %)

If m = k, each of the WT terms in the sum is unity, If m # k, the terms in the
Sum are equally spaced around the unit circle in the complex plane and must sum

to zero. Thus

T
Of\lfm(t)tlfk(t) at = %@ ,

which was to be proved,
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The validity of the expansion in equation (D.2) follows from the
fact that the functions ¢b(t) are 2WI linearly independent linear combinations

of the 2WT functions

exp[a ?-"—11‘%—] %-w'rs nsw'r-%

¥hich are used in the Fourier series expansion. Thus any function which can be
expanded in a Fourier series with only the first 2WT terms can also be expanded
in & unique vy in terms of the functions Y .

There is an alternate form of the sampling theorem for band limited
signals. With this form the signal function can be described by giving sample
values of the envelope and phase of the signal, and hence this form is often
convenient to use in describing rf signals.

Suppose the function f(t), when expanded in a Fourier series on the
interval 0= t £ T has only a finite number of terms in its expansion, and
suppose they are included in the terms ranging from frequency fl to frequency

fé.l The bandwidth then could be defined as

Wo= f,-f; + % , (D.9)
and the center frequency is
fr + T
2n 2

Then the Fourier series can be written

m
£{t) = 2 ak cosl:(w + 2n k t] s:m[(aﬁ %k)t] (p.11)

-m
m
£(t) = R{ 2 (ak-lb exp 2"1‘ t:’ (D.12)
-m
vhere R means "the real part of", and m = %~(WT - 1).

lWe shall assume Tfp - Tf7 is an even integer and that Tf; 2 1.
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m

£(t) = R { exp [10)1:]2(3 '1bk) exp[ 2;kt]
-

m

f(t) = R exp[:.cut](Z a exP[ 2:rkt+lzb exp[ 2;1«:1:})

—I1 -m

R{exP [icut] (X(‘c) - iy(t))}

x(t) cos wt + y(t) sin wt

it

(D.13)

i

where

x(t) Z /exp [i g%ki ] , and

(D.1k)

Py
V) =t} 7 e [120t ]

The functions x(t) and y(t) meet the conditions of the first form of
the sampling theorem, for a signal with frequencies no higher than g .

They can be expressed therefore in the form

WT
x(t) = 2 x(%) ¥y (t)
k=1
WT
v =T v (E) ¥y () (.15)
k=1

Where the \I/ functions are defined for a signal with no frequencies above g. .

Thus the original funection can be written as

WT WT
£(t) = 2 x(%)\/’k (t) coswt + 2 y(%)\pk(t)sinw‘b >
k= k=1 (D.16)
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and the function f(x) can be represented by giving the sample values x (%)
and (.IE)-
Y = |
Since £(t) can be expressed in the form

f(t) = x(t) coswt + v(t) sinwt (D.13)

and x(t) and y(t) are limited to frequencies less than g which is less than %{- N

the envelope of f(t) is

2(6) = A/ x(1)2 + y(1)2 (D.17)
The angle o(t) defined by
- t
cos o(t) = 1."‘.&;.
sin o(t) = = %%%% (D.28)

can be considered as the Phase of the signal, since

£(t)

r(t) cos 6(t) cos wt - r(t) sin 6 (t) sin wt

r(t) cos [wt + o(t)] (.19)

Note that the sample values X; and y; can be obtained from sample

values of r and o,

xi = x(%):r(%)cos [G(%)]= ri cos Qi

(D.20)

1

¥

r, sin o,
i i i

Thus the function £(t) may be represented by giving the sample values of its

amplitude and phase at points spaced '%,7 apart through the observation interval,
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APPENDIX E
The integral
2 " e 2
exp (-b°) [Io (ba)] o exp [-9‘2_.] e (E.1)

0
is required.

The integral
o8]

2n+l a2
@ Io () exp[- _é_]da

0
2 2
n
= nl2 exp[%r]F(-n, 1; - %?)
2 nlb2k

ni2f exp[%r] (E.2)

k=0 (n.x)ikixiok ?

2
vhere F (-n, 1; - %? ) is the confluent hypergeometric function.l The function

I, (bx) can be expanded in a power series

(00] 2n 2n

- b « (E.2)
L) = ¥ 20 n'n!
n=0
Then the integral (E.1) can be written
®
2 U/ﬂ e a2
exp (-b%) [Io(ba)] a e:@[—?] Ao = (E.4)
0
(Substituting (E.3) for I0 (b))
@® ©
2n 2n 2.
= exp (-b) 2 b o I (bat) @ exp[- g_] dor
n=0 2 nl!n! e
(E.5)

1 Lawson and Uhlenbeck, Ref, 1, p. 17k,
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e 0]
2n 2n+l >
= exp (-b°) T P._n%.ﬁ.____ I (w:) exp[_zf]aa (E.6)

(Substituting from (E.2))

@ en 2, n 2k
2 b ! [b ] n!ob
= - .2 ———— R Sre e Eu
exp (-b°) ¥ el U D) (o) hTea (E.7)
n:o . . k:o
) b2n+2k

b (6] n
) exp[-?] 2 f};o oK (n.k) 1k k! (E.8)

o
i
Q

(Rearranging the terms in the double sum)

2, @ @ on+2k
= exp[- %—] Z Z b (E'9)
k=0 n=k 2"k )i
©® o bk 2n - 2k
2 k. 2n
= exp[- E_J > > b b (E.10)
27 x=0 n=k %k pn-k (n-k)!
(Letting m = n-k)
b2 @® @ bhk b2m
- e"P[‘ ‘e‘] D> Bk ' (E.11)
=0 m=0 2 klklm!o®
2 om
= exp[-%_] Y _b 2 b (E.12)
k=0 2K k!k! o mio
2 2
= ep[ -2 ] 1,02 ex [2]= 1, 0?) (E.13)

The steps in this derivation which must be justified are interchanging
the order of integration and summation at step (E.6) and rearranging the double
sum, at steps (E.9)and (E.12). It is easy to show that the integral (E.4) exists.

The integrands in (E.6) are uniformly bounded by the integrand in (E.4), Thus

9
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the integrals in (E.6) converge uniformly, and the order of integration and
summation can be interchanged. As for rearranging double sums, this is possible

since all the terms are positive, and hence the convergence is absolute.
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APPENDIX F

Let us consider a simple case of approximating the ideal filter by
some other filter. Suppose s(t) is a rectangular pulse of energy E and width 4.

Then

s(t) if 0S¢ Sg (F.1)

"
o

= O otherwise

Suppose the filter is made up of a single resistor and a single

condenser, with an amplifier or attenuator, whichever is needed to make the

NoE
noise power at the output ~»— &s in the ideal case. Then the impulse response
is of the form -,g

h(t) = h e if t 20
= O otherwise (F.2)

where T is the time constant of the filter and h, is a constant depending on the
gain of the amplifier or attenuator. The requirement that the noise power at

N,
the output be of is,by (5.5), equivalent to re uiring that
Z d q

@ 2
E = | [h(t)] dt, (F.3)
-
or
QO 2 - gti ‘ h02T
E = [ h e T dt = (F.4)
o © 2
which yields
2 _ 2=
ho = = , and (F.5)
t
h(t) =+/28e "7 4rt 20
T (F.6)
= 0 otherwise
The response V(t) of this filter to the pulse s(t) is, by (4.11),
v(t) = _{D s( A ) h (t-A) an. (F.7)
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Substitutions from (F.4l) and (F.6) for s(t) and h(t) give

()

t -
V(t) =/ﬁ-./%—e T anirostsa
a - (t=\)
- E T
= 3 e dn ir + >4.
0

These integrals can be evaluated easily, and

(F.8)

4|8

-t
v(t) = E/?.dl.(l-e '-Z-) ifosts4d .
(F.9)
! - (t-d
V(t)=E’ga€—(l-e 'z‘—)e L‘Z‘—lift>d .

V(t) increases with time if t < d and decreases with time if t >d, so it

must have its maximum value at t = d. That maximum value is

_d
Vmax=E,,/?.dI. (1—e T). (F.10)

In Fig. F.l, VmaX/E is plotted as a function of '_g. . It is seen that at

T

3 = 0.8 approximately, Vipax bas a maximum, and at this point Vmax is approxi-
mately 0.9E.

For this particular case, if the RC filter with time constant T = 0.8d
is used in place of the ideal filter, the reliability of signal detection will

be the same as if the ideal filter were used and the signal amplitude were reduced

to ninety per cent, or 0.90 decibel.
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k

£ (x)

B
0
o

Pr(®)

LIST CF SYMBOLS

The event "The operator says there is signal plus noise present,"
or a criterion, i.e., the set of receiver inputs for which the
operator says there is a signal present.

Any criterion A which maximizes PSN@A) -B PNCA), i.e., an opti-
un criterion of the first type.

Any criterion A for which Py(A) S Xk, and Poy(A) is maximum, i.e.,
an optimmm criterion of the''second type.

The event "The operator says there is noise alone.”

A parameter describing the ability of a receiver to detect signals,
(See Section 5.1 and Tig, 5.1.)

The signal energy.
The n-dimensional Tuclidean space.
The probability density for points x in R if there is noise alone.

The probability density for points x in R if there is signal plus
noise.
The complementary distribution function for likelihood ratio if
there is noise alone, i.e., FY(B) is the probability that the

q
likelihood ratio will be greater than § if there is noise alone.

The complerentary distribution function for likelihood ratio if
there is signal plus noise.

A symbol used primarily for the upper bound placed on false alarm

brobability PH(A) in the definition of the second kind of optimum
criterion.

Tsn(x)
The likelihood ratio for the receiver input x., £(x) = §§%;y- .
v

The dimension of the space of receiver inputs. n = 2yT .
The event "There is noise alone," or the noise power.
The noise power per unit bandwidth. HO = N/w .

The probability that the operator will say there is signal plus
noise if there is noise alone, i.e,, the false alarm probability.
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Poy®)

P, (SN)

Pg(®)

SN

Hsy(z)
Ko (z)
Ty (z)

N

Note:

The probability that the operator will say there is signal plus
noise if there is signal plus noise, i.e., the probability of
detection.

The a posteriori probability that there is signal plus noise
present. (See Sections 1.3 and 2.3.)

The probability measure defined on R for the set of expected
signals.

The space of all receiver inputs. (The set of all possible sig-
nals is the same space. )

A slgnal s(t), which may also be considered as a point s in R
with coordinates (sl, Bps v 0 ey sn).

The event "There is signal plus noise."
Time.

The duration of the observation.

The bandwidth of the receiver inputs.

A receiver input x(t), which may also be considered as g point x
in R with coordinates (xl, Xps o v ey K

A symbol usually used for the likelihood ratio level of an optirmm
criterion.

The mean of the random variable z if there is signal plus noise.
The mean of the random variable z if there ig noise alone.
The variance of the random variable z if there is noise alone.

The variance of likelihood ratio if there is noise alome.

The terms "normal distribution” and "Gaussian distribution" have been
used interchangeably in this report.
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