PHILIPS sense and simplicity State of the Art and Future Trends in Radiation Detection for Computed Tomography

Ami Altman, PhD, PHILIPS Science Fellow Global Research & Advanced Development CT BU, PHILIPS Healthcare

Plan

- 1. Conventional, state of the art, and future CT detection system
- 2. A Dual-Layer detector for a Detector- Based Spectral CT, with some applications' examples
- 3. Photon-Counting Spectral CT detectors, advantages, opportunities, and risks

A Little About CT

Present CT

- 1. Large Coverage Detector
- 2. Wedge Configuration
- 3. Fast Rotation (close to 0.25 sec/Rot.)
- 4. 2D Focal-Spot double sampling
- Very Short angular sampling time (~100 µsec)
- 6. High-Rate and Power X-Ray Tubes
- 7. Sub-Millimeter isotropic resolution
- 8. Very good temporal resolution
- 9. A 3D and 4D imaging devise (Space-Time)

So How Does It Look Like in Reality?

PHILIPS Pixelated CT Detector – Basic Pixel Structure & Requirements

Modern CT D		
Frame Rate & size	10,000 frames/sec ~120,000 pixels/frame	X-Ray in
Detector Readout Mode	Current (energy) Integration	Scintillator
Electronic noise RMS	< 3 pA	$\leq \uparrow$ \uparrow \uparrow \uparrow
High light output scintillator	Ceramic Gd ₂ O ₂ S (GOS) (~40,000 photons/MeV)	Converts X-ray to Light
Low Scintillator Afterglow	<200 ppm at 3 m-sec <20 ppm at 500 m-sec	Photodiode:
expandable configuration	4-sides tile-able arrays	· · · · · · · · · · · · · · · · · · ·
Spatial Resolution	~24 lp/cm (~0.210 mm)	Current
Scattering rejection	SPR < 5%; 2D Anti-Scatter-Grid	
Maximum Crosstalk (optical & elec)	~5%	
Pixelated Si photodiode with excellent response	> 0.35 A/Watt for λ = 514 nm	Readout ASIC
Dynamic Range	≥ 2 ²⁰	ĹJ
Scintillator Stopping power	> 98% for 120 kVp specctrum	Signal Pixel \propto Total X-Ray Energy absorbed in the scintillator

within a sampling time.

Pixelated Large-Area Photodiode for CT Detector

Front-illuminated photodiode: anodes directly illuminated ; limited expandability

Back illuminated "64 slices" photodiode "flip-chipped" to a substrate

, Light 🗍

Si Photodiode response

PHILIPS Scintillator Arrays for C1, waterial types						
CT Scintillators in Use, (Potential Use)						
Scintillator	Light-yield (# photons/M eV)	Form: Ceramic \ Single Cristal	Afterglow	Comment		
Gd ₂ O ₂ S:Pr,Ce (GOS)	~40,000	Ceramic; semi translucent	low	Most vendors; some doping variations		
GE Gemstone™ (a Lu based Garnet)	~40,000	Ceramic; translucent	low			
Garnet type of (Lu,Gd,Y,Tb) ₃ (Ga,Al) ₅ O ₁₂	40,000- 45,000	Ceramic; translucent	low	Fast rise time		
(Y,Gd) ₂ O ₃ :Eu (GE HiLight [™])		Ceramic	high	not adequate for short Integration Periods		
ZnSe:Te (low stopping power)	~65,000	Single Cristal; semi- translucent	low	In Philips Dual-Layer CT prototype		

Light _Yield _Limit
$$\cong \frac{10^6}{2.5 \cdot E_g}$$
 photons / MeV

Sointillator A

<u>NOTE:</u> Light output is smaller than Light-Yield because of Internal absorption & Reflections

Motorial types

PHILIPS Pixelated Scintillators, and CT DAS Assembly Modes

PHILIPS Why Anti Scatter Grids in CT Detectors ?

1. Detector-Pixel signal at each sampling is assumed to represent a line integral of the form: $P(\phi, \theta) = \ln(I_0) - \ln(I) = \int_{\xi}^{\xi_{out}} \mu(\xi) d\xi$

that assumes X-Ray pure-transmission only.

2. Allowing scattered radiation ⇒ Cupping and blackened streaks artifacts between scattering centers:

1D VS. 2D Anti-Scatter Grid

SW Scatter-artifacts Correction effect! Note the significant noise increase.

PHILIPS MTF, DQE and Detection Efficiency, as CT Detectors Metrics

Estimated upper limits of MTF and various CT parameters contribution to it in standard resolution mode (Philips iCT-256), assuming Sinc function response:

A measured single pixel MTF and DQE (PHILIPS tile detector), (including Swank Noise and Crosstalk (*R Luhta et al. SPIE-2006*)

Overall Detection Efficiency (DE) has to include the Geometrical Detection Efficiency (GDE), determined by the fraction of active area to total pixel area in the pixelated scintillator (~73%).

$$DE = GDE \cdot DQE$$

Contribution of various CT parameters to the MTF, Standard Mode

0.4

0.4

Detector pitch along X + DFS

Detector active length along X Focal-spot Width (along X) Combined MTF

Ami Altman, Ph.D., PHILIPS Healthcare

PHILIPS MTF Improvement – Crosstalk & Afterglow Corrections

Measured Detection-Pixel crosstalk and deviation from pure square wave response due to crosstalk.

(R. Luhta et al, SPIE-2006)

Correcting for Pixel Crosstalk, and Scintillator Afterglow through deconvolution method (Philips Brilliance 16), in an Ultra-High Resolution Mode (slice plane)

(See R. Carmi et al. Nuclear Science Symosiom conference record 2004, 5:2765-2768.)

PHILIPS Effect of Electronic Noise in Energy-Integrated CT Detector

Photodiode's current as a function of absorption path (water), and Tube current

Detector's radiation signal and total noise as a function of absorption path in water, and Tube Current

- An exaggerated RMS noise of 5 pA has been taken in account, just for demonstration
- Today's readout ASICS which are assembled attached to the photodiodes have RMS noise < 3 pA
- In most read-out electronics, both Sigma-Delta, or Current-to-Frequency, the RMS noise increases slightly for shorter integration periods

PHILIPS Low Dose Artifacts (rings), introduced by Electronic Noise and Non-Linear Effects

- 1. 50-cm water phantom
- 2. Old version Electronics Philips BR-64 (non-tiled)
- 3. Scanned at 0.4 sec/rot., with 70 mAs
- 4. Measured RMS noise ~5pA
- 5. Artifacts caused mainly by electronics non-linear effects and offset stability during the scan

PHILIPS Dual-Energy Spectral CT Based on A Dual-Layer Detector

A 16 X 16 pixels Dual-Layer Detector Tile for A Dual-Energy Spectral CT

PHILIPS Dual Layer Detector Data Representation – Image Domain

PHILIPS Dual-Energy Technologies – Various Vendors

	Siemens	GE	Philips
	SOMATOM Definition Flash Latest Generation of Due Energy CF System Design 1 vio X-my tabes at 90°, each with 100 wW 2 vio X-my tabes at 90°, each with 100 wW 1 vio X-my tabes at 90°, each with 100 wW 2 vio X-my tabes detectors, each with 500 dom collisation at 2-6/vig house spat 9 xSPOV A-Bi-detector gords on the 70 rm temporal resolution	1/0 M/p raw data B0 K/p raw data +))))))))))))))))))))))))))))))))))))	Low Darge Judo X-rgs
Technology Path	Two-tube Two-Detector configuration	One tube with fast kV switching	One tube, detectors with simultaneous high and low energy discrimination
Full FOV	✗ Limited (∼35 cm)	✓ Full (50 cm)	✓ Full (50 cm)
High/Low Energy Separation	✓ +	✓	*
Projection Space Reconstruction	×	✓	✓
Tube Current Modulation	*	*	✓
Low/High Energy Image Reconstruction	✓	*	✓
Retrospective Dual-E Analysis, all protocols	*	*	✓

PHILIPS **Dual-Layer Spectral CT – Main Clinical Applications**

- **Direct CTA**
- Gout Diagnosis
- Prep-Less CT Colonography
- Virtual Non-Contrast
- Blood Flow Iodine Perfusion (PE)
- Lesion Uptake & Volume Assessment
- Plague Characterization Quantificatior
 - Cardiac CT
 - Urinary Stone Characterization

Ami Altman, Ph.D., PHILIPS Healthcare

- Salvaging Sub-Optimal CTAs
- Optimum CNR Imaging (
 (
 Lesion visualization)
- Metal & Beam Hardening Reduction
- Effective Atomic Number

Monochromati c Imaging

Material

Separation

Material

Dual-Layer Spectral CT, Clinical Experience

Monochromatic Imaging

Lesion Characterizatio n

Material Decomposition

Material Decomposition (Color Display)

PHILIPS Dual-Layer Spectral CT, Viewer Screen Shot Example

PHILIPS Photon-Counting Spectral CT – Photon-Counting Detector

PHILIPS Photon Counting Detector Direct Conversion VS Energy Integration

A Current-Integration CT Detector

A Photon-Counting, Direct-Conversion, CT Detector

PhC Requires much smaller pixels to enable CT radiation rates

PHILIPS The Photon Counting Energy Weighting "Miracle"

PHILIPS Where Dual-Energy CT Fails – The Need for More than 2 Energy Bins.

I – iodine Gd – gadolinium Ca – calcium (as CaCl)

H – high concentration L – low concentration

C –solid carbon A –air bubbles (in foam) (Measured in a Rotating Table Photon Counting Mini CT, PHILIPS Healthcare, Haifa)

Mixtures or interfaces of more than 2 materials, suffers from spectral partial volume, distorting material decomposition and classification

2 spectral windows: 25-46, 85-125 keV

<u>6 spectral windows:</u> 25-46, 46-54, 54-65, 65-75, 75-85, 85-125 keV

So Where is The Catch, Why CT is Not Transforming to Photon-Counting Detector?

- 1. Best Candidates, CdTe and CdZnTe (CZT) are not easy to manufacture, to meet CT requirements
- 2. Detector Polarization (eliminating or distorting the electric field inside the detector, stopping any signal output), mainly caused by traps and impurities in the crystal lattice
- 3. Charge sharing between close neighboring pixels, causing low energy tail, that distorts measured energy spectrum, especially for a wideband spectrum like in CT
- 4. Te and Cd fluorescence K-escapes to neighbor pixels and from neighbor contributing to the low-energy tail
- 5. Pile-Up already at relatively low rate

PHILIPS

Pile-Up Issue in Photon Counting

PHILIPS

Paralyzable: OCR = $ICR * \exp(-ICR * \tau)$ Non-Paralyzable: OCR = $\frac{ICR}{(1 + ICR * \tau)}$

> OCR=Output Count Rate ICR=Input Count Rate

PHILIPS DQE(0) in Photon Counting Detectors

$$DQE(\nu) \equiv \frac{SNR_{out}^{2}(\nu)}{SNR_{in}^{2}(\nu)}, \square DQE = \left(\frac{\frac{\partial(OCR)}{\partial(ICR)} * \left(\frac{ICR}{\sqrt{(VAR)_{OCR}}}\right)}{\left(\frac{ICR}{\sqrt{VAR_{ICR}}}\right)}\right)^{2}$$

For Variance estimates see

Yu and Fessler in Phys. Med. Biol. 45 (2000) 2043-2056.

Ami Altman, Ph.D., PHILIPS Healthcare

PHILIPS Low-Energy Tail and its effect on Spectral CT Quality

Energy [keV]

Pre-clinical spectral CT scanner platform

- Gantry with rotation speed up to 1/3 s per turn
- μ-Focus X-ray tube
 - 40 kVp 130 kVp
 - max. 65W
- CdTe-based Photon-Counting detector
 - 0.4 mm pixel pitch, 1024 pixel along X
 - 6 energy bins per pixel
- 2 6 • Magnification:
- Field-of-view: 6 cm - 23 cm
- Spatial Resolution:
- 100 μm 250 μm

First scanner: Philips Research Hamburg

Scanner copy: Washington University, St. Louis G. Lanza, S. Wickline

Washington University Collaboration

Imaging nano particles, loaded with Gadolinium & Bismuth, and targeted mainly to fibrin in soft plaque

Anatomical mouse image with lodine concentration overlay

Human carotid samples with targeted contrast agent

Artificial calcification inside of a stent. Left: integrated CT image, Right: photo- and Gd image

Hepatis steatosis (fatty liver) phantom measurements

Ami Altman, Ph.D., PHILIPS Healthcare

imaging results From collaboration with Eindhoven

iodinde-basedbloodpool agentmouse images

Tail cross section

organ	view	$ ho_I \ [\mu { m g/mm^3}]$
liver	с	4.6 ± 0.2
spleen	с	4.0 ± 0.3
kidney	с	1.9 ± 0.2
heart	s	2.9 ± 0.2
liver	s	4.5 ± 0.2

Quantification

Investigating K-Edge Imaging at WashU

Bismuth Nanobeacons Target Fibrin of Thrombus on Ruptured Plaque

Applications demand high delivered payloads of heavy metals targeted to intraluminal thombus, but excluded from intraplaque fibrin.

NanoK targeted to thrombus in situ. Systemic targeting studies on-going in vivo

Nanoparticles home specifically to intra-lumenal fibrin not intramural fibrin from healed hemorrhage or rupture (in vitro CEA specimens from Patient)

Pan, Roessl, Thran,...Proksa, et. al. Angew Chem Int Ed. 2010, 9635-39

Investigating K-Edge Imaging at WashU

Imaging of new Ytterbium Nanobeacons

Pan, Schirra, Roessl, Thran, ..., Proksa et al., ACS Nano. 2012 (in press, e-pub available)

Consequences

- 1. Innovative detectors technologies has lead, and will lead future CT evolution and revolution towards quantitative imaging in more than just anatomy and morphology.
- 2. Detector-based spectral CT enables the benefit of material\tissue analysis retrospectively for all conventional protocols, without the need to decide on a specific Dual-Energy protocol.
- 3. Photon-Counting detectors for spectral CT imaging is a promising technology, that offers also much better spatial resolution, no electronic noise, better CNR, capability to further reduce dose, and a more accurate material and tissue representation and decomposition.
- 4. Photon-counting CT may open an opportunity to use targeted contrast agent, thus become more quantitative, enabling more personalized diagnostics.
- 5. We are not yet there. There are several significant technology challenges, in detector performance and pile up issues, to overcome.

