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5.4 THE GAMMA-RAY CAMERA
5.4.1 General Description

The most commonly used gamma-ray camera is the instrument due to
Anger et al. (1956; Anger, 1958, 1961). An image of a body organ is formed
on a large scintillation crystal by means of a collimator, as described in
Section 4.5, and the scintillations are viewed by an array of photomultipliers
arranged on a close-packed hexagonal array. An analog computing circuit
determines the location of the scintillation in the crystal and sends position-
ing signals to a display oscilloscope. With each scintillation event, the dis-
play brightness is momentarily turned up. This creates a flash of light on the
display screen at a place that corresponds to the position of the scintillation
within the crystal. The flashes are integrated on a photographic film, and
over a period of time enough points are recorded to generate an image. In
another method the coordinates of each flash are recorded using a mini-
computer. The image is then displayed by recalling these coordinate values
and displaying them on a cathode ray tube. In either case, if the count rate
is sufficiently high “real-time” dynamic studies can be performed by gen-
erating a series of time-seauenced images.
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Fig. 5.39 Simplified diagram of an Anger camera employing seven photomultiplier tubes.
A pinhole aperture forms a gamma-ray image of the subject on a sodium iodide scintillation
screen. The position of each scintillation is determined by the phototube array and position
computer, enabling the image to be relayed to and displayed on a CRT monitor. (From Anger,
1967.) :

Figures 5.39 and 5.40 show a cross section of the camera head and a
block diagram of the whole system for an Anger camera using seven photo-
tubes.

The circuit that computes the position of each scintillation event works
as follows. The output pulses from the phototubes are connected to four,
output wires with small capacitors. The center tube has equal coupling
(20 pF) to all output wires, whereas the other tubes are connected by capaci-
tors, the sizes of which are related to the position of the tube. For example,
tube number 2, which is displaced from the center in the positive x direction,
is connected to the x* output wire with a larger capacitor (40 pF). Tube
number 3, being in the positive x, negative y quadrant, is coupled strongly
(30 pF) to the x* wire, weakly (10 pF) to the x~ wire, strongly (40 pF) to the
y~ wire, and not at all to the y* wire. As shown in the figure, the output wires
are connected to difference circuits which drive the x and y inputs of the
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Fig. 5.40 Block diagram showing major components and principle of operation of a
seven-tube scintillation camera. (From Anger, 1967.)

display CRT. Because of the proportional weighting of the phototube out-<
puts to the x and y deflection voltages, the spot on the CRT will be deflected
to a position that closely copies the site of the pertinent scintillation.
Consider a scintillation taking place under the center of phototube num-
ber 5. Most of the optical photons will be gathered by this tube. The other
tubes will receive fewer photons in accordance with the decreasing solid
angle subtended by them. The light will spread symmetrically in the plus
and minus y directions, resulting in equal y* and y~ signals, and there will
be no net deflection in the y direction of the CRT spot. However, tube num-
ber 5 will contribute a large signal to the x~ signal wire, driving the CRT
spot to the left of the screen. Smaller x* and x~ signals will be generated by
the other phototubes, and they will also contribute in determining the final
position of the spot. The important point to notice is that the remapping of
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the scintillation position onto the CRT face plate proceeds in a spatially
continuous manner even though there are only seven nonimaging detectors
in the system.

There is an additional circuit that sums all of the output signals and
generates a pulse that is proportional to the optical energy in the flash. This
pulse is used to gate the brightness modulation of the display. Pulses whose
amplitude lies outside some preset limits are not included in the final image.
The energy pulse is also used to improve display linearity. These topics will
be expanded upon later.

The earliest system used only seven photomultipliers. Modern clinical
systems, however, have at least two additional rings of tubes, giving an array
total of 37 tubes or more. The largest current system has five concentric
hexagonal arrays around the central tube for a grand total of 91 photo-
detectors.

Other types of medical gamma-ray cameras are surveyed in Moody et
al. (1970) and McKeighen (1980).

5.4.2 Details of Operation
Position Arithmetic

We now show how the position of the scintillation is determined using
the pulses that occur at the anodes of the phototube array. The method is
most easily understood by considering a one-dimensional system. The
extension to two dimensions is straightforward.

Consider the array of five tubes whose centers are located at x = —2,
—1,0, +1, and +2 as shown in Fig. 5.41. The height of the voltage pulse
at the anode of the tube V;(x) depends on the position x of the scintillation
event as shown in the lower part of the figure. Each V(x) has a rounded
profile centered on the axis of the tube. This idealized case neglects any edge
effects caused by finite crystal size. The pulse from the ith tube is coupled
to the output lines by the potential dividers formed by capacitor pairs
(C7,C™) for the V™ (x) line and (C{,C*) for the V(i) line. In practice, we
have C* = C~ = C, and C;', C; « C. Thus we have

V*(x) =3 Viow!, (5.181)
Vo(x) =Y Vilow:, (5.182)

where the relative weights wi are given by
wE = CE/C (5.183)
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Fig. 5.41 Phototube outputs are coupled to the output lines by a voltage divider network
made up of capacitors. Each tube has nominally the same response curve, V(x), appropriately
positioned, as shown in the lower part of the figure.

and are thus variable at the designer’s choice. The two signals of interest are
formed by adding and subtracting V*(x) and ¥~ (x) to yield the position
signal ¥(x) and the energy signal VE(x):

Vx)=V'(x)—V (x)= Z Vi(x)(wi" — wi), (5-184)
VE(x) = V¥(x) + V" (x) = Y, Vix)w + w;). (5.185)
i

The problem is to choose the weights w;* and the individual tube re-
sponses such that V(x) as given by (5.184) is linearly proportional to x. The
response curve V(x) is governed mainly by the geometry of the crystal and
phototubes, but it is also influenced by reflection losses at the various
interfaces and, in actual cameras, by a complicated light-baffle arrangement
between the scintillator and the phototube array. Indeed, much of the
proprietary aspect of Anger camera design is associated with the design of
this optical element.

Returning to our one-dimensional example, we can see that the wi are
particularly easy to determine for the case where V'(x) has the ideal triangular
shape of width two units and centered at x = x;. Figure 5.42 shows that an
exactly linear response is obtained by making wi linearly dependent upon
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Fig. 5.42 For the idealized triangular response ¥(x) shown at the top, V*(x) and V" (x)
can be made triangular ramps by choosing the weights wi, here depicted by vertical arrows,
according to (5.186). The position signal V(x) = V*(x) — V"~ (x) is exactly linear over the range
—L/2<x<L/2

the x; as follows:

w oc GL + x)),

w; oc L — xy), (5.186)
where L is the distance between the centers of the outer phototubes. In

practice, the responses V)(x) are necessarily smoother than the triangle
function, and the effect of the smoothing is shown in Fig. 5.43.
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Fig. 5.43 For realizable forms of ¥(x), the linearly weighted sum V*(x) is no longer
linear with x.

We now demonstrate some important design considerations by means
of a simple numerical example. For this example, we assume that the V(x)
curves are determined by the solid angle €,(x) subtended by the ith detector
for a scintillation located at point x as shown in Fig. 5.44. Provided that the
height d of the detector array above the crystal is not too small, we can
approximate V(x) as follows:

Vi(x) oc Q4(x) oc cos3 6, (5.187)

where 8 is defined in Fig. 5.44.
For this example, we choose d = 1. Then V(x) is given by

Vi(x) oc [1 + (x; — %)2] 32 (5.188)
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Fig. 5.44 Geometry showing solid angle ©,(x) subtended by ith phototube from scintilla-

tion located at x.
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Fig. 5.45 (a) Positive and negative output signals using linear weights in a theoretical one-dimensional camera system. The positive signal
weights w;" are depicted by arrows. The negative weights w;” are not shown but are symmetrical to the w;" and given by w;” = 4 — w;". (b) The cor-
responding position signal V(x) is approximately proportional to x over most of the aperture of the array. The energy signal VE(x), which should be
independent of x, varies considerably over this same range. Total weight, w, = w;* — w[", is also shown by arrows.
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When we use the linear weighting system prescribed by (5.186), namely
w=i+2, w =2—1, i=0,+1, +2), (5.189)

we obtain the results shown in Fig. 5.45. It is apparent that the position
signal is not very linear over the full extent of the array, and even though we
have not yet discussed the desirability of having the energy signal VE(x)
independent of x, it is clear that with this weighting scheme this condition
is not well met over the aperture of the camera. It is found empirically that
by increasing the weights associated with the end detectors in the array, both
of these defects can be somewhat remedied. For example, simply by in-
creasing the largest weights wy and wZ, from 4.0 to 5.5, both the linearity
of the V(x) signal and the constancy of the VE(x) signal are improved. ThlS is
shown in Fig. 5.46. .

(@

\.

-3 -2 -1 0 i 2 3

Fig. 5.46 The same variables as in Fig. 545 but with the outer weights wi and w2,
increased from 4.0 to 5.5. In (b) (on next page) it is seen that the position signal is more linear
over a wider range and the energy signal is more nearly constant over the array aperture.
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Fig. 5.46 (continued)

The foregoing results, even though based on a simple one-dimensional
situation, are qualitatively applicable to real two-dimensional cameras. The
weighting factors associated with each tube in a two-dimensional camera
array are, except for the outermost tubes, linearly related to the (x, y) co-
ordinates of the tube axis. It is again desirable to overemphasize the con-
tribution from the outermost tubes.

The Energy Signal

We have so far assumed that all optical flashes on the scintillator are
equally intense. In fact, the optical flashes have a range of energies, and this
will affect the final image quality if compensatory steps are not taken. First,
we consider the optical pulse-height spectrum for monoenergetic incident
gamma rays. A typical spectrum is shown in Fig. 5.47. There are two main
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Fig. 5.47 Optical pulse height spectrum for typical Nal crystal and 140-keV gamma rays.
The photopeak is derived from total-absorption events only, whereas single Compton scattering
events in the crystal, which account for most of the low-energy part of the distribution, can
contribute only below the Compton edge at 90.4 keV. Compton scattering in the patient’s body,
on the other hand, contributes strongly in the range 100—140 keV.

features, namely the photopeak and the Compton continuum. The photopeak
corresponds to events in which the whole energy of the incident gamma ray
is released in the crystal. This may be a photoelectric absorption or a Comp-
ton scattering process followed by a photoelectric absorption. These pro-
cesses are described in Appendix C.

One important feature of the photopeak is its energy resolution, which
is generally stated as the full width of the peak at half of its maximum height
(FWHM). The FWHM can be estimated with reasonable accuracy by
applying Poisson statistics to the number of detected optical photons con-
tributing to the photopeak. For example, consider gamma rays of energy
140 keV (from °°™Tc) striking a Nal scintillator. It takes approximately 30 eV
to produce each optical photon, and about half of these will strike the photo-
cathode in a well-designed scintillation detector. If we assume a quantum
efficiency of 259, at the photocathode, the mean number of detected photons
will be 14 x 10* x 0.25 x 0.50/30 & 580. The normalized standard deviation
of this quantity according to Poisson statistics is 1/ \/56 =429, and to
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convert to a normalized FWHM we must multiply by 2.35. This yields a
theoretical Ag/& of 9.7%,, which agrees well with measured values obtained
under favorable conditions.

An additional experimental observation which supports the hypothesis
of Poisson statistics is that, over a wide range of incident energies &, it is
found that the resolution of the photopeak improves almost linearly with
(6,)'/2. It may seem surprising that Poisson statistics are applicable since
we are not dealing with a counting experiment where the source events are
completely uncorrelated, which is the usual prerequisite for the Poisson
result. The subject is further discussed in Section 5.5.3.

If the total energy &, is not absorbed, then the maximum energy that can
be imparted to the crystal in a single Compton event is that given to the
recoil electron when the primary gamma ray is exactly backscattered. This
energy &, is given by

8,
&, + 255’

(for &, in units of kilo-electron-volts) and is known as the Compton edge.
For gamma ray energies of less than 1 meV, the Compton edge is well
separated from the photopeak, which accounts for the trough immediately
below the photopeak in the pulse height spectrum. Multiple Compton events
tend to fill in the trough to some extent. At higher energies, more overlap
occurs between the photopeak and Compton edge.

There are other mechanisms that contribute to low-energy counts, but
they are of little interest to this discussion.

When considering the effect that the optical pulse-height spectrum
(OPHS) has on the final image produced by an Anger camera, it must be
realized that only photopeak events can be accepted as part of the imaging
data. While it is true that many low-energy events are caused by bona fide
imaging photons undergoing a Compton interaction in the detector, it is
also true that many low-energy optical pulses are caused by gamma rays that
lost energy by scattering first in the patient’s body. Scattered rays contain
essentially no useful imaging information and serve only to degrade the
image contrast by adding a background fog level.

The position computer described in the previous section is sensitive to
fluctuations within the photopeak. The indicated position coordinate will be
directly proportional to the total optical energy detected [see (5.184)]. It is
customary to use high-speed dividers, as shown in Fig. 5.48, which divide
the position signals by the energy signal. This considerably reduces the
fluctuations in image display coordinates that arise from fluctuations in the
optical pulse.

B = (5.190)
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Fig. 5.48 Energy signal VB(x,y) is used to normalize the position signals V,(x,y) and

V,(x, y) by means of the divider circuits. In addition, it drives a pulse-height discriminator (PHD)
that controls the display brightness. Normally only photopeak events are displayed.
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5.4.3 Spatial Resolution

In Section 4.5 we studied the spatial resolution of the Anger camera as
determined by the collimator geometry. Now we study the intrinsic reso-
lution of the camera itself. Consider a situation in which a perfectly colli-
mated, infinitesimally narrow beam of gamma rays impinges upon a given
point of the scintillation crystal. The corresponding flashes on the output
display will not form an equally precise spot. There will be a spread that is
caused in part b}/') statistical fluctuation in the optical photon fluxes reaching
the phototubes and in part by the random direction associated with the
Compton recoil electron in the crystal.

Photon Statistics

We are interested in the statistical fluctuations that occur in the voltage
pulse at the anode of each phototube. Earlier we argued that Poisson statis-
tics apply when determining the fluctuations in the total number of optical
photons created by monoenergetic gamma rays undergoing a photopeak
interaction. The fluctuations in the number of optical photons reaching any
one photocathode will also be Poisson distributed since we have the original
Poisson distribution serving as input to a binomial process which, as shown
in Section 3.4.4, leaves a Poisson distribution. The binomial probability is
simply the probability that an optical photon will reach the photocathode
in question. It depends mainly upon the solid angle subtended by that
photocathode from the source of scintillation. There is yet another binomial
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process, namely, that of generating photoelectrons in the phototube. The
probability of this event is simply the quantum efficiency of the photocathode.
The result, of course, is that the number of photoelectrons in the tube also
has a Poisson distribution. At this point we assume that the electron multi-
plication process in the tube adds no additional noise to the system and that
the fluctuations of the output voltage pulse are a direct copy of the fluc-
tuations in the photoelectron stream leaving the photocathode. We incur a
slight error for neglecting the (largely unknown) statistical properties of the
secondary multiplication process (see Section 5.5.2).
Following Tanaka et al. (1970), we write

V,=Gn,, (5.191)

where V; is the height of the voltage pulse appearing at the output of the ith
phototube, n; is the number of photoelectrons departing from the photo-
cathode, and G is a gain factor with appropriate dimensionality. Again we
consider only the x direction in this analysis; the analysis for the y direction
is identical.

The x-axis deflection voltage, now treated as a random variable, is given
by (5.184):

V(x) =) Viw;, (5.192)

where we have replaced (w;” — w;) by w;.
It is straightforward to determine the variance of the deflection-voltage
fluctuations:

AV(x) = V(x) — V(x) = Z AViw; =G Z w; An,, (5.193)
o3y = (AV?) = G? <Z w;An; Y w;An J.>. (5.194)
i j
From (3.181), we know that
{An;An;> =0 if i#j. (5.195)
Thus we can write
o3y = G? <Z w? Ari,.2>, (5.196)
which, because of the Poisson statistics, can be written
o‘zy = G2 Z Wizﬁi. (5.197)

To convert the standard deviation of the deflection voltage o, to a spatial
standard deviation o,, we must divide by the mean voltage sensitivity
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gradient S:
O'x = aAV/S’ (5.198)
where
_ dv(x) _ dn;
S= i G ; w; e (5.199)

Note that the FWHM of the PSF § is related to g, by § = 2.350, if we assume
that the PSF is Gaussian.
Combining (5.197) and (5.199), we obtain

1/2 dan.
o, = (Z w?ﬁ,.> /,/ (Z W, d—’;) (5.200)

This is the fundamental equation that determines the spatial resolution of
the system in terms of the phototube weights and the individual-tube spatial
response functions.

We are;seeking the optimum weights that will minimize the value of o,
so we proceed by forming the partial derivative da,/0w;:

-1/2 1/2
oo, (Frim) "o (o) e
= - 2 . .
ow; ;widﬁi/dx (Zwi y dx) |

By setting this result to zero, we find the conditions for which w; is the
optimum weight for the jth phototube when all other tubes, (i # j), are not
necessarily optimally weighted. Calling this quantity w'(opt) we find that

wi(opt) = —ﬁl—%(z w,zﬁi) / (Z w; @i/dx>. (5.202)

The fully optimized w; is found by requiring that the w; are also the
optimum values. Therefore, we can write the solution for fully optimal
weights w;(opt) in the implicit manner,

w;(opt) = %%(Z w?(opt)ﬁi> / (Z w;(opt) dni/dx>. (5.203)

i

By inspection, it is seen that one nontrivial solution to this set of non-
linear simultaneous equations is
1 dnm;

. =k— 204
w(opt) kﬁ,. o (5.204)
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where k is an undetermined constant. Note that the optimum weight for a
given (jth) tube depends only on its own response curve 7; and not on the
other responses #;, i # j. The minimum resolution distance is now given by
substituting (5.204) into (5.200):

1 (dR)\*] 12
Ox,min = [Z _ﬁ—: (E) :| (5205)

We illustrate the use of these equations with a simple example. The
geometry is shown in Fig. 5.44. We assume that optical photons are emitted
isotropically from the scintillation point, and we neglect reflection, refraction,
and absorption effects. If the mean number of photons emitted per scintilla-
tion is N, the mean number of photoelectrons in the jth tube 7i;is

7i;/N = nQ,(x)/4n, (5.206)

where 1 is the quantum efficiency of the photocathode, and Q(x), the solid
angle subtended by the photocathode, is given by

Q;(x) = Acos6/I>. (5.207)
Thus

Ad
[ + &7

Qi(x) = (5.208)
where d is the height of the photocathode, x is the position of the scintillation

event, and x; is the position of the jth photodetector.
Using (5.204), (5.206), and (5.208), we obtain

2k(x — x;)
(x—x)* +d*

Figure 5.49 shows the functional form of w;(opt). It is seen that the
optimum weight is strongly position dependent, but depends only on the
distance to the scintillation (x — x;). To provide the minimum resolving
distance, the optimum weights must be changed for each event according
to the location of the event.

The Anger camera has fixed weights determined by the capacitor net-
works. As a basis for comparison with the ideal system, we choose the fixed
weights according to (5.209) for x = 0. This will permit o, ;, to be realized
for events occurring at the center of the camera. The fixed weights for this
five-tube (one-dimensional) camera are shown by the arrows in Fig. 5.49.
There is clearly a conflict between the weighting requirements that optimize
the resolution (even at a single point) and those that provide the best linearity
as illustrated in Fig. 5.46(b). This is a fundamental problem with fixed weight-

w,(opt) = (5.209)
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Fig. 5.49 Solid curve shows the optimum weighting factor for the jth tube located at x,
for a scintillation event positioned at x. For comparison with the fixed weights of the Anger
camera, arrows show the set of fixed weights that would be used for an array of five tubes with
uniform inter-tube separation equal to the height d of the tube above the crystal.

ing systems. We shall see shortly that position-dependent (or floating)
weights can be achieved using delay lines.

Qualitatively, we can understand the shape of the curve in Fig. 5.49 by
referring to Fig. 5.50. The relative importance of a signal from the jth photo-
tube is directly related to the amount of positional information that it con-
tains. The positional uncertainty Ax , associated with a photoelectron pulse
of height n, is determined primarily by the slope dii;/dx evaluated at x,.
Note that the event could be at either location shown as +x, in Fig. 5.50
and that the ambiguity is resolved when signals from the other phototubes
are also considered. Weak pulses of height ng from distant events are asso-
ciated with a larger position uncertainty, primarily because of the reduced
slope at that point. In the optimum weighting system these pulses are
weighted less. Notice also that a very strong pulse located on the tube axis
receives no weight at all. In a differential sense, it contributes no information
regarding the position of the event, ie., dit;/dx = 0 at x — x; = 0.

We close the analysis of this simple one-dimensional model by deter-
mining o, .., using (5.205), (5.206), and (5.208) for the case d = 1, n = 20%,
and N = 5000. The result is shown in Fig. 5.51. Over the central part of the
array, the minimum resolution distance stays fairly constant with a normal-
ized rms fluctuation of about 6%;. The resolution is poorer when the event is
located exactly under a phototube as explained in the previous paragraph,
and degrades with extreme rapidity outside the aperture of the camera.
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Fig. 5.51 Minimum resolution for one-dimensional camera using optimized weights. See
text for details. At the mid point of the central tube the minimum resolution distance is 0.16 of
the intertube separation.
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We now show that the statistical fluctuations in the photon distribution
really do affect the resolution on a scale that is important for clinical diag-
nosis. We must remember, however, that the total system resolution is
greater than that predicted by o, ;. (opt) because of additional blurring due
to collimator resolution (Section 4.5), scattered radiation (Chapter 11), and
crystal thickness effects. We consider an array consisting of a central photo*
tube surrounded by three rings of closely packed tubes as shown in Fig. 5.52.
For this two-dimensional array, we must generalize (5.206) and (5.208) as
follows:

nN Ad
N e + =y ¥ T 219

The resolution g, ,i,(0pt) is a slowly varying function of x and y, so it is
convenient to compute its value at x = y = 0, the center of the camera. Using
(5.205) and (5.210), we now obtain

9NnAd x? N il
in(Opt) = J 211
O'x,mm(OP ) |: 4z ; (xi ¥ ylz + dz)']/z] s (5 2 )
where x;, y; are the coordinates of the jth phototube.
’ y th

\ j  phototube

>

Fig. 5.52 Phototube arrangement for an array of 37 tubes in a close-packed array.
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Using the typical values d = 3.5 cm, 4 = 19.6 ¢cm? (a circular photo-
cathode of diameter 5 cm), N = 5000, # = 0.2, and assuming that the tubes
are close packed with an intertube spacing of 5 cm, we find that

O .min(0pPt) = 0257 cm. (5.212)
This is equivalent to a FWHM of the PSF given by
0 = 2356, min(opt) = 0.60 cm. (5.213)

Next we examine the importance of the contributions from the outer
rings. By summing over just the first ring, the first and second rings, and all
three rings, we find that

0294 cm (ring 1)
O x.min(0pt) = {0.263 cm (rings 1 and 2) (5.214)
0257 cm (rings 1, 2, and 3).

We observe that essentially all of the positional information is derived
from the nearest neighboring tubes in ring 1.

The number of resolvable spots per tube diameter, Q, is independent of
the size of the phototube. Provided that all dimensions are scaled linearly,
this result holds for any size system. This reflects a basic trade-off between
the intrinsic camera minimum resolution distance, the number of phototubes,
and the field of view of the camera. For a camera with N; phototubes span-
ning a field of view of diameter D, the number of separately resolvable points
along the diameter, n;,,), is

npixel x NTQ (5215)

and the intrinsic linear resolution will be
o~ D/QNy. (5.216)

The only way to significantly improve the value of Q and camera per-
formance is by increasing either the efficiency of the scintillation and hence
N, or the quantum efficiency of the photocathode. At the present time, there
seems little hope for significantly improving either of these quantities. Thus
the quest for decreasing the minimum resolvable distance will best be car-
ried out by having a very large number of relatively small phototubes.

5.4.4 Threshold Preamplifiers

We have just seen that the weak signals from distant detectors should be
weighted less strongly than stronger ones from near detectors. One way of
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output signal
output signal

input signal input signal
Fig. 5.53 Threshold preamplifiers with either of the above characteristics allow weak
signals to be automatically rejected and not contribute to the position-determining analog
computation.

automatically achieving this is to use threshold preamplifiers with each
detector. The nonlinear characteristic of these amplifiers, shown in Fig. 5.53,
results in weak signals being completely rejected. The advantage of the sys-
tem is that the variable weights, in this case zero, move with the location of
the scintillation and hence resemble in some sense the completely position-
dependent weights prescribed by (5.204). This method (Kulberg and van
Dijk, 1972) improves the spatial resolution of an Anger camera by about 15%,.
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