
Spatial Response Functions
Point Spread Functions and Line Spread Functions

The resolution of a system may be measured or computed by considered
the response of the system to radiation input along a single projection
vector. If this vector is associated with the position (0,0) on the radiation
imaging detector, then the point response function, p( x, y), describes
the manner in which the recorded signal from the detector blurs the input.
from a point source. While a source of radiation which is associated with
a single vector is straightforward for analystic or computational models of
a system, it is difficult to experimentally create such an input signal. A
linear input to the system can be obtained from a slit phantom and has

been commonly used to test radiation imaging systems.
For a linear imaging system, the line spread function is simply the

integral of many differential elements of the line source each of which behave

as point sources: 1+00

l(x') = -00 p(x', -y)dy

The variable x' is the distance from the line where the line spread function is
evaluated and the variable y is the distance along the line for a line oriented
parallel to the y axis. For a differential element at a positive y position, the
point spread function is evaluated with a negative y arguement indicating
that l(x') is evaluated as the signal along the x axis.

Since the order of integration is not relevant, this equation can be

rewritten as:
l(x') =

1-00 p(x', y')dy'

+00

where y' = -y. Thus the line spread function may also be interpreted as
the projection integral of the point spread function along vertical vectors

located at various x' positions.
As written, this line spread function represents the response to a verti-

calline and thus the horizontal resolution response. Equivalent expressions
can be written to describe vertical resolution or the response to a line at
any angle in the (x, y) plane of the detector.



po Spatial Response Functions -
Edge Spread Functions

While slit test devices have been frequently used to measure the line
spread function, a very narrow slit transmits very little radiation and must
be precisely aligned so that the slit opening is parallel to the radiation
vectors. A very sharp edge can be easier to fabricate and align tha a narrow.
slit and the open portion of the edge contains high radiation flux. The
response to an edge is thus a resolution measurement that can be easy to

perform.
In a similar fashion to the derivation of the line spread function from

the point spread function, the edge spread function can be derived as
the integration of a large number of differential elements which behave as
line sources:

1 +00 I I " e(x) = l(x )dx '?J;:I

x'

where x' is the position denoting the beginning of an opaque edge with the
border of the edge oriented parallel to the y axis. The integral is then taken
to +00.

Notably, the line spread function is seen to be simply the derivative of
the edge spread function:

l(x) = ~~~~
dx

This makes it easy to evaluate the line spread function from the edge spread
function and subsequently evaluate the modulation transfer function from
the line spread function.
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U nits of the Noise Power Spectrum

Np(E, f) and NPS(E, f)

An ideal detector recording Qo(E) mono energetic photons/mm2 has a
signal to noise ratio of ..jQ:("E) (i.e. Qo(E)//Q~(E)). The image recorded
by a detector in an actual imaging system will exhibit larger noise and
lower signal to noise ratio than the ideal detector. We can define Qeq(E)
as the signal to noise ratio observed in a recorded image for regions large
enough that the observed noise is uncorrelated. Qeq(E) is often referred
to as the noise equivalent number of quanta or N EQ(E) and has units of
photons/mm2.

The frequency dependent noise characteristics of an image recorded
from a uniform field of monoenergetic radiation are described by the au-
tocorrelation function or the associated noise power spectrum, Np(E, f).
(Note: we write here the noise power spectrum in terms of one dimen-
sion of spatial frequency assumed to be in a particular direction.) When
Np(E, f) is properly normalized, it has units of mm2 and the value at zero
frequency is equal to l/Qeq(E). That is, the Np(E, f) at f = 0 reflects un-
correlated noise associated with very large correlation distances. Np(E,O)
thus reflects noise which would be observed if the signal was measured for
very large image elements.

The noise power spectrum can thus be separated into a magnitude
term, l/Qeq(E), and a relative frequency dependence term, NPS(E, f):

1
Np(E, f) = Q:~(E)N PS(E, f)

This provides a convenient form to consider the noise transfer characteristics
of a radiation imaging system.



SignaljN oise Transfer

DQE(E) and DQE

For radiation detected by an ideal detector, the (signaljnoise)2 for mo-
no energetic detectors is simple Qo(E) #jmm2 and for a spectrum of ra-
diation can be computed by the first and second energy moments of the
spectrum and defined as Qo. We previously emphasized that Qo can not
be obtained by integrating Q(E).

Similarly we have seen how the (signaljnoise)2 in the image recorded
by a detector can be interpreted as a noise equivalent flux, Qeq(E). For a
detector recording a spectrum of radiation determination of Q eq may not
be obtained by analyticaly integrating Qeq(E). Independent analysis of the
signal and noise transfer properties of the detector is required.

A single measure of detector performance can be defined as the ratio
of the (signaljnoise)2 input to a detector to the (signaljnoise)2 observed in
the recorded image. For mono energetic radiation this detective quantum
efficiency is defined as

D (E) = 2~~
QE Qo(E)

The response of a system to a spectrum of radiation can be similarly
defined as

DQE = ~
Qo

and DQE also can not be obtained by integration of DQE(E)

.
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Signal/N oise Transfer
as a function of spatial frequency

DQE(E, f) and DQE(E, f)

Since MT F( E, f) describes the relative signal transfer characteristics
of a system as a function of frequency and N PS(E, f) describes the rela-
tive noise transfer characteristics of the system, we can define the relative
frequency dependance of the detective quantum efficiency as

DQE(E f) = MTF2(E,f)
, N PS(E, f)

Since the MT F represents signal transfer it appears as a squared term
w heras the N P S reflects noise variance and thus has units of (noise) 2.

The overall frequency dependent detective quantum efficiency reflecting
the (signal/noise)2 transfer is then expressed as

',' D (E f) = 2~~~~ DQE
(E f) ; ! I

t I", : qe, Q 0 ( E) ,
j!
or

Dqe(E, f) = Dqe(E)DQE(E, f)

where the first term is the large area, zero frequency detective quantum
efficiency in absolute efficiency units and the frequency dependence is de-
scribed by DQE(E, f) as a relative function with DQE(E,O) = 1.0 'as 1S
the case with MT F(E, f) and N PS(E, f). .

We will consider later how to determine the detective quantum effi-
blency for a detector exposed to a spectrum of radiation.


