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l. Introduction

For computed tomography (CT) systems, measurements of the projection of the linear
attenuation coefficient are made at many directions through an object. The figure below shows a
parallel beam incident upon acylindrical object with Cartesian coordinates x and y in the

transaxial plane.
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The variable u describes the projection position in the detector, 6 describes the amount of the
rotation of the object about the cylindrical axis, and S describes the path length of the beam
through the object. For projections contained in atransaxia plane, projection values as afunction
of u and 6 are given by the Radon transform®,

P(u,0) = iu(s)ds.

The integration over dsisintended to imply a path-length integral of the material attenuation,
u(x,y), aong the projection. In CT systems, an inverse solution for u(x,y) from discrete
measures of P(u, 0) is performed. This document describes how the noise in measured projection
images propagates through the algorithms used to reconstruct the images.



II. Reconstruction Noise Propagation — Parallel Beam.

Reconstruction noise propagation for a parallel beam experiment is derived in this section. Noise
propagation for fan beam and cone beam experiments can easily be extrapolated from this
geometry. The linear attenuation coefficient for a given location (X, y) in the object is given by
theintegral over all object rotations of the filtered projection view at location u in the detector.?

u(x,y) = T P’ (u,0)do . (1)

This can be expressed as a summation for discrete rotations of the object about Ng equally spaced
angles,

u(x,y) ;Niz P (U,0,) - %)

The filtered projection views are obtained by convolving the actual projection view with a
kernd,

P’ (u,0,) = TK(U'—U)P(u',Ok)du' _ ©)

The kernel, K(u'-u), is given by

K(u) = TF(w)|w|ei““dw : (%)
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where |w| is fundamental to the inverse radon transform and w is the spatia frequency in the
Fourier domain. K(u) istypically an even function for conventional filters. F(w) isafilter
function that is typically used for noise reduction but can also be used for edge enhancement. If
P* (u, Oy) is expressed in discrete form, as

P'(U,6,) = Y. K(IAu-u,0,)P(1AU,0,)Au , (5)
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then adiscrete expression for (X, y) isfound by substituting equation (5) into equation (2),

ee y):NLAu%‘iK(IAu—u)P(IAu,QK) _ (6)

0 k=1 l=-0
Thisisinthe form of alinear sum of the variables P(u, 6) multiplied by various constants
associated with the kernel values. If the variance of these variablesis aé(, Aug) » WE CaN Use error
propagation to expressthe error in u(Xx,y),
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For x-ray CT systems, the variance in the projectionsis primarily from statistical noise
associated with the limited number of x-rays used in making projection measurements. The
calculations presented here do not account for other sources of noise such as detector
misalignment, electronic noise, reconstruction artifacts, or insufficient number of projections
through the object, or any other noise producing processes that do not arise from the limited
number of x-rays used in making the projections.

For cylindrical objects, the projection value, and its associated noise, is equal for projections
through the center,i.e. o}, =000 =04, and opy, =or. Thusassuming that the noisein
each projection is the same,

ol ::\TI:(AU)Z[ iK(IAu —u)z}aé ,
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or more simply,

where:
i 9
a?=Au) K(lAu-u)?Au . ®)
| =—00
Following the derivation of Chesler’, a? can be written in integral form
a’ :Aqu(u'—u)zdu' . (10)

Using Rayleigh’s Theorem, which states that the integral of the squared modul us in the spatial
domain is equal to the integral of the squared modulus in the frequency domain , this can be
rewritten as

o 11
aZ:AuJ-FZ(a))|w|2da) . )

" Thistheorem is often referred to as Parseval’s Theorem that Bracewel| states is a corresponding theorem
pertaining to Fourier seriesinstead of continuous functions.



I11. Evaluation of o for Specific Filter Functions

When describing the noise propagation, o is a constant that must be evaluated for the specific
filter, F(w), being used. There are anumber of different filters used in practice; here two specific
filterswill be examined.

Thefirst filter evaluated is the ramp function F(w) = 1 taken at the Nyquist limit, o, =1/2Au,

: (12)

Thus, the noise in areconstruction utilizing aramp filter is given by

(13)
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Next, the case of asinc filter, which is often used for noise reduction, is evaluated. In this case,

sn(ﬂw]
F(w):%,0<w<w“m. (14)
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Since w is now band limited and F(w) is symmetric about »=0, the expression for o in the case
of the sinc filter can be rewritten as

Za)l—'gqa]-msnz(ﬂjda) . (15)



The integral can be solved by implementing a change of variables such that
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Thus, the noise in areconstruction utilizing asinc filter is given by

2
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Since w,,, =1/2Au, this can be written in terms of the projection spacing as

2
o
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The projection spacing refers to the detector sample spacing. Thisis often the same as the
reconstruction pixel size for aparallel beam. When the detector spacing is less than the pixel
size, thefilter operation for the reconstruction is often limited to a frequency limit given by the
pixel size. The spacing for this equation can thus be thought of in terms of the pixel spacing.



V. Summary

The equations derived in this paper examine how noise due to the fluctuations in the number of
photons used in each projection propagates through image reconstruction for images acquired
with an x-ray CT system. Specifically, the noise is derived for reconstruction algorithms using
the ramp and sinc filters. In general, the noise in areconstruction is given by equation (8)
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where o isgiven by equation (11) and must be evaluated for the specific filter of interest.
For the ramp filter, where F(w) = 1, the reconstructed noise is shown in equation (13)
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For the sinc filter, where

sin(mJ
F(o)=—m
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O0<o<w,, .

The reconstructed noise is given by equation (17)
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