The Final Push

Ensuring LEU Use for Medical Isotope Production

Miles A. Pomper
Senior Research Associate
CNS, Monterey Institute
Outline

- The current situation
- Recent Positive Developments
- Technical, Political, and Economic Obstacles
- New strategies to ensure move to LEU
Medical Isotopes: Current U.S. Mo\(^{99}\) / TC\(^{99m}\) Supply Matrix

Reactors:
- Maria
 - Poland
- HFR
 - Netherlands
- BR2
 - Belgium
- LVR-15
 - Czech Republic
- OSIRIS
 - France
- SAFARI *
 - South Africa
- NRU
 - Canada
- RIAR
 - Russia
- OPAL
 - Australia

Mo\(^{99}\) Extraction & Purification:
- Covidien
 - Netherlands
- IRE
 - Belgium
- NTP
 - South Africa
- AECL
 - Canada
- NTP
 - Canada
- ANSTO
 - Australia

Tc\(^{99m}\) Manufacturer:
- Covidien
- Lantheus

Key:
- HEU Fuel & HEU Target
- LEU Fuel & HEU Target
- LEU Target & LEU Fuel
- HEU Processing
- LEU Processing
- * Fully converting to LEU targets
Medical isotope production: Switching from HEU to LEU or not?

- Positive developments:
 - Greater Political Support—UNSC 1887 and NS Summit
 - U.S now receiving regular commercial shipments of medical isotopes produced using LEU fuel and targets, from South Africa and Australia
 - 2016 closure of NRU
 - New production capability moving forward in S Korea, S America, E Europe, US
 - Conversion of Polish (2012), Czech reactors to LEU fuel

- Not so positive developments:
 - Delays in European licensing of Tc-99m
 - Russia plans to export Mo-99 isotopes to fill in shortages in production but using HEU
Potential New Projects for Mo-99 Production

<table>
<thead>
<tr>
<th>REACTOR</th>
<th>Six-day ci EOP/yr</th>
<th>Six day ci EOP/wk</th>
<th>Weeks/yr</th>
<th>Potential first year</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECTS WITH PROCESSING FACILITIES AS PART OF PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROSATOM*/**</td>
<td>52 000</td>
<td>1 000</td>
<td>52.0</td>
<td>2013</td>
</tr>
<tr>
<td>ROSATOM*/*** - TOTAL</td>
<td>130 000</td>
<td>2 500</td>
<td>52.0</td>
<td>2013</td>
</tr>
<tr>
<td>Babcock and Wilcox</td>
<td>144 000</td>
<td>3 000</td>
<td>48.0</td>
<td>2014</td>
</tr>
<tr>
<td>advanced RR***</td>
<td>25 710</td>
<td>1 000</td>
<td>25.7</td>
<td>2015</td>
</tr>
<tr>
<td>CNEA, Argentina</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2018</td>
</tr>
<tr>
<td>SAFARI - 2</td>
<td>108 930</td>
<td>2 500</td>
<td>43.5</td>
<td>2020</td>
</tr>
<tr>
<td>PROJECTS REQUIRING ADDITIONAL PROCESSING FACILITIES**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MURR**</td>
<td>156 000</td>
<td>3 000</td>
<td>52.0</td>
<td>2012</td>
</tr>
<tr>
<td>FRM - II**</td>
<td>102 860</td>
<td>3 000</td>
<td>34.3</td>
<td>2015</td>
</tr>
<tr>
<td>GE -</td>
<td>144 000</td>
<td>3 000</td>
<td>48.0</td>
<td>2014</td>
</tr>
<tr>
<td>US - LEU target technology</td>
<td>144 000</td>
<td>3 000</td>
<td>48.0</td>
<td>2014</td>
</tr>
<tr>
<td>US - Accelerator technology</td>
<td>144 000</td>
<td>3 000</td>
<td>48.0</td>
<td>2014</td>
</tr>
<tr>
<td>India</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2015</td>
</tr>
<tr>
<td>OPAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2015</td>
</tr>
<tr>
<td>INR, **</td>
<td>120 000</td>
<td>3 000</td>
<td>40.0</td>
<td>2015</td>
</tr>
<tr>
<td>Jules Horowitz***</td>
<td>108 000</td>
<td>3 000</td>
<td>36.0</td>
<td>2016</td>
</tr>
<tr>
<td>South Korea</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2017</td>
</tr>
<tr>
<td>PALLAS</td>
<td>266 390</td>
<td>6 215</td>
<td>42.9</td>
<td>2020</td>
</tr>
<tr>
<td>MYRRHA</td>
<td>178 290</td>
<td>5 200</td>
<td>34.3</td>
<td>2022</td>
</tr>
</tbody>
</table>

* Project includes three reactors, two of which would be used to produce Mo-99 in a continuous fashion, with the third being a back up.
** Research reactor already exists, but is not yet irradiating targets for Mo-99 production.
*** Under active construction.
**** Projects in Europe would face a processing capacity limitation.

SOURCE: OECD Nuclear Energy Agency
Mo-99 producer NECSA has committed to operate solely on LEU
- $25 million from NNSA to produce fully LEU-based isotopes
- 2009: reactor fueled only with LEU
- Current: Anticipates using only LEU targets for Mo-99 production-2013
2 X density of LEU targets
More waste, problems with Mo-yield, NECSA wants to develop higher-density targets
Costs 10% more than HEU process— but little cost impact on patients
Tc-99m licensed quickly by FDA, but not by EU states
- Expensive, cumbersome process of country-by country validation tests necessary
Conversion: Not Mainly Technical Challenge

- 2009 National Academies of Science study:
 - “…no technical reasons that adequate quantities [of medical isotopes] cannot be produced from LEU targets in the future.”

- Fuel at major production reactors has been converted to LEU
 - BR2 only exception, but seeking to convert

- Need to develop LEU targets
 - LEU substitution would require reactor and Mo-99 processors to process about five times as many targets and an equivalent increase in waste.
 —or—
 - Make targets larger, or with greater uranium density, or with more uranium and less cladding
Conversion: Not Mainly Technical Challenge (2)

- Production costs would likely rise marginally compared to the existing HEU targets and processes, but without significantly increasing the cost of diagnostic imaging.

- To minimize disruption, seek to ensure LEU targets are compatible with existing processes for target dissolution and Mo-99 recovery and minimize waste
 - Advantage of reactor irradiation vs. neutron capture etc (different specific activity levels)
Conversion: An Economic Problem

- Instability in Mo-99 market
 - Exemplified by the shut down of aging NRU Chalk River reactor 2009-2010
 - No incentive for creation of new irradiation facilities due to operating subsidies
 - Government reimbursements rates for isotopes do not reflect the full costs of processing and other production
 - Lack of adequate geographic distribution hampers supply
 - Concerns that conversion could lead to shortages
Conversion:
An Economic Problem (2)

- **Processors resist additional $ of conversion**
 - Changes to processing may be needed to accommodate higher throughput levels
 - Limited access to needed addl. reactor irradiation time
 - LEU isotopes need to be licensed

- **Russia**
 - Kiriyenko: LEU production the goal but need to ensure market supply
 - There are some indications Russia in the short term may switch to LEU fuel, but not targets
 - Better to convert now to LEU than gear up HEU production
 - **Are incentives needed to ensure move?**
 - Letter from NNSA Administrator D’Agostino to Congress positive move—Calls for Congress to consider measures to counter subsidized HEU-based production
 - Possibilities include labeling, addl export constraints, preferential gov procurement
Recent Responses to Instability

- Governments sought ways to ensure sufficient supply
 - Asked the OECD Nuclear Energy Agency and the IAEA for recommendations for altering the market structure
 - Better sharing of information about proposed reactor shutdowns and conversion

- Reduced demand:
 - Physicians and other participants chose alternatives or were conservative in using their supply of isotopes

- Increased production: New entrants or local reactors reaching the global market (all HEU)
 - Poland—converting to LEU fuel (2012)
 - Czech Republic—converted to LEU fuel
 - Russia—?
Policy Prescriptions Offered

- **US Congressional Action**
 - First introduced in 2009, passed House
 - Revised version has passed Senate recently
 - Would ban US exports of HEU for targets to Western Europe and Canada
 - Authorizes efforts to promote Mo-99 production through LEU fuels and targets, including the construction of domestic facilities
 - Would establish government responsibility for waste disposition

- **OECD Nuclear Energy Agency**
 - Governments should terminate subsidies
Commitment by leaders at the 2012 NSS
- phase out deadline for HEU use for medical isotope
- USG has sought this
- May need to push date back some— 2018-2020?

Further restrictions on US HEU exports
- Informal

Subsidy cutoffs
- Governments should more quickly raise prices of irradiated Mo-99 produced using HEU fuel or targets to market levels as suggested by the HLG-MR
- US could consider countervailing duties for those who continue to use subsidized production (subsidized production will also tend to be HEU)
New Strategies

- **Preferential procurement**
 - By National governments and the WHO
 - Need clear studies by US and NEA of alternative strategies of preferential procurement strategies and costs and benefits
 - Should consider supporting or requiring government purchases of LEU-based isotopes
 - Natl governments should agree to take steps to move quickly to license LEU-based isotopes
 - Taxing HEU or ensuring full cost of HEU (enrichment)

- **US Market power**
 - World’s largest importer of Mo-99
 - The US could impose tariffs or a ban on the import of HEU-based isotopes
 - Once sufficient LEU supplies available