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CHAPTER 1

THE VISUAL PROCESS

1.1. Introduction

It would be difficult to find a more cogent confrontation
between physics and biology than in the visual process. Nature
was faced from the beginning with the hard fact that light consists
of a finite number of bits of energy, called “photons” or “quanta.”
Whatever visual information was to be distilled out of the sur-
rounding world was circumscribed by the profound constraints
imposed by the discrete nature of light.

Throughout the millions of years over which life in its manifold
forms evolved, survival was the dominant motif. Unless the prey.
could detect its predator in ample time, life terminated abruptly.
Visual detection was not the only means of detection, but it was
a major one. And visual detection had still to function in twilight
and even in starlight when the stream of photons dwindled to an
occasional patter of drops of energy. It was, indeed, a matter of
life and death that each photon be husbanded and assembled
to trace out the best possible image of impending disaster. Little
short of a photon counter would suffice.

There is ample evidence among the primitive forms of life
that nature mastered the art of counting photons at an early age.
If it were only a question of utilizing the incident energy of the
photons, we can, in fact, predate animal life and point to the highly
efficient solar battery developed in plants by way of photosyn-
thesis. But the counting of photons entails not only the efficient
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absorption of photons but also the highly sophisticated process
of amplification. The energy of a photon is sufficient to disturb
only a single atom or molecule. With this energy alone, the infor-
mation that a photon had been absorbed could not be transmitted
beyond the point of absorption, let alone to some central nervous
system. A nerve pulse involves the motion of at least some millions
of atoms or ions. Hence, the energy of the absorbed photon must
be multiplied or amplified over a millionfold before it can give
rise to a nerve pulse. The ingenious amplifier that nature devised
remains an unsolved puzzle. The great variety of amplifiers that
man has devised for the same purpose is in large part the content
of this monograph.

The quantum character of light is a hard constraint. Nature
could, in a physical sense, do no more and, in a survival sense,
do no less than devise a photon counter. Once having the photon
counter, there were secondary choices as to how the information
was to be handled.

The incoming photons, for example, could be accumulated
for a long time to generate an image of high quality or for short
times to give a rapid series of low-quality images. The long-time
accumulation would mean that moving objects would be blurred.
Moreover, the animal itself would have to slow down its move-
ments so that it did not joggle its camera (or visual system) during
the course of an exposure. At the other extreme, a radically short-
ened time of exposure would yield images of such poor quality
or so impoverished of information content as to be of little value
in guiding the animal’s response. The compromise was set, at
least for the human system, where one might expect, namely, at
an exposure time matched to the reaction time of the human
system as a whole. The reaction time is the sum of the transit time
of nerve pulses from eye to brain and back to an appropriate
extremity plus the time required to overcome the physical inertia
of that extremity. Overall, the reaction time is in the order of a
tenth of a second, as is the exposure time of the eye.

The choice of exposure time is readily understandable. So
also is the choice of spectral response. The latter peaks near the
peak of the sun’s radiation—and even shifts at twilight toward
the blue in order to match the shifting spectral content of the
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light scattered from the “blue” sky. There are a host of other choices
perhaps not so obvious and perhaps offering the opportunity
for reading the past through the shape of the present. These have
to do with the size of lens opening, the focal length of the lens,
the red and the blue cutoffs of the visible range, the density of
retinal elements which puts a ceiling on image quality, the multi-
plicity of color vision, the programed interconnections of the
optic nerve fibers, and, finally, even the number and location of
eyes. We will return to this subject later and point out some of
the adaptations of the optical parameters to the life habits of a
number of animals. In the meantime, we note thé contrast between
the primary character of the photon-counting problem—it is
singular, ultimate, and essential—and the wide-ranging secondary
character of the ways in which the photon counting was adapted
to the life habits of particular animals.

1.2. Quantum Limitations on the Visual Process

The absolute measure of the performance of a visual system
is the ratio of information transmitted by the system to the infor-
mation incident on the system and contained in the incident
light flux. It is necessary, then, that we have a quantitative measure
of the information conveyed by a finite number of photons. We
derive such a measure in a series of steps designed to emphasize
three aspects of the quantum limitations on the visual process.
The first aspect has to do with the overall finite number of photons;
the second aspect is their random distribution in time and space;
and the third aspect is the problem of guarding against false alarms,
that is, spurious visual patterns that may arise from the random
character of the photon distribution and not from the original
scene itself. Each of these aspects exacts an increasing toll in terms
of the number of photons required to transmit an elementary
bit of information.

1.2.1. Discreteness of Light Quanta

We imagine first that we have a black canvas and that we
wish to paint a picture (Fig. 1.1) on the canvas depicting a white
wall on which is located a single black spot. This is the simplest
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Fig. 1.1. Test pattern consisting of a single
black spot on a white background.

of pictures in that we wish to indicate only the presence of the
black spot, and not its structure, on the otherwise white wall.
Furthermore, the method of painting will be constrained to be
that of stippling. We can paint an array of small white dots, all
of the same size but of varying spacing. Each white dot will corre-
spond to the visual effect of a photon in a generalized visual system.

We suppose that the size of the black spot is such that the
canvas can accommodate a total of N of these close-packed spots.
The single black spot, then, defines the size of a picture element
whose area is a fraction N~ ! of the canvas.

At this point, we ask what would be the smallest number of
white dots required to portray the presence of one black spot on a
uniformly white wall? If we are allowed to space the white dots
uniformly, then, clearly, N — 1 white dots are both necessary
and sufficient to complete the canvas. The single missing white
dot locates the presence of a single black spot (Fig. 1.2).

The next step in sophistication of our painting will be to
locate a single gray spot as well as to portray its shade of grayness.
We assume that the reflectivity of the spot is 99 %, of that of the
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Fig. 1.2. Reproduction of Fig. 1.1 using an
ordered array of “photons.”

white wall and again ask for the smallest number of white dots
required to convey this information. The answer, obviously, is
100N — 1 dots. Each picture element will have exactly 100 dots
stippled in, with the exception of the one picture element containing
the gray spot. The latter will have 99 dots to indicate that its bright-
ness is 99 % of that of the surrounding wall.

While all of the above is embarrassingly elementary, the
argument does stress the high cost in photons required to portray
small elements of low contrast. For example, the number of picture
elements N required for well-resolved images often lies in the
range of 10—-107. Hence, we would need some 108-10° photons
to delineate the location and brightness of the gray spot.* That is,

* While a single gray spot on a white wall may in one sense appear to transmit .
only a single item of information, the total picture transmits as much informa-
tion as any more complex pattern. The picture contains the information that
there is no gray spot on any of the other N — 1 picture elements. Hence, the
brightness of each picture element is a discrete independent item of information
even when the picture is a complete “blank.”
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we would need these 100N photons providing they could be
arranged in a precise array of 100 photons per picture element.
But nature does not work in so orderly a fashion. Photons arrive
atrandom times and places and give rise to a fundamental graininess
in any image, a graininess that tends to obscure the detection of
fine detail and faint contrasts. The result is a considerable increase
in the number of photons required to delineate the fine detail of
images. '

1.2.2. Random Character of Photon Distributions
Natural incoherent light is emitted by some form of electronic
excitation, as from an excited atom. The average lifetime of the
excited state is a well-defined, calculable, and observable parameter.
On the other hand, it is a fundamental property of the quantum-
mechanical nature of such an excitation that the photon can be
emitted at any time during the average life of the excited state.
More definitely, the probability of emitting a photon at any time ¢
and in a time interval At is given by exp(— t/t) At/t, where 7 is the
average lifetime of the excited state. What is significant for our
purposes, is that the emission of photons is a stochastic process.
If we carry out the experiment of illuminating a small area
with a “constant” incandescent light source and count the number
of photons that strike the area in a given time At, we will obtain a
series of numbers n,,n,, ... corresponding to the actual number
of photons that arrived at the first interval At, the second interval
At, and so on. We have put quotation marks around the word
“constant” because the experiment which we are performing is
one way of determining whether the source is indeed constant.
The fact that the numbers of the series n,,n,,... do not all
have the same value may in the broadest sense cast doubt upon
the constancy of the source. Yet, no matter how carefully we
design the source, it will turn out that there is an irreducible spread
to these numbers. That spread is the consequence of the stochastic
or random nature of the process of emitting photons.
In particular, it will be true that if we observe that the average
number of photons arriving at the test area is n,, we will also
find that the numbers n,,n,,... are distributed around n, in
such a fashion that the average value of (n, — ny)* will also be
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no. The average value of (n; — ny)* is called the mean-squared
deviation from the mean. The square root of this quantity, or
{(n; — ng)*>'? is called the root mean squared deviation from
the mean and is abbreviated as rms deviation.

We introduce here also a terminology that will be used fre-
quently in this monograph. A signal is defined as the average
number of photons falling on a test element. The noise is the rms
deviation from this number. In the example cited above, n, is the
value of the signal and n}/? is the value of the noise. The signal-to-
noise ratio is then also n}/2. The term signal will also be used, as
will be clear from the context, to mean the difference between
the average numbers of photons falling on a given test element
and on surrounding test elements of the same size. This meaning
is used, for example, to define the signal appropriate to a low-
contrast test-element on a uniform surround.

We return to the black canvas on which we wish to paint a
small gray spot by use of a stippling of white dots, each representing
a photon. In our first estimate, using uniformly spaced dots, we
arrived at the need for 100 dots per picture element (a picture
element was defined as the area of the gray spot to be portrayed)
in order to portray a single gray spot having 99 %, of the brightness
of the surrounding canvas. If we now recognize the random char-
acter of the photon distribution, we will find that the actual numbers
of photons falling on various picture-element areas are distributed
around the average number 100 such that the rms deviation is
(100)'/2 or 10.* At this point, we have a signal to be detected which
is 1 9 of the surrounding average brightness and we are faced with
a noise fluctuation in these picture element areas which is 10 9 of
the average brightness. (The signal to be detected in this example
is the difference between the number of photons in the test element
and the average number of photons in equal area elements of the
surround.) In brief, the signal-to-noise ratio is 0.1, and far less
than the value of unity which is frequently taken as the threshold
for visibility of a signal against a noisy background.

* The rms deviation will be the same whether we look at the numbers of pho-
tons falling on a given area in successive equal time intervals or at the numbers
of photons falling on many equal areas in a single time interval.
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Our first requirement, then, is to increase the density of photons
on the canvas so that the fluctuation or noise level does not exceed
the signal to be detected. Since the signal represents a 1 % deviation
from the surround, we require that the noise level (or rms deviation)
also not exceed 1%. This is achieved by having an average of 104
photons falling on each picture element. The rms deviation will
then be the square root of 10*, or 102. And the ratio of this random
deviation to the average will be 1072, or 1%,

In summary, at this point, the number of photons required
to portray a single spot was increased by a factor of 100 in going
from a black spot to a gray spot having only 19 contrast with
the surround; and the number was increased again by a factor
of 100 in going from an ordered array of photons to a random
array. The latter factor insured that the signal to be detected
was equal to the rms deviations occurring as a result of the funda-
mentally random character of the photons. There is yet another
factor to be introduced to guard against false alarms, that is,
the mistaking of any particular random fluctuation for the real
signal to be detected.

1.2.3. False Alarms

It is frequently stated or implied in discussions of electronic
systems that the threshold of detectability of a signal occurs when
the signal is equal to the noise. This is a somewhat misleading
statement. For example, suppose that we are monitoring the
level of an electrical current to detect significant changes of 17,
or more. Suppose, also, that the noise level (rms deviation) is 19
of the average current. If we make N successive observations
of the current, we will find that the current will depart from its
average value by 1% or more in almost half of the observations
even in the absence of any “real” or deliberately imposed disturbance
of the current. We must put quotes on the term “real” because
the fluctuations resulting from the noise are just as “real” as a
deliberately imposed disturbance—it is only that the source of
the disturbance is different. The significant part is that almost
half of our observations will tell us that the current has departed
from its average value by more than 19 whether or not there
has been any deliberate disturbance. It is in this sense that half
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the observations will be false alarms. In order to guard against
false alarms, the “real” signal to be detected must exceed the level
of noise by some appropriate factor. The factor can readily be
approximated by knowing the statistical distribution of noise
fluctuations as well as the number of observations which should
statistically be free from false alarms.

Figure 1.3 shows the distribution of noise fluctuations around
the mean value of a parameter. The ordinate is the probability
density and the abscissa k is plotted in units of the rms deviation.
The second abscissa scale, n, is a particular numerical example
for which the average number of photons is 900. The rms deviation
is then 30. The total area under the curve using the k abscissa
scale is unity. The area under the curve between k = 1 and k = 2,
for example, is 0.13 and represents the probability that an obser-
vation will lie in the range between 1 and 2 rms deviations above
the mean. In the numerical example, it is the probability that an
observation will lie between 930 and 960 photons. Similarly, the
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Fig. 1.3. Probability distribution of a noisy quantity about its mean value.
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area under the curve to the right of k = 2 is 0.023 and represents
the probability that an observation will exceed 2 rms deviation
units above the mean. In the numerical example, it is the probability
that an observation will exceed 960 photons.

Table 1.1. gives the probability that noise fluctuations will
exceed the mean value of the background by 1, 2, 3, etc. units of
the rms value of the noise. The probability for noise fluctuations
occurring on either side of the mean is just twice the probabilities
listed.

With the aid of Table 1.1 we can now specify how large a
signal is required in order to avoid false alarms. The signal in
this case is the difference in average brightness between the test
spot and the background. We suppose, as is common, that the
picture has 10° picture elements, each of the size or area occupied
by the test spot. We have then 10° opportunities to generate a
false alarm. And, if our purpose is to reduce the number of false
alarms to below unity, we will need, according to Table 1.1, a
signal whose amplitude is 4-5 times larger than the rms noise.
We call this value of k the threshold signal-to-noise ratio. It is such
a value of signal for which we are reasonably confident of not
mistaking a noise fluctuation for the real signal. Note thatatk = 6
the probability of detecting a false alarm is already far smaller
than is needed. In the other direction, k = 3 would only guard
against false alarms for a picture having less than 103 picture
elements. Hence k = 5 is a reasonable approximation to the
threshold signal-to-noise ratio.

Table 1.1
Values for the Probability of Exceeding
Various Values of &

k ‘ Probability of exceeding k

0.15
0.023
1.3x1073
3x 1073
3x 1077
2x10°°

[~ Q¥ I -V S
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We choose k = 5 rather than k = 4 for the following reason.
In the above argument, we assumed a very noisy background
and a well-defined signal. However, the signal itself has nearly
the same noise or spread as the background.* This means, for
example, that if in Fig. 1.3 we located the mean value of the signal
at k = 4, we would find that the signal appeared half the time
below k = 4, and half the time above. If, on the other hand, we
locate the signal at k = 5, we will find that only 0.15 of the time
will the signal appear below k = 4. It will exceed k =4, on
the average, 0.85 of the time and be judged a real signal. Hence,
a margin of about one unit of k above the nominal value needed
to avoid false alarms is sufficient to give a reasonable reliability
to our observations.

At this point, we compute the increase in photon density
required to satisfy the criterion k = 5, as compared with the
criterion k = 1 used in the previous section. We begin with the
condition k = 1 for which the signal is equal to the rms deviation
of the noise. In particular, let the signal and the rms deviation
each be 19, of the background brightness. As we increase the
photon density, the signal remains constant when measured as
a percentage of the background brightness. The rms deviation
of the noise, however, decreases. Since the ratio of the rms deviation
to the average background brightness varies as ni/?/ny = 1/n}/?,
where n, is the average density of photons in the background,
it will be necessary to increase n, by a factor of k? (= 25) in order
to decrease the ratio 1/n}/? by k (=5).

In sum, the density of photons required varies as k%. And,
for the value k = 5, the density of photons must be increased
25-fold relative to the density computed in the previous section
for k = 1. In the previous section, the number of photons was
computed to be 10N, where N was the number of picture elements.
Hence, to guard against false alarms, this number must be increased
to 2.5 x 10°N.

We can now write, in general, the expression for the total
number of photons required to detect a contrast C where C is a

* Black or very dark signal elements on a white background must, of course, be
excepted.
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measure of the signal as a fraction of the background brightness,
thatis,C = AB/Band0 = C < 1(C = 1 means 1007 contrast and
C = 0.01 means 1% contrast).

Total number of photons = N El'z‘ k? (1.1)
Here, N is the total number of picture elements and reflects the
discreteness of the photons. The factor 1/C? is a consequence of the
contrast C and the random character of photon distributions; the
factor k? reflects both the random character of the photon distri-
bution and the need to avoid false alarms.

1.3. A Summary Experiment

Almost all of the conclusions of the previous three sections
can be read off by inspection of Fig. 1.4. In Fig. 1.4a there is depicted
an area uniformly illuminated by a low density of photons. Each
photon was made visible on a television screen as a discrete white
dot by using a high-gain photomultiplier. We note in Fig. 1.4a
the discrete character of photons, their random distribution, and
their consequent noisiness which gives rise to false alarms. A
simple inspection of Fig. 1.4a reveals black areas or spots which
we could, in the absence of other information, readily identify
as “real” black spots in the original picture. In fact, no such delib-
erate pattern of black spots was introduced into the making of
Fig. 1.4a. The black spots are a consequence of the statistical
fluctuations in the distribution of photons.

Figure 1.4b is a “real” test pattern of black spots* which we
wish to detect under the low illumination represented by Fig. 1.4a.
To do so we simply superimposed the positive transparencies
of Figs. 1.4a and 1.4b to obtain Fig. 1.4c. Note that the four larger
black spots of Fig. 1.4b are readily visible in Fig. 1.4c. The remain-
ing smaller black spots of Fig. 1.4b are undetectable in Fig. 1.4c.
They are lost in the noise. Note also that the four larger spots
that are visible in Fig. 1.4c appear to terminate in a fifth black
spot forming the apex of a triangle. The fifth black spot, however,

* The thin black bar will be referred to in Section 1.5.
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LIGHT LEVEL SHOWN
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Fig. 1.4. Demonstration of the limitations imposed by the quantum nature of
light on its ability to transmit information.



14 Chapter 1

is one of the largest statistically generated black spots already
present in the “uniform” illumination of Fig. 1.4a. For convenience,
this black spot is located in Figs. 1.4a and 1.4c by small coordinate
arrows on the edges of the pictures.

The presence of this statistically generated black spot in
Figs. 1.4a and 1.4c means that any “real” black spot must be
larger than it in order to be reliably judged to be “real.” If we take
this statistically generated black spot as a starting point, we find
that it occupies about 1/500 of the area of the picture. Also, since
there are some 4500 dots in the picture, the average number of
dots in the area of this spot is 9. The signal-to-noise ratio is then

9 = 3. From Table 1.1, we note that a signal-to-noise ratio of 3
would yield false alarms only one in a thousand times. Hence,
since there are 500 picture elements having the size of the black
spot, and since the probability of obtaining such a black spot by
statistical fluctuation is one part in a thousand, we are at the
threshold of reliable visibility, of “real” signals or “real” black
spots. The “real” black spots need only be somewhat larger than
the one we are considering. In particular if the signal-to-noise
ratio of the “real” spot were between 3 and 4, we would have
sufficient confidence in its reality. Note, for example, that the
signal-to-noise ratio of the largest black spots in Fig. 1.4c is approx-
imately 5, since they each obscure about 25 white dots. These
large black spots are clearly well above the threshold of reliable
visibility and tend to confirm that our estimate of threshold signal-
to-noise ratio should lie between 3 and 4.

The density of photons in Fig. 1.4 is at the extreme low end
of densities that we normally encounter. The low density was
deliberately chosen to illustrate the three major properties of
photon distributions: discreteness, random distribution, and
false alarms. In the range of the higher densities normally encoun-
tered, the number of picture elements is likely to be of the order of
108 rather than the 10® calculated for Fig. 1.4. Under these condi-
tions, the threshold signal-to-noise ratio also must be increased to
values between 4 and 5 in order to guard against the appearance
of false alarms. From Table 1.1, at k = 5, the probability of false
alarms is only 3 x 10~ 7. It decreases rapidly atk = 6 to 2 x 107°.
A television picture, for example, has some 10° picture elements
and would call for a value of k between 4 and 5.
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Figure 1.4a serves another purpose. It emphasizes how com-
pletely unrealistic it would be to use the customary criterion for
visibility, namely, a signal-to-noise ratio of unity. The operational
meaning of this criterion is that if a first person removed one of
the dots in Fig. 1.4a, a second person could determine which dot
had been removed. The removal of one dot is the equivalent of
having a black spot in a test pattern that obscures, on the average,
one dot or photon. The average signal is then one photon and
the noise, which is the square root of the average, is also one photon,
yielding a signal-to-noise ratio of unity. Simple inspection of
Fig. 1.4 shows the virtual impossibility of detecting a single mis-
sing photon.

1.4. A Second Experiment

The experiment of Fig. 1.4 was confined to the visibility
of black spots for which the contrast is, by definition, unity. If
we choose to look for gray spots for which the contrast is less than
unity, the size of the spot must be increased. According to Eq. (1.1),

Total number of photons = N —é—z k?
A

=7

where d is the linear dimension of a picture element (that is, the

test spot) and A is the area of the picture. Equation (1.2) states

that if we keep the total number of photons fixed (that is, maintain

constant brightness), the diameter d of a test spot which is just
visible should vary inversely with its contrast C.

Figure 1.5 is a photograph of a test pattern made up of discs
whose diameters decrease by a factor of 2 in progressing along a
row, and whose contrasts decrease by a factor of 2 in progressing
down a column. Along a 45° diagonal of Fig. 1.5, the product dC
is then constant. If we illuminate Fig. 1.5 with some intermediate
light intensity, the boundary between the discernible and non-
discernible parts of Fig. 1.5 should be one of the 45° diagonals.

Figure 1.6 shows the results of a series of illuminations of
Fig. 1.5. Figure 1.6 was obtained by photographing the kinescope
of a television system when the pattern of Fig. 1.5 was illuminated

k? (1.2)
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Fig. 1.5. Test pattern used to measure the resolving power of a system in terms
of the size and contrast of single elements. i

by a flying-spot scanner and the reflected light recorded by a high-
gain photomultiplier.®-!) Parenthetically, Fig. 1.6 was made
some years prior to Fig. 1.4 and shows a certain variation in the
intensities of the individual white dots, each being the trace or
signal of an individual photon. The variation arises from the
variation of gain of a photomultiplier depending upon where on
the photocathode the photon strikes. In Fig. 1.4, a limiter was
used to trim the white dots to nearly the same size.

Figure 1.6 shows clearly that the boundary between the
discernable and the nondiscernable parts of Fig. 1.5 lies approxi-
mately along a 45° diagonal. Further, the boundary moves one
step to the right, toward discs that decrease by a factor of 2 in
diameter, for each factor of 4 increase in light intensity, as is to be
expected from Eq.(1.2). The series of pictures in Fig. 1.6 was used
in the early publication®!) to estimate a value for k, the threshold
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Fig. 1.6. Reproduction of Fig. 1.5 using a light-spot scanning arrangement
in which the trace of single photons was made visible. The relative numbers
of photons are indicated on each photograph.

signal-to-noise ratio, lying between 4.and 5. As we noted earlier
(see Table 1.1), the value of k should increase from 3 to 5 in going
from very low densities of photons for which the number of picture
elements is less than 103 to high densities of photons for which
the number of picture elements exceeds 10°.
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1.5. Resolution, Signal-to-Noise Ratio, and Test Patterns

The term “picture element” has been used here as meaning
the smallest area of a spot of a given contrast that can be resolved.
The shape of the spot is not critical; it can be round, square, or
even rectangular. The area is of primary significance in determining
the signal-to-noise ratio which is based on the average number
of photons falling on that area.

It is clear by inspection of Fig. 1.6 that the term picture element
has a certain elastic significance. If we are looking for small black
spots on a white surface, the number of discernable picture elements
is larger than if we are looking for gray spots having a small contrast
with the white surround. From Fig. 1.6 or from Eq. (1.2), the number
of discernable picture elements is proportional to the square of
their contrast. There are 10* more picture elements having a
contrast of 1 (black spots) than those having a contrast of 0.0], or
19%. A lack of recognition of this relationship was responsible
for many years for an inflated estimate of the resolving capability
of photographic film.

The quoted values for film resolution were (and also, fre-
quently, still are) based on the smallest spacing of a set of black
and white bars that could be resolved. It was not unusual, for
example, to use a given film with a rating of say 2000 lines per pic-
ture and find that not even details having the dimensions of 400-
line resolution could be resolved. The primary reason, of course
was that the detail to be resolved was low contrast, and not black
and white. A second reason is that the detail was in the form of a
single picture element and not in the form of a set of bars. The
use of bars, rather than the single spots of Fig. 1.5, leads to a gross
overstatement of the resolving properties of a system. The bars
yield a higher resolution because the estimate of signal-to-noise
ratio tends to be based on the total area of the bars rather than on
a single elemental area whose diameter is the width of one bar.
In Fig. 1.4, for example, the smallest black spots are not visible
in Fig. 1.4c. At the same time, the presence of a long bar, whose
width is slightly less than that of one of the smallest black dots,
is readily visible.

There was a period during the early history of television
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when members of the motion picture industry asked for television
channel widths of the order of a hundred megacycles in order
to transmit their films.®-1) This was based on a black and white
bar-pattern resolution rating for their film of 2000 lines. A casual
inspection of current television pictures shows that viewing this
same 2000-line film through the present 500-line (5 megacycle
channel width) television standards frequently degrades the picture
quality as compared with live studio pictures. That is, the signal-
to-noise ratio of the film at 500 lines is frequently less than that
which emerges from the studio camera transmitting live scenes.™?

The misleading effect of using a test pattern of bars to define
the resolution of a system is clearly brought out in Fig. 1.7. This
is a series of pictures of ten pairs of black and white bars taken
by Coltman.“-!> The number under each picture gives the relative
illumination of the test pattern. The illumination was sufficiently
small (and the gain of the system sufficiently high) that each white
dot represents a photon. It is clear that even in the first picture of
the series, the one which has the lowest illumination, the presence
of the bars can be detected, for example, by viewing the pattern
somewhat edgewise, first from the side and then from the bottom.
In this picture the density of photons is so low that if we defined a
picture element as a square element whose length of side is the
width of one bar, the average number of photons in this element
would be significantly less than unity and in the neighborhood of
1. The signal-to-noise ratio of such an element would then be
4)'2, or 0.5. This is a misleading use of the term signal-to-noise
ratio since it applies to an element which is small compared to
what the eye is actually looking at or making use of in order to

1 2 4 10

Fig. 1.7. Enhanced visibility of bar patterns as compared with dot patterns
(Coltman).©-V
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determine the presence of the bar patterns. The eye is making use
of a large part of the pattern in order to achieve a signal-to-noise
ratio well above unity. Single isolated elements whose dimension
is the width of a bar would, of course, be completely undetectable
in the first and also in the second picture of this series.

Consider also the first of the series of pictures in Fig. 1.6. This
picture was recorded from the kinescope of a 500-line television
system. If we were to estimate the signal-to-noise ratio of an element
whose diameter is one television line width, the value, based on
the density of photons, would be far less than unity. Since there
are some few thousand photons in the entire picture, and a few
hundred thousand television picture elements, the average number
of photons per picture element is 10~2 and the signal-to-noise
ratio referred to these elements is 1071, It is clearly evident from
Fig. 1.6 that elements of such small dimension and small signal-
to-noise ratio are completely beyond the range of visibility. It is
only by going to the area of the largest black spot that we attain a
threshold visibility and a threshold signal-to-noise ratio of about 4.

In brief, the signal-to-noise ratio of what the eye is able to
detect must be well in excess of unity. Signal-to-noise ratios less
than unity, as reported by Coltman“? or by Morgan™! for
the viewing of bar patterns, may have a certain utility as reference
numbers, but they do not define the signal-to-noise ratio of what
the eye actually apprehends.

Parenthetically, there is some ambiguity about the meaning
of signal-to-noise ratios less than unity. For example, the signal-
to-noise ratio of 0.1 cited above was associated with an average
density of 0.01 photons per picture element. Hence, on the average,
a viewer would see zero photons in the picture element 99 times
out of 100 observations. A single observation does not, in general,
give any information about the magnitude of signal-to-noise
ratios less than unity.

Another frequent error arises in motion picture or television
practice when the signal-to-noise ratio of a picture element in a
single frame is associated with threshold visibility observations
on the moving film. If the storage time of the eye were equal to
the time for which one frame is viewed in motion pictures, the
above association would be valid. As it is, the storage time of the
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eye is about 0.2 sec and the time for one frame (in a television
system) is 0.03 sec. Hence, the eye is in effect looking at the super-
position of some 7 successive frames and achieving a signal-to-noise
ratio which is larger than that of a single frame by the factor \/—
Anyone who has looked at a single frame of a motion p1cture is
immediately aware that it is noisier than the visual impression
gained from the moving film in normal projection.

1.6. An Absolute Scale of Performance

Using Eq. (1.2), an absolute scale of performance can be
plotted against which the performance of any actual picture-
seeing device or system can be measured. We choose a fixed value
of 5 for k, the threshold signal-to-noise ratio, with the understanding
that in the region of low light levels its value should be somewhat
lower. There are no reliable measurements on the variation of k
with light level. Further we compute Eq. (1.2) for 1 cm? of i image
surface. Hence Eq. (1.2) can be written

Number of photons/cm? = n = d_fé‘_z
or
1 Cn'?
Number of resolvable lines/cm = 75 (1.3)

The term “number of resolvable lines/cm” is used here to measure
the diameter d of the smallest resolvable isolated spot having a
contrast C. It does not refer to the customary operation of viewing
bar patterns with spacing d. The latter, as we have pointed out,
are intrinsically more visible than single isolated spots. Figure 1.8
is a plot of number of lines/cm versus C with the photon density n
as a parameter.

If we know, for example, that the image surface of some visual
system has received an exposure of 101 photons/cm?, then, accord-
ing to Fig. 1.8, we should be able to resolve black and white
elements (C = 1) whose diameter is greater than 1 x 10”* cm.
At the same time, we should only be able to resolve elements,
having a contrast of 0.01, whose diameter is greater than £ x 1072



22 Chapter 1

1621078
STARLIGHT

Ol

[
[7,]
<C
[+ 4
=
Z ool
(&)
10" PHOTONS/CM IN
INAGE PLANE
L6 1108 104 FOOT-CANOLES IN IMAGE
B110 PLANE (0.1 SEC EXPOSURE]
0.00i SUNLIGHT

1.6x10° FOOT-LAMBERTS SCENE
BRIGHTNESS (0.1 SEC EXPOSURE
F/2 LENS)

10 . 10® 0% 104 0%
NUMBER OF LINES /CM

Fig. 1.8. Universal plot of the limiting size and contrast of single elements that
can be transmitted at various photon densities.

cm. All of this would be true if, indeed, the visual system counted
every incident photon. Under these conditions its quantum yield
would be unity (a quantum yield of unity equals a quantum effi-
ciency of 100%).

Now suppose that, in fact, the smallest black and white element
that can be resolved by the visual system with 10'° photons/cm?
on its image surface is only 3 x 1073 cm rather than { x 10™*
cm. Then, according to Fig. 1.8, the effective performance is that
of a system having a quantum yield of 0.01, or a quantum effi-
ciency* of 1%,

The parameters of the curves in Fig. 1.8 are given primarily
in photons/cm? in the image plane. For convenience, the photons/

* Quantum efficiency, here, has the same meaning as the phrase DQE (detec-
tive quantum efficiency) which was mtroduced by R. Clark Jones and which is
used extensively in the literature.
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cm? are converted also to foot-candles illumination in the image
plane for an exposure time of 0.1 sec.* The conversion factor used
is 10'® photons/sec per lumen of white light. A third equivalent
shown on the curves is the corresponding scene illumination
in foot-lamberts when an f/2 lens is used and an exposure time of
0.1 sec. Finally, the locations of various representative light levels
are indicated from starlight to bright sunlight.

Figure 1.8 shows the performance of ideal noise-limited visual
systems. It is likely that the resolving power of actual systems for
small black test elements will be limited by lens errors, by diffraction,
or by structure in the image plane. Similarly, the ability of actual
visual systems to portray small contrasts in large areas may be
limited by various sources of system noise such as nonuniformities
in the recording medium. The result is that the performance curve
for an actual system may not lie along a 45° line, but may be bowed
such that the high-resolution and low-contrast ends show a lower
performance than some intermediate part of the curve. Figure 1.6
shows evidence of this bowed type of cutoff. It will appear again
in the peformance curves for human vision.

1.7. Geometric versus Noise Limitations to Performance

The preceding remarks are presented schematically in Fig. 1.9.
The solid lines labeled “signal” give the amplitude response of an
imaging system as a function of the number of lines/cm in a test
pattern. These curves are a measure of the geometric limitations
of the system such as diffraction, lens aberrations, and the finite
size of the elements of the imaging surface. The curve labeled
“rms noise” is the noise current that would be observed if the
image were scanned by a series of apertures, each corresponding
to a certain number of lines/cm. (The finer apertures give larger
nois: currents, increasing as the number of lines/cm, or the recip-
rocal width of the aperture. The reason is that even though the
rms fluctuation within the aperture decreases as the aperture
dimension, the linear velocity at which the aperture scans the
image must increase as the reciprocal area, or as the square of its

* We assume here a lens transmission and a scene reflectivity of 1009;.
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Fig. 1.9. Schematic comparison of geometric and noise limitations to resolution.

reciprocal dimension, in order to cover the entire image in a fixed
time. The product of these two effects then yields a noise current
increasing as the reciprocal of the aperture width. By the same
arguments, the signal current is independent of aperture size.) The
noise curve is plotted as 5 x rms noise in order that its intersection
with the signal curve will yield directly the smallest resolvable
elements. :

If there were no geometric limitations to the resolution of
the system, the smallest resolvable elements would lie at point A.
Actually, the drop in the geometric resolution causes the cutoff
to lie at a lower line number, at point B. This is true for picture
elements having 1009 contrast, that is, black and white. If we
turn our attention to low-contrast elements [curve marked “signal
(30 % contrast)”] we find that the cutoff lies at point C where the
geometric response is still unimpaired. The same is true for low-
light scenes in general.

The point we wish to make is that even when geometric
limitations on the resolution of a system begin to play a role, they
affect selectively only the high-contrast parts of the picture. The
visibility and signal-to-noise ratio of the low-contrast parts are
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likely still to be unaffected; and most of the information in an
average picture is of low contrast.

Our emphasis throughout this monograph is on the limitations
imposed by the finite number of photons rather than on the less
fundamental limitations imposed by the finite geometric response
of the system.

1.8. Beyond the Visible Spectrum

The arguments outlined in this chapter have been concerned
primarily with radiation in the visible range of wavelengths (0.4—
0.7 um). Since the arguments have been couched in terms of numbers
of photons, they apply equally well to any system that can detect
ultraviolet radiation, x-rays, or gamma rays. Sturm and Morgan,®-!
for example, have given an excellent discussion of the information
transmitted by a finite number of x-ray photons. In the case of
visible and higher energy radiations, one can extend the arguments
down to almost arbitrarily low densities of photons since the thermal
densities of these photons are vanishingly small.

One can also apply the arguments to the range of infrared
radiation. Here, however, one must contend at ordinary tempera-
tures with a significant density of thermally generated photons.
It is as if the surround were never dark. Indeed, the ambient density
of photons whose wavelength is in the neighborhood of 10 ym is
comparable with that of bright sunlight, namely, about 10'8
photons/cm?-sec incident on or emitted from a surface. At 3 um,
the photon density is of the order of that for room light, or about
10 foot-lambert, and at 1 um the density is equivalent to a visible
ambient density of about 10~ !! foot-lambert, that is, far below the
absolute threshold for vision.

In general, the photon flux emitted by a blackbody at temper-
ature T'is

Ay hv -2 11
= exp( — ﬁ) photons - cm™ - sec™ * sr

where Av is the range of optical frequencies in the neiéhborhood
of the wavelength A.
The visibility of objects in the infrared region is a complex
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function of the artificial illumination used, their self-luminous
flux, their emissivities, and their temperature differences. We
mention here only that the contrast of objects viewed by their
own radiation and having the same emissivities is

hv AT

kT T
where AT is the temperature difference between an object and its
surround. A temperature difference of 1 deg (centigrade) yields a

contrast of about 109, at wavelengths of 1 um and a contrast of
about 1% at 10 um.

x 1009

1.9. Summary

The information content of a finite amount of light is limited
by the finite number of photons, by the random character of their
distribution, and by the need to avoid false alarms.

The signal-to-noise ratio of a test element in an image is
defined as the ratio of the average number of photons in the element
(or difference in average numbers between it and the surround)
to the rms deviation from the average. For an average number n,
the signal-to-noise ratio is n'/2,

The threshold signal-to-noise ratio k is the ratio of signal to
noise required to avoid false alarms. Its value is normally about 5
and may be as low as 3 under extreme low-light conditions.

The characteristic for an ideal photon-noise-limited system is

nd?*C? = k?
where n is the number of photons/cm?, d is the diameter of test
element, C (= AB/B) is the contrast of the test element with the
surround, and k (= 5) is the threshold signal-to-noise ratio.

The signal-to-noise ratio of a system has meaning only when
the size of the test element has been specified.

The resolution of a system has meaning only when the contrast
of test element has been specified.

Geometric limitations on resolution affect the high-contrast
elements more than the low-contrast elements.

Bar patterns are more visible than an isolated spot whose
diameter is equal to the width of the bar.
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