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6
Nuclear Counting Statistics

All nuclear medicine procedures are based on radiation counting measurements.
Like any other measurements of physical quantities, they are subject to meas-
urement errors. This chapter discusses the types of errors that occur, how they
are analyzed, and how, in some cases, they can be minimized.

A. TYPES OF MEASUREMENT ERROR

Measurement errors are of three general types:
Blunders are errors that are adequately described by their name. Usually

they produce grossly inaccurate results and their occurrence is easily detected.
Examples in radiation measurements include the use of incorrect instrument
settings, incorrect labeling of sample containers, injecting the wrong radiophar-
maceutical into the patient, etc. There is no way to "analyze" errors of this
type, only to avoid them by careful work.

Systematic errors produce results that differ consistently from the correct
result by some fixed amount. The same result may be obtained in repeated
measurements, but it is the wrong result. For example, )ength measurements
with a "warped" ruler, or radiation counting measurements with a "sticky"
timer or other persistent instrument malfunction, could contain systematic er-
rors. Observer "bias" in the subjective interpretation of data (e.g., scan read-
ing) is another example of systematic error. Measurement results having sys-
tematic errors are said to be inaccurate.

It is not always easy to detect the presence of systematic error. Measure-
ment results affected by systeinatic error may be very repeatable and not too
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Nuclear Counting Statistics 101

different from the expected results, which may lead to a mistaken sense of
confidence. One way to detect systematic error is by the use of measurement
standards, which are known from previous measurements with a properly op-
erating system to give a certain measurement result. For example, radionuclide
standards, containing a known quantity of radioactivity, are used in various
"quality assurance" procedures to test for systematic error in radiation counting
systems. Some of these procedures are described in Chapter 12, Section D.

Random errors are variations in results from one measurement to the next,
arising from physical limitations of the measurement system or from actual
random variations of the measured quantity itself. For example, length meas-
urements with an ordinary ruler are subject to random error because of inexact
repositioning of the ruler and limitations of the human eye. Random error is
always present in radiation counting measurements because the quantity that is
being measured-namely, the rate of emission from the radiation source-is
itself a randomly varying quantity.

Random error affects measurement reproducibility. Measurements that are
very reproducible-in that nearly the same result is obtained in repeated meas-
urements-are said to be precise. It is possible to minimize random error by
using careful measurement technique, refined instrumentation, etc; however, it
is impossible to eliminate it completely. There is always some limit to the
precision of a m~asurement system. The amount of random error present is
sometimes called the uncertainty in the measurement.

It is also possible for a measurement to be precise (small random error)
but inaccurate (large systematic error), or vice versa. For example, length meas-
urements with a warped ruler may be very reproducible (precise); nevertheless,
they are still inaccurate. On the other hand, radiation counting measurements
may be imprecise (because of inevitable variations in radiation emission rates)
but still they can be accurate, at least in an average sense.

Because random errors are always P!esent in radiation measurements, it is
necessary to be able to analyze them and to obtain estimates of their magnitude.
This is done using methods of statistical analysis. (For this reason, they are also
sometimes called statistical errors.) The remainder of this chapter describes
these methods of analysis.

B. RANDOM ERRORS IN
RADIATION COUNTING MEASUREMENTS

1. The Poisson Distribution

Suppose that a long-lived radioactive sample is counted repeatedly under
supposedly identical conditions with a properly operating counting system. Be-
cause the disintegration rate of the radioactive sample undergoes random vari-
ations from one moment to the next, the numbers of counts recorded in suc-
cessive measurements (N1, Nz, N3, etc.) are not the same. Given that different
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results are obtained from one measurement to the next, one might question if
a "true value" for the measurement actually exists. One possible solution is to
make a large number of measurements and use the average N as an estimate for
the "true value":

True Value = N (6-1)

N = (Nt + N2 + . . . + Nn)/n (6-2)

n N
= ~ -1 (6-3)

i=! n

where n is the number of measurements taken. The notation ~. indicates thatI

a sum is taken over values of the parameter with the subscript i.
Unfortunately, multiple measurements are impractical in routine practice,

and one must usually be satisfied with taking only one measurement. The ques-
tion then is, how good is the result of a single measurement as an estimate of
the "true value," i.e., what is the uncertainty in this result? The answer to this
depends on the frequency distribution of the measurement results. Figure 6-1
shows a typical frequency distribution curve for a series of radiation counting
measurements. It is a graph showing the different possible results, (i.e., number
of counts recorded) versus the probability of getting each result. The curve is
peaked at a mean value m, which is the "true value" for the measurement.
Thus if a large number of measurements were made and their results averaged,
one would obtain

N = m (6-4)

The curve in Figure 6-1 is described mathematically by the Poisson dis-
tribution. The probability of getting a certain result N when the true value is m

is

P(N;m) = e-m ~/N! (6-5)

where e (= 2.718 . . .) is the base of natural logarithms and N! (N factorial)
is the product of all integers up to N (i.e., 1 X 2 X 3 X . . . X N). From
Figure 6-1 it is apparent that the probability of getting the exact result N = m

is rather small; however, one could hope that the result would at least be "close

to" m.
The probability that a measurement result will be "close to" m depends

on the relative width, or dispersion, of the frequency distribution curve. This
is related to a parameter called the variance, (T2, of the distribution. The variance
is a number such that 68.3 percent (-2/3) of the measurement results fall within
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Fig. 6-1. Poisson distribution for m = 10.

I; :!:<1 (i.e. square root of the variance) of the true value m. For the Poisson

distribution, the variance is given by

if = m (6-6)

Thus one expects to find approximately 213 of the counting measurement results

within the range :t V; of the true value m.

Given only the result of a single measurement, N, one does not know the
exact value of m or of <1; however, one can reasonably assume that N = m, and

thus that <1 = \IN. One can therefore say that if the result of the measurement

is N, there is a 68.3 percent chance that the true value of the measurement m

is within the range N :t \IN. This is called the "68.3 percent confidence
interval" for m; i.e., one is 68.3 percent confident that m is in the range N

j: \IN.

l
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The range :t -.IiI is the uncertainty in N. The percentage uncertainty in
N is

V = (-.IiI/N) x 100% (6-7)

= 100%/-.IiI (6-8)

Example 6-1.
Compare the percentage uncertainties in the measurements N I = 100
counts and Nz = 10,000 counts.

Answer.
For N1 = 100 counts, VI = 100%/VlOO = 10% (Equation 6-8). For
Nz = 10,000 counts, V z == 100%/~ = 1%. Thus the percentage

uncertainty in 10,000 counts is only VIO the percentage uncertainty in
100 c~unts.

Equation 6-8 and Example 6-1 indicate that large numbers of counts have
smaller percentage uncertainties and are statistically more reliable than small
numbers of counts.

Other confidence intervals can be defined in terms of (1 or -.IiI. Thex are
summarized in Table 6-1. The 50 percent confidence interval (0.675VN) is
sometimes called the probable error (PE) in N.

2. The Standard Deviation

The variance (1z is related to a statistical index called the standard deviation
(SD). The standard deviation is a number that is calculated for a series of
measurements. If n counting measurements are made, with results NI, Nz, N3,
. . ., N n' and a mean value N for those results is found, the standard deviation
is

SD = (i (Nj - N)Z)\Iz (6-9)

;=1 n - 1

(recall that raising a quantity to the Vz power is the same as taking its square
root). The standard deviation is a measure of the dispersion of measurement
results about the mean and is in fact an estimate of (1, the square root of the
variance. For radiation counting measurements one should therefore obtain

SD = -.IiI (6-10)

This can be used as a test to determine if the random error observed in a series
of counting measurements is consistent with that predicted from random vari-
ations in source decay rate, or if there are additional random errors present,
e.g., from faulty instrument performance. This is discussed further in Section E. i

j
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Table 6-1
Confidence Limits in Radiation Counting Measurements ;-/

Range Confidence Limit for m
(True Value) (%), , 'c '

N:!: 0.675<1 50
N:!: <1 68.3
N:!: 1.64<1 90
N:!: 2<1 95
N :!: 3<1 99.7

3. The Gaussian Distribution

When the mean value m is "large" (m ~ 20) the Poisson distribution can
be approximated by the Gaussian distribution (also called the normal distri-
bution). The equation describing the Gaussian distribution is

2 2P(x;m;(1) = (1/~) e-(x-m) /2a (6-11)

where m and (12 are again the mean and variance. Equation 6-11 describes a
symmetric "bell-shaped" curve, similar to the one shown in Figure 6-1.

The Guassian distribution with (12 = m describes the results of radiation
counting measurements when the only random error present is that due to ran-
dom variations in source decay rate. When additional sources of random error
are present--e.g., a random error or uncertainty of ~ counts due to variations
in sample preparation technique, counting system variations, etc.-the results
are described by the Gaussian distribution with variance given by

(12 = m + (AN)2 (6-12)

The confidence intervals given in Table 6-1 may be used for the Gaussian
distribution with this modified value for the variance. For example, the 68.3
percent confidence interval for a measurement result N would be :t (N +
(!J.N)1~ (assuming N = m).

Example 6-2..
A 1 rnl radioactive sample is pipetted into a test tube for counting. The
precision of the pipette is specified as ":t 2 percent," and 5000 counts
are recorded from the sample. What is the uncertainty in sample counts
per rnI?

Answer.
The uncertainty in counts arising from pipetting precision is 2% x 5000
counts = 100 counts. Therefore (12 = 5000 + (100)2 = 15,000, and
the uncertai~ ~ = 122 counts. Compare this to the uncer-

I tainty of \/5000 = 71 counts that would be obtained without the pi-
, petting uncertainty.
l
i
~",
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C. PROPAGATION OF ERRORS

The preceding section described methods for estimating the random error
or uncertainty in a single counting measurement; however, most nuclear med-
icine procedures involve multiple counting measurements, from which ratios,
differences, and so on are computed to determine a final resQlt. This section
describes methods for estimating uncertainties in mathematical <:ombinations of
multiple counting measurements.

1. Sums and Differences

If two quantities A and B are subject to random errors 0" A and 0" B' then the
uncertainty in either their sum or difference is given by

O"(A :t B) = y~~ (6-13)

Applying this to radiation counting measurements one obtains

. O"(Ni :t NJ = VN~~ (6-14)

The rule is readily extended to longer sequences

O"(Ni :t N2 :t N3 :t . . .) = YNi + N2 + N3 + . ;~ (6-15)

2. Constant Multipliers

If a quantity A having random error 0" A is multiplied by a constant k (i.e.,
a number having no random error), the uncertainty in the result, kA is

O"(kA) = kO"A (6-16)

Thus for a radiation counting measurement N multiplied by a constant k,

0"(kN) = kVN (6-17)

The percentage uncertainty in the product kN is

V(kN) = [0"(kN)/kN] x 100% (6-18)

= 100%/VN (6-19)

which is the same result as Equation 6-8. Thus there is no statistical advantage
to be gained in multiplying the number of counts recorded by a constant to
make the number larger. The percentage uncertainty still depends on the actual
number of counts recorded.
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3. Products and Ratios

If two quantities A and B have percentage uncertainties V A and VB, then
the percentage uncertainty in their product or ratio is

XV(A + B) = VV~ +V~ (6-20)

For radiation counting measurement NJ and N2, this implies

V(NJ ~ NJ = VV~I +V~2 (6-21)

~ ViIN; + llN2 x 100% (6-22)

The rule can be extended to longer sequences:

x x x ~ I. ". .. ,.. . . "Y.
V (NJ + N2 + N3 + . . .) ~ V llNJ + llN2 + llN3 + ' . . x 100% (6-23)

4. More Complicated Combinations

Many nuclear medicine procedures involve both differences and ratios of
counting measurements (e.g., thyroid uptakes, blood volume determinations,
etc.). A general form of these calculations is

Y = k(NJ - NJ/(N3 - N4) (6-24)

where NJ, N2, N3, and N4 are measured counts, k is a constant, and Y is the
calculated quantity (thyroid uptake, blood volume, etc.). The percentage un-
certainty in Y is obtained by first applying the rule for ratios and products
(Equation 6-20),

Vy = VV~1-N2 + V~3-N4 (6-25)

and then the rule for sums and differences (Equation 6-14),

V~1-N2 = [(NJ +NJ/(NJ-NJ1 x 100% (6-26)

V~3-N4 = [(N3+N4)/(N3-N4Y] x 100% (6-27)

The final result is

Vy ~ V(NJ+NJ/(NJ-NJ2 + (N3+N4)/(N3-N4Y x 100% (6-28)

The uncertainty (T y can then be obtained from

(Ty ~ Vy x YIlOO% (6-29)
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Example 6-3.
A patient is injected with a radionuclide. At some later time a blood
sample is withdrawn for counting in a well counter and Np = 1200

counts are recorded. A blood sample withdrawn prior to injection
gives a blood background ofNpb = 400 counts. A standard prepared
from the injection preparation records N. = 2000 counts, and a
"blank" sample records an instrument background ofNb = 200

counts. Calculate the ratio of net patient sample counts to net standard
counts, and the uncertainty in this ratio.

Answer.
The ratio is Y = (Np - Npb)/(N. - Nb)

= (1200 - 400)/(2000 - 200)

= 800/1800 = 0.44

The percentage uncertainty in the ratio is (Equation 6-28)

Vy = \/(1200 + 400)/(800)2 + (2000 + 200)/(1800)2 x 100%

= 5.6%

The uncertainty is 5.6% x 0.44 = 0.02; thus the ratio and its
uncertainty are Y = 0.44 j: 0.02.
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